flipperzero-firmware/lib/lfrfid/protocols/protocol_em4100.c

292 lines
8.8 KiB
C
Raw Normal View History

[FL-2529][FL-1628] New LF-RFID subsystem (#1601) * Makefile: unit tests pack * RFID: pulse joiner and its unit test * Move pulse protocol helpers to appropriate place * Drop pulse_joiner tests * Generic protocol, protocols dictionary, unit test * Protocol dict unit test * iButton: protocols dictionary * Lib: varint * Lib: profiler * Unit test: varint * rfid: worker mockup * LFRFID: em4100 unit test * Storage: file_exist function * rfid: fsk osc * rfid: generic fsk demodulator * rfid: protocol em4100 * rfid: protocol h10301 * rfid: protocol io prox xsf * Unit test: rfid protocols * rfid: new hal * rfid: raw worker * Unit test: fix error output * rfid: worker * rfid: plain c cli * fw: migrate to scons * lfrfid: full io prox support * unit test: io prox protocol * SubGHZ: move bit defines to source * FSK oscillator: level duration compability * libs: bit manipulation library * lfrfid: ioprox protocol, use bit library and new level duration method of FSK ocillator * bit lib: unit tests * Bit lib: parity tests, remove every nth bit, copy bits * Lfrfid: awid protocol * bit lib: uint16 and uint32 getters, unit tests * lfrfid: FDX-B read, draft version * Minunit: better memeq assert * bit lib: reverse, print, print regions * Protocol dict: get protocol features, get protocol validate count * lfrfid worker: improved read * lfrfid raw worker: psk support * Cli: rfid plain C cli * protocol AWID: render * protocol em4100: render * protocol h10301: render * protocol indala26: support every indala 26 scramble * Protocol IO Prox: render * Protocol FDX-B: advanced read * lfrfid: remove unused test function * lfrfid: fix os primitives * bit lib: crc16 and unit tests * FDX-B: save data * lfrfid worker: increase stream size. Alloc raw worker only when needed. * lfrfid: indala26 emulation * lfrfid: prepare to write * lfrfid: fdx-b emulation * lfrfid: awid, ioprox write * lfrfid: write t55xx w\o validation * lfrfid: better t55xx block0 handling * lfrfid: use new t5577 functions in worker * lfrfid: improve protocol description * lfrfid: write and verify * lfrfid: delete cpp cli * lfrfid: improve worker usage * lfrfid-app: step to new worker * lfrfid: old indala (I40134) load fallback * lfrfid: indala26, recover wrong synced data * lfrfid: remove old worker * lfrfid app: dummy read screen * lfrfid app: less dummy read screen * lfrfid: generic 96-bit HID protocol (covers up to HID 37-bit) * rename * lfrfid: improve indala26 read * lfrfid: generic 192-bit HID protocol (covers all HID extended) * lfrfid: TODO about HID render * lfrfid: new protocol FDX-A * lfrfid-app: correct worker stop on exit * misc fixes * lfrfid: FDX-A and HID distinguishability has been fixed. * lfrfid: decode HID size header and render it (#1612) * lfrfid: rename HID96 and HID192 to HIDProx and HIDExt * lfrfid: extra actions scene * lfrfid: decode generic HID Proximity size lazily (#1618) * lib: stream of data buffers concept * lfrfid: raw file helper * lfrfid: changed raw worker api * lfrfid: packed varint pair * lfrfid: read stream speedup * lfrfid app: show read mode * Documentation * lfrfid app: raw read gui * lfrfid app: storage check for raw read * memleak fix * review fixes * lfrfid app: read blink color * lfrfid app: reset key name after read * review fixes * lfrfid app: fix copypasted text * review fixes * lfrfid: disable debug gpio * lfrfid: card detection events * lfrfid: change validation color from magenta to green * Update core_defines. * lfrfid: prefix fdx-b id by zeroes * lfrfid: parse up to 43-bit HID Proximity keys (#1640) * Fbt: downgrade toolchain and fix PS1 * lfrfid: fix unit tests * lfrfid app: remove printf * lfrfid: indala26, use bit 55 as data * lfrfid: indala26, better brief format * lfrfid: indala26, loading fallback * lfrfid: read timing tuning Co-authored-by: James Ide <ide@users.noreply.github.com> Co-authored-by: あく <alleteam@gmail.com>
