flipperzero-firmware/lib/subghz/protocols/subghz_protocol_came_atomo.c

334 lines
12 KiB
C
Raw Normal View History

#include "subghz_protocol_came_atomo.h"
#include "subghz_protocol_common.h"
#include <lib/toolbox/manchester-decoder.h>
#define SUBGHZ_NO_CAME_ATOMO_RAINBOW_TABLE 0xFFFFFFFFFFFFFFFF
struct SubGhzProtocolCameAtomo {
SubGhzProtocolCommon common;
ManchesterState manchester_saved_state;
const char* rainbow_table_file_name;
};
typedef enum {
CameAtomoDecoderStepReset = 0,
CameAtomoDecoderStepDecoderData,
} CameAtomoDecoderStep;
SubGhzProtocolCameAtomo* subghz_protocol_came_atomo_alloc() {
SubGhzProtocolCameAtomo* instance = furi_alloc(sizeof(SubGhzProtocolCameAtomo));
instance->common.name = "CAME Atomo";
instance->common.code_min_count_bit_for_found = 62;
instance->common.te_short = 600;
instance->common.te_long = 1200;
instance->common.te_delta = 250;
instance->common.type_protocol = SubGhzProtocolCommonTypeStatic;
instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_protocol_came_atomo_to_str;
// instance->common.to_save_string =
// (SubGhzProtocolCommonGetStrSave)subghz_protocol_came_atomo_to_save_str;
//instance->common.to_load_protocol_from_file =
// (SubGhzProtocolCommonLoadFromFile)subghz_protocol_came_atomo_to_load_protocol_from_file;
instance->common.to_load_protocol =
(SubGhzProtocolCommonLoadFromRAW)subghz_decoder_came_atomo_to_load_protocol;
// instance->common.get_upload_protocol =
// (SubGhzProtocolCommonEncoderGetUpLoad)subghz_protocol_came_atomo_send_key;
return instance;
}
void subghz_protocol_came_atomo_free(SubGhzProtocolCameAtomo* instance) {
furi_assert(instance);
free(instance);
}
void subghz_protocol_came_atomo_name_file(SubGhzProtocolCameAtomo* instance, const char* name) {
instance->rainbow_table_file_name = name;
printf("Loading CAME Atomo rainbow table %s\r\n", name);
}
/** Read bytes from rainbow table
*
* @param instance - SubGhzProtocolCameAtomo* instance
* @param number_atomo_magic_xor
* @return atomo_magic_xor
*/
uint64_t subghz_came_atomo_get_atomo_magic_xor_in_file(
SubGhzProtocolCameAtomo* instance,
uint8_t number_atomo_magic_xor) {
if(!strcmp(instance->rainbow_table_file_name, "")) return SUBGHZ_NO_CAME_ATOMO_RAINBOW_TABLE;
uint8_t buffer[sizeof(uint64_t)] = {0};
uint32_t address = number_atomo_magic_xor * sizeof(uint64_t);
uint64_t atomo_magic_xor = 0;
FileWorker* file_worker = file_worker_alloc(true);
if(file_worker_open(
file_worker, instance->rainbow_table_file_name, FSAM_READ, FSOM_OPEN_EXISTING)) {
file_worker_seek(file_worker, address, true);
file_worker_read(file_worker, &buffer, sizeof(uint64_t));
for(size_t i = 0; i < sizeof(uint64_t); i++) {
atomo_magic_xor = (atomo_magic_xor << 8) | buffer[i];
}
} else {
atomo_magic_xor = SUBGHZ_NO_CAME_ATOMO_RAINBOW_TABLE;
}
file_worker_close(file_worker);
file_worker_free(file_worker);
return atomo_magic_xor;
}
/** Analysis of received data
*
* @param instance SubGhzProtocolCameAtomo instance
*/
void subghz_protocol_came_atomo_remote_controller(SubGhzProtocolCameAtomo* instance) {
/*
* 0x1fafef3ed0f7d9ef
* 0x185fcc1531ee86e7
* 0x184fa96912c567ff
* 0x187f8a42f3dc38f7
* 0x186f63915492a5cd
* 0x181f40bab58bfac5
* 0x180f25c696a01bdd
* 0x183f06ed77b944d5
* 0x182ef661d83d21a9
* 0x18ded54a39247ea1
* 0x18ceb0361a0f9fb9
* 0x18fe931dfb16c0b1
* 0x18ee7ace5c585d8b
* ........
