flipperzero-firmware/firmware/targets/f4/api-hal/api-hal-os.c

128 lines
3.6 KiB
C
Raw Normal View History

#include <api-hal-os.h>
#include <api-hal-os-timer.h>
#include <api-hal-power.h>
#include <FreeRTOS.h>
#include <cmsis_os.h>
#define API_HAL_OS_CLK_FREQUENCY 32768
#define API_HAL_OS_TICK_PER_SECOND 1024
#define API_HAL_OS_CLK_PER_TICK (API_HAL_OS_CLK_FREQUENCY / API_HAL_OS_TICK_PER_SECOND)
#define API_HAL_OS_TICK_PER_EPOCH (API_HAL_OS_TIMER_MAX / API_HAL_OS_CLK_PER_TICK)
#define API_HAL_OS_MAX_SLEEP (API_HAL_OS_TICK_PER_EPOCH - 1)
#ifdef API_HAL_OS_DEBUG
#include <stm32wbxx_ll_gpio.h>
#define LED_SLEEP_PORT GPIOA
#define LED_SLEEP_PIN LL_GPIO_PIN_7
#define LED_TICK_PORT GPIOA
#define LED_TICK_PIN LL_GPIO_PIN_6
#endif
volatile uint32_t api_hal_os_skew = 0;
void api_hal_os_init() {
LL_DBGMCU_APB1_GRP2_FreezePeriph(LL_DBGMCU_APB1_GRP2_LPTIM2_STOP);
api_hal_os_timer_init();
api_hal_os_timer_continuous(API_HAL_OS_CLK_PER_TICK);
#ifdef API_HAL_OS_DEBUG
LL_GPIO_SetPinMode(LED_SLEEP_PORT, LED_SLEEP_PIN, LL_GPIO_MODE_OUTPUT);
LL_GPIO_SetPinMode(LED_TICK_PORT, LED_TICK_PIN, LL_GPIO_MODE_OUTPUT);
#endif
}
void LPTIM2_IRQHandler(void) {
// Autoreload
if(LL_LPTIM_IsActiveFlag_ARRM(API_HAL_OS_TIMER)) {
LL_LPTIM_ClearFLAG_ARRM(API_HAL_OS_TIMER);
if (xTaskGetSchedulerState() != taskSCHEDULER_NOT_STARTED) {
#ifdef API_HAL_OS_DEBUG
LL_GPIO_TogglePin(LED_TICK_PORT, LED_TICK_PIN);
#endif
xPortSysTickHandler();
}
}
if(LL_LPTIM_IsActiveFlag_CMPM(API_HAL_OS_TIMER)) {
LL_LPTIM_ClearFLAG_CMPM(API_HAL_OS_TIMER);
}
}
static inline uint32_t api_hal_os_sleep(TickType_t expected_idle_ticks) {
// Stop ticks
api_hal_os_timer_reset();
HAL_SuspendTick();
// Start wakeup timer
api_hal_os_timer_single(expected_idle_ticks * API_HAL_OS_CLK_PER_TICK);
#ifdef API_HAL_OS_DEBUG
LL_GPIO_SetOutputPin(LED_SLEEP_PORT, LED_SLEEP_PIN);
#endif
// Go to stop2 mode
api_hal_power_deep_sleep();
#ifdef API_HAL_OS_DEBUG
LL_GPIO_ResetOutputPin(LED_SLEEP_PORT, LED_SLEEP_PIN);
#endif
// Calculate how much time we spent in the sleep
uint32_t after_cnt = api_hal_os_timer_get_cnt() + api_hal_os_skew;
uint32_t after_tick = after_cnt / API_HAL_OS_CLK_PER_TICK;
api_hal_os_skew = after_cnt % API_HAL_OS_CLK_PER_TICK;
// Prepare tick timer for new round
api_hal_os_timer_reset();
// Resume ticks
HAL_ResumeTick();
api_hal_os_timer_continuous(API_HAL_OS_CLK_PER_TICK);
return after_tick;
}
void vPortSuppressTicksAndSleep(TickType_t expected_idle_ticks) {
// Check if sleep is available now
if (!api_hal_power_deep_available()) {
return;
}
// Limit mount of ticks to maximum that timer can count
if (expected_idle_ticks > API_HAL_OS_MAX_SLEEP) {
expected_idle_ticks = API_HAL_OS_MAX_SLEEP;
}
// Stop IRQ handling, no one should disturb us till we finish
__disable_irq();
// Confirm OS that sleep is still possible
// And check if timer is in safe zone
// (8 clocks till any IRQ event or ongoing synchronization)
if (eTaskConfirmSleepModeStatus() == eAbortSleep) {
__enable_irq();
return;
}
// Sleep and track how much ticks we spent sleeping
uint32_t completed_ticks = api_hal_os_sleep(expected_idle_ticks);
// Reenable IRQ
__enable_irq();
// Notify system about time spent in sleep
if (completed_ticks > 0) {
if (completed_ticks > expected_idle_ticks) {
vTaskStepTick(expected_idle_ticks);
} else {
vTaskStepTick(completed_ticks);
}
}
}
void vApplicationStackOverflowHook(TaskHandle_t xTask, signed char *pcTaskName) {
asm("bkpt 1");
while(1) {};
}