2022-08-23 15:57:39 +00:00
#include <furi.h>
#include <toolbox/protocols/protocol.h>
#include <toolbox/manchester_decoder.h>
#include "lfrfid_protocols.h"
typedef uint64_t EM4100DecodedData;
#define EM_HEADER_POS (55)
#define EM_HEADER_MASK (0x1FFLLU << EM_HEADER_POS)
#define EM_FIRST_ROW_POS (50)
#define EM_ROW_COUNT (10)
#define EM_COLUMN_COUNT (4)
#define EM_BITS_PER_ROW_COUNT (EM_COLUMN_COUNT + 1)
#define EM_COLUMN_POS (4)
#define EM_STOP_POS (0)
#define EM_STOP_MASK (0x1LLU << EM_STOP_POS)
#define EM_HEADER_AND_STOP_MASK (EM_HEADER_MASK | EM_STOP_MASK)
#define EM_HEADER_AND_STOP_DATA (EM_HEADER_MASK)
#define EM4100_DECODED_DATA_SIZE (5)
#define EM4100_ENCODED_DATA_SIZE (sizeof(EM4100DecodedData))
#define EM4100_CLOCK_PER_BIT (64)
#define EM_READ_SHORT_TIME (256)
#define EM_READ_LONG_TIME (512)
#define EM_READ_JITTER_TIME (100)
#define EM_READ_SHORT_TIME_LOW (EM_READ_SHORT_TIME - EM_READ_JITTER_TIME)
#define EM_READ_SHORT_TIME_HIGH (EM_READ_SHORT_TIME + EM_READ_JITTER_TIME)
#define EM_READ_LONG_TIME_LOW (EM_READ_LONG_TIME - EM_READ_JITTER_TIME)
#define EM_READ_LONG_TIME_HIGH (EM_READ_LONG_TIME + EM_READ_JITTER_TIME)
typedef struct {
uint8_t data[EM4100_DECODED_DATA_SIZE];
EM4100DecodedData encoded_data;
uint8_t encoded_data_index;
bool encoded_polarity;
ManchesterState decoder_manchester_state;
} ProtocolEM4100;
ProtocolEM4100* protocol_em4100_alloc(void) {
ProtocolEM4100* proto = malloc(sizeof(ProtocolEM4100));
return (void*)proto;
};
void protocol_em4100_free(ProtocolEM4100* proto) {
free(proto);
};
uint8_t* protocol_em4100_get_data(ProtocolEM4100* proto) {
return proto->data;
};
static void em4100_decode(
const uint8_t* encoded_data,
const uint8_t encoded_data_size,
uint8_t* decoded_data,
const uint8_t decoded_data_size) {
furi_check(decoded_data_size >= EM4100_DECODED_DATA_SIZE);
furi_check(encoded_data_size >= EM4100_ENCODED_DATA_SIZE);
uint8_t decoded_data_index = 0;
EM4100DecodedData card_data = *((EM4100DecodedData*)(encoded_data));
// clean result
memset(decoded_data, 0, decoded_data_size);
// header
for(uint8_t i = 0; i < 9; i++) {
card_data = card_data << 1;
}
// nibbles
uint8_t value = 0;
for(uint8_t r = 0; r < EM_ROW_COUNT; r++) {
uint8_t nibble = 0;
for(uint8_t i = 0; i < 5; i++) {
if(i < 4) nibble = (nibble << 1) | (card_data & (1LLU << 63) ? 1 : 0);
card_data = card_data << 1;
}
value = (value << 4) | nibble;
if(r % 2) {
decoded_data[decoded_data_index] |= value;
decoded_data_index++;
value = 0;
}
}
}
static bool em4100_can_be_decoded(const uint8_t* encoded_data, const uint8_t encoded_data_size) {
furi_check(encoded_data_size >= EM4100_ENCODED_DATA_SIZE);
const EM4100DecodedData* card_data = (EM4100DecodedData*)encoded_data;
// check header and stop bit
if((*card_data & EM_HEADER_AND_STOP_MASK) != EM_HEADER_AND_STOP_DATA) return false;
// check row parity
for(uint8_t i = 0; i < EM_ROW_COUNT; i++) {
uint8_t parity_sum = 0;
for(uint8_t j = 0; j < EM_BITS_PER_ROW_COUNT; j++) {
parity_sum += (*card_data >> (EM_FIRST_ROW_POS - i * EM_BITS_PER_ROW_COUNT + j)) & 1;
}
if((parity_sum % 2)) {
return false;
}
}
// check columns parity
for(uint8_t i = 0; i < EM_COLUMN_COUNT; i++) {
uint8_t parity_sum = 0;
for(uint8_t j = 0; j < EM_ROW_COUNT + 1; j++) {
parity_sum += (*card_data >> (EM_COLUMN_POS - i + j * EM_BITS_PER_ROW_COUNT)) & 1;
}
if((parity_sum % 2)) {
return false;
}
}
return true;
}
void protocol_em4100_decoder_start(ProtocolEM4100* proto) {
memset(proto->data, 0, EM4100_DECODED_DATA_SIZE);
proto->encoded_data = 0;
manchester_advance(
proto->decoder_manchester_state,
ManchesterEventReset,
&proto->decoder_manchester_state,
NULL);
};
bool protocol_em4100_decoder_feed(ProtocolEM4100* proto, bool level, uint32_t duration) {
bool result = false;
ManchesterEvent event = ManchesterEventReset;
if(duration > EM_READ_SHORT_TIME_LOW && duration < EM_READ_SHORT_TIME_HIGH) {