* transmission consists of 99 parcels with increasing counter while holding down the button
* with each new press, the counter in the encrypted part increases
*
* 0x1FAFF13ED0F7D9EF
* 0x1FAFF11ED0F7D9EF
* 0x1FAFF10ED0F7D9EF
* 0x1FAFF0FED0F7D9EF
* 0x1FAFF0EED0F7D9EF
* 0x1FAFF0DED0F7D9EF
* 0x1FAFF0CED0F7D9EF
* 0x1FAFF0BED0F7D9EF
* 0x1FAFF0AED0F7D9EF
*
* where 0x1FAF - parcel counter, 0хF0A - button press counter,
* 0xED0F7D9E - serial number, 0хF - key
* 0x1FAF parcel counter - 1 in the parcel queue ^ 0x185F = 0x07F0
* 0x185f ^ 0x185F = 0x0000
* 0x184f ^ 0x185F = 0x0010
* 0x187f ^ 0x185F = 0x0020
* .....
* 0x182e ^ 0x185F = 0x0071
* 0x18de ^ 0x185F = 0x0081
* .....
* 0x1e43 ^ 0x185F = 0x061C
* where the last nibble is incremented every 8 samples
*
* Decode
*
* 0x1cf6931dfb16c0b1 => 0x1cf6
* 0x1cf6 ^ 0x185F = 0x04A9
* 0x04A9 => 0x04A = 74 (dec)
* 74+1 % 32(atomo_magic_xor) = 11
* GET atomo_magic_xor[11] = 0xXXXXXXXXXXXXXXXX
* 0x931dfb16c0b1 ^ 0xXXXXXXXXXXXXXXXX = 0xEF3ED0F7D9EF
* 0xEF3 ED0F7D9E F => 0xEF3 - CNT, 0xED0F7D9E - SN, 0xF - key
*
* */
uint16_t parcel_counter = instance->common.code_last_found >> 48;
parcel_counter = parcel_counter ^ 0x185F;
parcel_counter >>= 4;
uint8_t ind = (parcel_counter + 1) % 32;
uint64_t temp_data = instance->common.code_last_found & 0x0000FFFFFFFFFFFF;
uint64_t atomo_magic_xor = subghz_came_atomo_get_atomo_magic_xor_in_file(instance, ind);
if(atomo_magic_xor != SUBGHZ_NO_CAME_ATOMO_RAINBOW_TABLE) {
temp_data = temp_data ^ atomo_magic_xor;
instance->common.cnt = temp_data >> 36;
instance->common.serial = (temp_data >> 4) & 0x000FFFFFFFF;
instance->common.btn = temp_data & 0xF;
} else {
instance->common.cnt = 0;
instance->common.serial = 0;
instance->common.btn = 0;
}
}
void subghz_protocol_came_atomo_reset(SubGhzProtocolCameAtomo* instance) {
instance->common.parser_step = CameAtomoDecoderStepReset;
manchester_advance(
instance->manchester_saved_state,
ManchesterEventReset,
&instance->manchester_saved_state,
NULL);
}
void subghz_protocol_came_atomo_parse(
SubGhzProtocolCameAtomo* instance,
bool level,
uint32_t duration) {
ManchesterEvent event = ManchesterEventReset;
switch(instance->common.parser_step) {
case CameAtomoDecoderStepReset:
if((!level) && (DURATION_DIFF(duration, instance->common.te_long * 65) <
instance->common.te_delta * 20)) {
//Found header CAME
instance->common.parser_step = CameAtomoDecoderStepDecoderData;
instance->common.code_found = 0;
instance->common.code_count_bit = 1;
manchester_advance(
instance->manchester_saved_state,
ManchesterEventReset,
&instance->manchester_saved_state,
NULL);
manchester_advance(
instance->manchester_saved_state,
ManchesterEventShortLow,
&instance->manchester_saved_state,
NULL);
} else {
instance->common.parser_step = CameAtomoDecoderStepReset;
}
break;
case CameAtomoDecoderStepDecoderData:
if(!level) {
if(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta) {
event = ManchesterEventShortLow;
} else if(DURATION_DIFF(duration, instance->common.te_long) < instance->common.te_delta) {
event = ManchesterEventLongLow;
} else if(duration >= (instance->common.te_long * 2 + instance->common.te_delta)) {
if(instance->common.code_count_bit ==
instance->common.code_min_count_bit_for_found) {
instance->common.code_last_found = instance->common.code_found;
instance->common.code_last_count_bit = instance->common.code_count_bit;
if(instance->common.callback)
instance->common.callback(
