flipperzero-firmware/lib/subghz/protocols/clemsa.c

366 lines
14 KiB
C
Raw Normal View History

#include "clemsa.h"
#include "../blocks/const.h"
#include "../blocks/decoder.h"
#include "../blocks/encoder.h"
#include "../blocks/generic.h"
#include "../blocks/math.h"
// protocol BERNER / ELKA / TEDSEN / TELETASTER
#define TAG "SubGhzProtocolClemsa"
#define DIP_P 0b11 //(+)
#define DIP_O 0b10 //(0)
#define DIP_N 0b00 //(-)
#define DIP_PATTERN "%c%c%c%c%c%c%c%c"
#define SHOW_DIP_P(dip, check_dip) \
((((dip >> 0xE) & 0x3) == check_dip) ? '*' : '_'), \
((((dip >> 0xC) & 0x3) == check_dip) ? '*' : '_'), \
((((dip >> 0xA) & 0x3) == check_dip) ? '*' : '_'), \
((((dip >> 0x8) & 0x3) == check_dip) ? '*' : '_'), \
((((dip >> 0x6) & 0x3) == check_dip) ? '*' : '_'), \
((((dip >> 0x4) & 0x3) == check_dip) ? '*' : '_'), \
((((dip >> 0x2) & 0x3) == check_dip) ? '*' : '_'), \
((((dip >> 0x0) & 0x3) == check_dip) ? '*' : '_')
static const SubGhzBlockConst subghz_protocol_clemsa_const = {
.te_short = 385,
.te_long = 2695,
.te_delta = 150,
.min_count_bit_for_found = 18,
};
struct SubGhzProtocolDecoderClemsa {
SubGhzProtocolDecoderBase base;
SubGhzBlockDecoder decoder;
SubGhzBlockGeneric generic;
};
struct SubGhzProtocolEncoderClemsa {
SubGhzProtocolEncoderBase base;
SubGhzProtocolBlockEncoder encoder;
SubGhzBlockGeneric generic;
};
typedef enum {
ClemsaDecoderStepReset = 0,
ClemsaDecoderStepSaveDuration,
ClemsaDecoderStepCheckDuration,
} ClemsaDecoderStep;
const SubGhzProtocolDecoder subghz_protocol_clemsa_decoder = {
.alloc = subghz_protocol_decoder_clemsa_alloc,
.free = subghz_protocol_decoder_clemsa_free,
.feed = subghz_protocol_decoder_clemsa_feed,
.reset = subghz_protocol_decoder_clemsa_reset,
.get_hash_data = subghz_protocol_decoder_clemsa_get_hash_data,
.serialize = subghz_protocol_decoder_clemsa_serialize,
.deserialize = subghz_protocol_decoder_clemsa_deserialize,
.get_string = subghz_protocol_decoder_clemsa_get_string,
};
const SubGhzProtocolEncoder subghz_protocol_clemsa_encoder = {
.alloc = subghz_protocol_encoder_clemsa_alloc,
.free = subghz_protocol_encoder_clemsa_free,
.deserialize = subghz_protocol_encoder_clemsa_deserialize,
.stop = subghz_protocol_encoder_clemsa_stop,
.yield = subghz_protocol_encoder_clemsa_yield,
};
const SubGhzProtocol subghz_protocol_clemsa = {
.name = SUBGHZ_PROTOCOL_CLEMSA_NAME,
.type = SubGhzProtocolTypeStatic,
.flag = SubGhzProtocolFlag_433 | SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable |
SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save | SubGhzProtocolFlag_Send,
.decoder = &subghz_protocol_clemsa_decoder,
.encoder = &subghz_protocol_clemsa_encoder,
};
void* subghz_protocol_encoder_clemsa_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolEncoderClemsa* instance = malloc(sizeof(SubGhzProtocolEncoderClemsa));
instance->base.protocol = &subghz_protocol_clemsa;
instance->generic.protocol_name = instance->base.protocol->name;
instance->encoder.repeat = 10;
instance->encoder.size_upload = 52;
instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration));
instance->encoder.is_running = false;
return instance;
}
void subghz_protocol_encoder_clemsa_free(void* context) {
furi_assert(context);
SubGhzProtocolEncoderClemsa* instance = context;
free(instance->encoder.upload);
free(instance);
}
/**
* Generating an upload from data.
