flipperzero-firmware/lib/onewire/one_wire_slave_gpio.cpp

517 lines
14 KiB
C++
Raw Normal View History

#include "one_wire_slave_gpio.h"
#include "one_wire_device.h"
#include "one_wire_device_ds_1990.h"
// TODO fix GPL compability
// currently we use rework of OneWireHub
static uint32_t __instructions_per_us = 0;
OneWireGpioSlave::OneWireGpioSlave(const GpioPin* one_wire_gpio) {
gpio = one_wire_gpio;
error = OneWireGpioSlaveError::NO_ERROR;
devices_count = 0;
device_selected = nullptr;
for(uint8_t i = 0; i < ONE_WIRE_MAX_DEVICES; ++i) {
devices[i] = nullptr;
}
__instructions_per_us = (SystemCoreClock / 1000000.0f);
}
OneWireGpioSlave::~OneWireGpioSlave() {
stop();
}
void OneWireGpioSlave::start(void) {
gpio_init(gpio, GpioModeOutputOpenDrain);
}
void OneWireGpioSlave::stop(void) {
gpio_init(gpio, GpioModeAnalog);
}
bool OneWireGpioSlave::emulate() {
bool anything_emulated = false;
error = OneWireGpioSlaveError::NO_ERROR;
while(1) {
if(devices_count == 0) return false;
if(!check_reset()) {
return anything_emulated;
} else {
}
// OK, we receive reset
osKernelLock();
if(!show_presence()) {
return anything_emulated;
} else {
anything_emulated = true;
}
// and we succefully show our presence on bus
__disable_irq();
// TODO think about return condition
if(!receive_and_process_cmd()) {
__enable_irq();
osKernelUnlock();
} else {
__enable_irq();
osKernelUnlock();
}
}
}
OneWiteTimeType OneWireGpioSlave::wait_while_gpio_is(OneWiteTimeType time, const bool pin_value) {
uint32_t start = DWT->CYCCNT;
uint32_t time_ticks = time * __instructions_per_us;
uint32_t time_captured;
do {
time_captured = DWT->CYCCNT;
if(gpio_read(gpio) != pin_value) {
OneWiteTimeType remaining_time = time_ticks - (time_captured - start);
remaining_time /= __instructions_per_us;
return remaining_time;
}
} while((time_captured - start) < time_ticks);
return 0;
}
void OneWireGpioSlave::pin_set_float() {
gpio_write(gpio, true);
}
void OneWireGpioSlave::pin_set_low() {
gpio_write(gpio, false);
}
const char* OneWireGpioSlave::decode_error() {
const char* error_text[16] = {
"NO_ERROR",
"READ_TIMESLOT_TIMEOUT",
"WRITE_TIMESLOT_TIMEOUT",
"WAIT_RESET_TIMEOUT",
"VERY_LONG_RESET",
"VERY_SHORT_RESET",
"PRESENCE_LOW_ON_LINE",
"READ_TIMESLOT_TIMEOUT_LOW",
"AWAIT_TIMESLOT_TIMEOUT_HIGH",
"PRESENCE_HIGH_ON_LINE",
"INCORRECT_ONEWIRE_CMD",
"INCORRECT_SLAVE_USAGE",
"TRIED_INCORRECT_WRITE",
"FIRST_TIMESLOT_TIMEOUT",
"FIRST_BIT_OF_BYTE_TIMEOUT",
"RESET_IN_PROGRESS"};
return error_text[static_cast<uint8_t>(error)];
}
uint8_t OneWireGpioSlave::attach(OneWireDevice& device) {
if(devices_count >= ONE_WIRE_MAX_DEVICES) return 255; // hub is full
uint8_t position = 255;
for(uint8_t i = 0; i < ONE_WIRE_MAX_DEVICES; ++i) {
if(devices[i] == &device) {
return i;
}
if((position > ONE_WIRE_MAX_DEVICES) && (devices[i] == nullptr)) {
position = i;
}
}
if(position == 255) return 255;
devices[position] = &device;
devices_count++;
build_id_tree();
return position;
}
bool OneWireGpioSlave::detach(const OneWireDevice& device) {
uint8_t position = 255;
for(uint8_t i = 0; i < ONE_WIRE_MAX_DEVICES; ++i) {
if(devices[i] == &device) {
position = i;
break;
}
}
if(position != 255) return detach(position);
return false;
}
bool OneWireGpioSlave::detach(uint8_t device_number) {
if(devices[device_number] == nullptr) return false;
if(devices_count == 0) return false;
if(device_number >= ONE_WIRE_MAX_DEVICES) return false;
devices[device_number] = nullptr;
devices_count--;
build_id_tree();
return true;
}
uint8_t OneWireGpioSlave::get_next_device_index(const uint8_t index_start) const {
for(uint8_t i = index_start; i < ONE_WIRE_MAX_DEVICES; ++i) {
if(devices[i] != nullptr) return i;
}
return 0;
}
uint8_t OneWireGpioSlave::build_id_tree(void) {
uint32_t device_mask = 0;
uint32_t bit_mask = 0x01;
// build mask
for(uint8_t i = 0; i < ONE_WIRE_MAX_DEVICES; ++i) {
if(devices[i] != nullptr) device_mask |= bit_mask;
bit_mask <<= 1;
}
for(uint8_t i = 0; i < ONE_WIRE_MAX_DEVICES; ++i) {
id_tree[i].id_position = 255;
}
// begin with root-element