(SubGhzProtocolCommon*)instance, instance->common.context);
}
instance->common.code_found = 0;
instance->common.code_count_bit = 1;
manchester_advance(
instance->manchester_saved_state,
ManchesterEventReset,
&instance->manchester_saved_state,
NULL);
manchester_advance(
instance->manchester_saved_state,
ManchesterEventShortLow,
&instance->manchester_saved_state,
NULL);
} else {
instance->common.parser_step = CameAtomoDecoderStepReset;
}
} else {
if(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta) {
event = ManchesterEventShortHigh;
} else if(DURATION_DIFF(duration, instance->common.te_long) < instance->common.te_delta) {
event = ManchesterEventLongHigh;
} else {
instance->common.parser_step = CameAtomoDecoderStepReset;
}
}
if(event != ManchesterEventReset) {
bool data;
bool data_ok = manchester_advance(
instance->manchester_saved_state, event, &instance->manchester_saved_state, &data);
if(data_ok) {
instance->common.code_found = (instance->common.code_found << 1) | !data;
instance->common.code_count_bit++;
}
}
break;
}
}
void subghz_protocol_came_atomo_to_str(SubGhzProtocolCameAtomo* instance, string_t output) {
subghz_protocol_came_atomo_remote_controller(instance);
uint32_t code_found_hi = instance->common.code_last_found >> 32;
uint32_t code_found_lo = instance->common.code_last_found & 0x00000000ffffffff;
string_cat_printf(
output,
"%s %db\r\n"
"Key:0x%lX%08lX\r\n"
"Sn:0x%08lX Btn:0x%01X\r\n"
"Cnt:0x%03X\r\n",
instance->common.name,
instance->common.code_last_count_bit,
code_found_hi,
code_found_lo,
instance->common.serial,
instance->common.btn,
instance->common.cnt);
}
// void subghz_protocol_came_atomo_to_save_str(SubGhzProtocolCameAtomo* instance, string_t output) {
// string_printf(
// output,
// "Protocol: %s\n"
// "Bit: %d\n"
// "Key: %08lX%08lX\r\n",
// instance->common.name,
// instance->common.code_last_count_bit,
// (uint32_t)(instance->common.code_last_found >> 32),
// (uint32_t)(instance->common.code_last_found & 0xFFFFFFFF));
// }
// bool subghz_protocol_came_atomo_to_load_protocol_from_file(
// FileWorker* file_worker,
// SubGhzProtocolCameAtomo* instance,
// const char* file_path) {
// bool loaded = false;
// string_t temp_str;
// string_init(temp_str);
// int res = 0;
// int data = 0;
// do {
// // Read and parse bit data from 2nd line
// if(!file_worker_read_until(file_worker, temp_str, '\n')) {
// break;
// }
// res = sscanf(string_get_cstr(temp_str), "Bit: %d\n", &data);
// if(res != 1) {
// break;
// }
// instance->common.code_last_count_bit = (uint8_t)data;
// // Read and parse key data from 3nd line
// if(!file_worker_read_until(file_worker, temp_str, '\n')) {
// break;
// }
// // strlen("Key: ") = 5
// string_right(temp_str, 5);
// uint8_t buf_key[8] = {0};
// if(!subghz_protocol_common_read_hex(temp_str, buf_key, 8)) {
// break;
// }
// for(uint8_t i = 0; i < 8; i++) {
// instance->common.code_last_found = instance->common.code_last_found << 8 | buf_key[i];
// }
// loaded = true;
// } while(0);
// string_clear(temp_str);
// subghz_protocol_came_atomo_remote_controller(instance);
// return loaded;
// }
void subghz_decoder_came_atomo_to_load_protocol(SubGhzProtocolCameAtomo* instance, void* context) {
furi_assert(context);
furi_assert(instance);
SubGhzProtocolCommonLoad* data = context;
instance->common.code_last_found = data->code_found;
instance->common.code_last_count_bit = data->code_count_bit;
subghz_protocol_came_atomo_remote_controller(instance);
}