* @param instance Pointer to a SubGhzProtocolEncoderClemsa instance
* @return true On success
*/
static bool subghz_protocol_encoder_clemsa_get_upload(SubGhzProtocolEncoderClemsa* instance) {
furi_assert(instance);
size_t index = 0;
size_t size_upload = (instance->generic.data_count_bit * 2);
if(size_upload > instance->encoder.size_upload) {
FURI_LOG_E(TAG, "Size upload exceeds allocated encoder buffer.");
return false;
} else {
instance->encoder.size_upload = size_upload;
}
for(uint8_t i = instance->generic.data_count_bit; i > 1; i--) {
if(bit_read(instance->generic.data, i - 1)) {
//send bit 1
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_clemsa_const.te_long);
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_clemsa_const.te_short);
} else {
//send bit 0
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_clemsa_const.te_short);
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_clemsa_const.te_long);
}
}
if(bit_read(instance->generic.data, 0)) {
//send bit 1
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_clemsa_const.te_long);
instance->encoder.upload[index++] = level_duration_make(
false,
(uint32_t)subghz_protocol_clemsa_const.te_short +
subghz_protocol_clemsa_const.te_long * 7);
} else {
//send bit 0
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_clemsa_const.te_short);
instance->encoder.upload[index++] = level_duration_make(
false,
(uint32_t)subghz_protocol_clemsa_const.te_long +
subghz_protocol_clemsa_const.te_long * 7);
}
return true;
}
bool subghz_protocol_encoder_clemsa_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolEncoderClemsa* instance = context;
bool res = false;
do {
if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
FURI_LOG_E(TAG, "Deserialize error");
break;
}
if(instance->generic.data_count_bit !=
subghz_protocol_clemsa_const.min_count_bit_for_found) {
FURI_LOG_E(TAG, "Wrong number of bits in key");
break;
}
//optional parameter parameter
flipper_format_read_uint32(
flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1);
if(!subghz_protocol_encoder_clemsa_get_upload(instance)) break;
instance->encoder.is_running = true;
res = true;
} while(false);
return res;
}
void subghz_protocol_encoder_clemsa_stop(void* context) {
SubGhzProtocolEncoderClemsa* instance = context;
instance->encoder.is_running = false;
}
LevelDuration subghz_protocol_encoder_clemsa_yield(void* context) {
SubGhzProtocolEncoderClemsa* instance = context;
if(instance->encoder.repeat == 0 || !instance->encoder.is_running) {
instance->encoder.is_running = false;
return level_duration_reset();
}
LevelDuration ret = instance->encoder.upload[instance->encoder.front];
if(++instance->encoder.front == instance->encoder.size_upload) {
instance->encoder.repeat--;
instance->encoder.front = 0;
}
return ret;
}
void* subghz_protocol_decoder_clemsa_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolDecoderClemsa* instance = malloc(sizeof(SubGhzProtocolDecoderClemsa));
instance->base.protocol = &subghz_protocol_clemsa;
instance->generic.protocol_name = instance->base.protocol->name;
return instance;
}
void subghz_protocol_decoder_clemsa_free(void* context) {
furi_assert(context);
SubGhzProtocolDecoderClemsa* instance = context;
free(instance);
}
void subghz_protocol_decoder_clemsa_reset(void* context) {
furi_assert(context);
SubGhzProtocolDecoderClemsa* instance = context;
instance->decoder.parser_step = ClemsaDecoderStepReset;
}
void subghz_protocol_decoder_clemsa_feed(void* context, bool level, uint32_t duration) {
furi_assert(context);
SubGhzProtocolDecoderClemsa* instance = context;
switch(instance->decoder.parser_step) {
case ClemsaDecoderStepReset:
if((!level) && (DURATION_DIFF(duration, subghz_protocol_clemsa_const.te_short * 51) <
subghz_protocol_clemsa_const.te_delta * 25)) {
instance->decoder.parser_step = ClemsaDecoderStepSaveDuration;
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
}
break;
case ClemsaDecoderStepSaveDuration:
if(level) {
instance->decoder.te_last = duration;