if(!level) {
event = ManchesterEventShortHigh;
} else {
event = ManchesterEventShortLow;
}
} else if(duration > EM_READ_LONG_TIME_LOW && duration < EM_READ_LONG_TIME_HIGH) {
if(!level) {
event = ManchesterEventLongHigh;
} else {
event = ManchesterEventLongLow;
}
}
if(event != ManchesterEventReset) {
bool data;
bool data_ok = manchester_advance(
proto->decoder_manchester_state, event, &proto->decoder_manchester_state, &data);
if(data_ok) {
proto->encoded_data = (proto->encoded_data << 1) | data;
if(em4100_can_be_decoded((uint8_t*)&proto->encoded_data, sizeof(EM4100DecodedData))) {
em4100_decode(
(uint8_t*)&proto->encoded_data,
sizeof(EM4100DecodedData),
proto->data,
EM4100_DECODED_DATA_SIZE);
result = true;
}
}
}
return result;
};
static void em4100_write_nibble(bool low_nibble, uint8_t data, EM4100DecodedData* encoded_data) {
uint8_t parity_sum = 0;
uint8_t start = 0;
if(!low_nibble) start = 4;
for(int8_t i = (start + 3); i >= start; i--) {
parity_sum += (data >> i) & 1;
*encoded_data = (*encoded_data << 1) | ((data >> i) & 1);
}
*encoded_data = (*encoded_data << 1) | ((parity_sum % 2) & 1);
}
bool protocol_em4100_encoder_start(ProtocolEM4100* proto) {
// header
proto->encoded_data = 0b111111111;
// data
for(uint8_t i = 0; i < EM4100_DECODED_DATA_SIZE; i++) {
em4100_write_nibble(false, proto->data[i], &proto->encoded_data);
em4100_write_nibble(true, proto->data[i], &proto->encoded_data);
}
// column parity and stop bit
uint8_t parity_sum;
for(uint8_t c = 0; c < EM_COLUMN_COUNT; c++) {
parity_sum = 0;
for(uint8_t i = 1; i <= EM_ROW_COUNT; i++) {
uint8_t parity_bit = (proto->encoded_data >> (i * EM_BITS_PER_ROW_COUNT - 1)) & 1;
parity_sum += parity_bit;
}
proto->encoded_data = (proto->encoded_data << 1) | ((parity_sum % 2) & 1);
}
// stop bit
proto->encoded_data = (proto->encoded_data << 1) | 0;
proto->encoded_data_index = 0;
proto->encoded_polarity = true;
return true;
};
LevelDuration protocol_em4100_encoder_yield(ProtocolEM4100* proto) {
bool level = (proto->encoded_data >> (63 - proto->encoded_data_index)) & 1;
uint32_t duration = EM4100_CLOCK_PER_BIT / 2;
if(proto->encoded_polarity) {
proto->encoded_polarity = false;
} else {
level = !level;
proto->encoded_polarity = true;
proto->encoded_data_index++;
if(proto->encoded_data_index >= 64) {
proto->encoded_data_index = 0;
}
}
return level_duration_make(level, duration);
};
bool protocol_em4100_write_data(ProtocolEM4100* protocol, void* data) {
LFRFIDWriteRequest* request = (LFRFIDWriteRequest*)data;
bool result = false;
protocol_em4100_encoder_start(protocol);
if(request->write_type == LFRFIDWriteTypeT5577) {
request->t5577.block[0] =
(LFRFID_T5577_MODULATION_MANCHESTER | LFRFID_T5577_BITRATE_RF_64 |
(2 << LFRFID_T5577_MAXBLOCK_SHIFT));
request->t5577.block[1] = protocol->encoded_data;
request->t5577.block[2] = protocol->encoded_data >> 32;
request->t5577.blocks_to_write = 3;
result = true;
}
return result;
};
void protocol_em4100_render_data(ProtocolEM4100* protocol, string_t result) {
uint8_t* data = protocol->data;
string_printf(result, "ID: %03u,%05u", data[2], (uint16_t)((data[3] << 8) | (data[4])));
};
const ProtocolBase protocol_em4100 = {
.name = "EM4100",
.manufacturer = "EM-Micro",
.data_size = EM4100_DECODED_DATA_SIZE,
.features = LFRFIDFeatureASK | LFRFIDFeaturePSK,
.validate_count = 3,
.alloc = (ProtocolAlloc)protocol_em4100_alloc,
.free = (ProtocolFree)protocol_em4100_free,
.get_data = (ProtocolGetData)protocol_em4100_get_data,
.decoder =
{
.start = (ProtocolDecoderStart)protocol_em4100_decoder_start,
.feed = (ProtocolDecoderFeed)protocol_em4100_decoder_feed,
},
.encoder =
{
.start = (ProtocolEncoderStart)protocol_em4100_encoder_start,
.yield = (ProtocolEncoderYield)protocol_em4100_encoder_yield,
},
.render_data = (ProtocolRenderData)protocol_em4100_render_data,
.render_brief_data = (ProtocolRenderData)protocol_em4100_render_data,
.write_data = (ProtocolWriteData)protocol_em4100_write_data,
};