instance->decoder.parser_step = ClemsaDecoderStepCheckDuration;
} else {
instance->decoder.parser_step = ClemsaDecoderStepReset;
}
break;
case ClemsaDecoderStepCheckDuration:
if(!level) {
if((DURATION_DIFF(instance->decoder.te_last, subghz_protocol_clemsa_const.te_short) <
subghz_protocol_clemsa_const.te_delta) &&
(DURATION_DIFF(duration, subghz_protocol_clemsa_const.te_long) <
subghz_protocol_clemsa_const.te_delta * 3)) {
subghz_protocol_blocks_add_bit(&instance->decoder, 0);
instance->decoder.parser_step = ClemsaDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->decoder.te_last, subghz_protocol_clemsa_const.te_long) <
subghz_protocol_clemsa_const.te_delta * 3) &&
(DURATION_DIFF(duration, subghz_protocol_clemsa_const.te_short) <
subghz_protocol_clemsa_const.te_delta)) {
subghz_protocol_blocks_add_bit(&instance->decoder, 1);
instance->decoder.parser_step = ClemsaDecoderStepSaveDuration;
} else if(
DURATION_DIFF(duration, subghz_protocol_clemsa_const.te_short * 51) <
subghz_protocol_clemsa_const.te_delta * 25) {
if((DURATION_DIFF(
instance->decoder.te_last, subghz_protocol_clemsa_const.te_short) <
subghz_protocol_clemsa_const.te_delta)) {
subghz_protocol_blocks_add_bit(&instance->decoder, 0);
} else if((DURATION_DIFF(
instance->decoder.te_last, subghz_protocol_clemsa_const.te_long) <
subghz_protocol_clemsa_const.te_delta * 3)) {
subghz_protocol_blocks_add_bit(&instance->decoder, 1);
} else {
instance->decoder.parser_step = ClemsaDecoderStepReset;
}
if(instance->decoder.decode_count_bit ==
subghz_protocol_clemsa_const.min_count_bit_for_found) {
instance->generic.data = instance->decoder.decode_data;
instance->generic.data_count_bit = instance->decoder.decode_count_bit;
if(instance->base.callback)
instance->base.callback(&instance->base, instance->base.context);
}
instance->decoder.parser_step = ClemsaDecoderStepSaveDuration;
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
} else {
instance->decoder.parser_step = ClemsaDecoderStepReset;
}
} else {
instance->decoder.parser_step = ClemsaDecoderStepReset;
}
break;
}
}
/**
* Analysis of received data
* @param instance Pointer to a SubGhzBlockGeneric* instance
*/
static void subghz_protocol_clemsa_check_remote_controller(SubGhzBlockGeneric* instance) {
instance->serial = (instance->data >> 2) & 0xFFFF;
instance->btn = (instance->data & 0x03);
}
uint8_t subghz_protocol_decoder_clemsa_get_hash_data(void* context) {
furi_assert(context);
SubGhzProtocolDecoderClemsa* instance = context;
return subghz_protocol_blocks_get_hash_data(
&instance->decoder, (instance->decoder.decode_count_bit / 8) + 1);
}
bool subghz_protocol_decoder_clemsa_serialize(
void* context,
FlipperFormat* flipper_format,
SubGhzRadioPreset* preset) {
furi_assert(context);
SubGhzProtocolDecoderClemsa* instance = context;
return subghz_block_generic_serialize(&instance->generic, flipper_format, preset);
}
bool subghz_protocol_decoder_clemsa_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolDecoderClemsa* instance = context;
bool ret = false;
do {
if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
break;
}
if(instance->generic.data_count_bit !=
subghz_protocol_clemsa_const.min_count_bit_for_found) {
FURI_LOG_E(TAG, "Wrong number of bits in key");
break;
}
ret = true;
} while(false);
return ret;
}
void subghz_protocol_decoder_clemsa_get_string(void* context, FuriString* output) {
furi_assert(context);
SubGhzProtocolDecoderClemsa* instance = context;
subghz_protocol_clemsa_check_remote_controller(&instance->generic);
//uint32_t data = (uint32_t)(instance->generic.data & 0xFFFFFF);
furi_string_cat_printf(
output,
"%s %dbit\r\n"
"Key:%05lX Btn %X\r\n"
" +: " DIP_PATTERN "\r\n"
" o: " DIP_PATTERN "\r\n"
" -: " DIP_PATTERN "\r\n",
instance->generic.protocol_name,
instance->generic.data_count_bit,
(uint32_t)(instance->generic.data & 0x3FFFF),
instance->generic.btn,
SHOW_DIP_P(instance->generic.serial, DIP_P),
SHOW_DIP_P(instance->generic.serial, DIP_O),
SHOW_DIP_P(instance->generic.serial, DIP_N));
}