build_id_tree(0, device_mask); // goto branch
return 0;
}
uint8_t OneWireGpioSlave::build_id_tree(uint8_t id_bit_position, uint32_t device_mask) {
if(device_mask == 0) return (255);
while(id_bit_position < 64) {
uint32_t mask_pos{0};
uint32_t mask_neg{0};
const uint8_t pos_byte{static_cast<uint8_t>(id_bit_position >> 3)};
const uint8_t mask_bit{static_cast<uint8_t>(1 << (id_bit_position & 7))};
uint32_t mask_id{1};
// searchid_tree through all active slaves
for(uint8_t id = 0; id < ONE_WIRE_MAX_DEVICES; ++id) {
if((device_mask & mask_id) != 0) {
// if slave is in mask differentiate the bitValue
if((devices[id]->id_storage[pos_byte] & mask_bit) != 0)
mask_pos |= mask_id;
else
mask_neg |= mask_id;
}
mask_id <<= 1;
}
if((mask_neg != 0) && (mask_pos != 0)) {
// there was found a junction
const uint8_t active_element = get_first_id_tree_el_position();
id_tree[active_element].id_position = id_bit_position;
id_tree[active_element].device_selected = get_first_bit_set_position(device_mask);
id_bit_position++;
id_tree[active_element].got_one = build_id_tree(id_bit_position, mask_pos);
id_tree[active_element].got_zero = build_id_tree(id_bit_position, mask_neg);
return active_element;
}
id_bit_position++;
}
// gone through the address, store this result
uint8_t active_element = get_first_id_tree_el_position();
id_tree[active_element].id_position = 128;
id_tree[active_element].device_selected = get_first_bit_set_position(device_mask);
id_tree[active_element].got_one = 255;
id_tree[active_element].got_zero = 255;
return active_element;
}
uint8_t OneWireGpioSlave::get_first_bit_set_position(uint32_t mask) const {
uint32_t _mask = mask;
for(uint8_t i = 0; i < ONE_WIRE_MAX_DEVICES; ++i) {
if((_mask & 1) != 0) return i;
_mask >>= 1;
}
return 0;
}
uint8_t OneWireGpioSlave::get_first_id_tree_el_position(void) const {
for(uint8_t i = 0; i < ONE_WIRE_MAX_DEVICES; ++i) {
if(id_tree[i].id_position == 255) return i;
}
return 0;
}
void OneWireGpioSlave::cmd_search_rom(void) {
uint8_t id_bit_position = 0;
uint8_t trigger_position = 0;
uint8_t active_slave = id_tree[trigger_position].device_selected;
uint8_t trigger_bit = id_tree[trigger_position].id_position;
while(id_bit_position < 64) {
// if junction is reached, act different
if(id_bit_position == trigger_bit) {
if(!send_bit(false)) return;
if(!send_bit(false)) return;
const bool bit_recv = receive_bit();
if(error != OneWireGpioSlaveError::NO_ERROR) return;
// switch to next junction
trigger_position = bit_recv ? id_tree[trigger_position].got_one :
id_tree[trigger_position].got_zero;
active_slave = id_tree[trigger_position].device_selected;
trigger_bit = (trigger_position == 255) ? uint8_t(255) :
id_tree[trigger_position].id_position;
} else {
const uint8_t pos_byte = (id_bit_position >> 3);
const uint8_t mask_bit = (static_cast<uint8_t>(1) << (id_bit_position & (7)));
bool bit_send;
if((devices[active_slave]->id_storage[pos_byte] & mask_bit) != 0) {
bit_send = true;
if(!send_bit(true)) return;
if(!send_bit(false)) return;
} else {
bit_send = false;
if(!send_bit(false)) return;
if(!send_bit(true)) return;
}
const bool bit_recv = receive_bit();
if(error != OneWireGpioSlaveError::NO_ERROR) return;
if(bit_send != bit_recv) return;
}
id_bit_position++;
}
device_selected = devices[active_slave];
}
bool OneWireGpioSlave::check_reset(void) {
pin_set_float();
if(error == OneWireGpioSlaveError::RESET_IN_PROGRESS) {
error = OneWireGpioSlaveError::NO_ERROR;
if(wait_while_gpio_is(
OWET::RESET_MIN[overdrive_mode] - OWET::SLOT_MAX[overdrive_mode] -
OWET::READ_MAX[overdrive_mode],
false) == 0) {
// we want to show_presence on high, so wait for it
const OneWiteTimeType time_remaining = wait_while_gpio_is(OWET::RESET_MAX[0], false);
if(overdrive_mode &&
((OWET::RESET_MAX[0] - OWET::RESET_MIN[overdrive_mode]) > time_remaining)) {
overdrive_mode = false;
};
return true;
}
}
// if line is low, then just leave
if(gpio_read(gpio) == 0) {
return false;
}
// wait while gpio is high
if(wait_while_gpio_is(OWET::RESET_TIMEOUT, true) == 0) {
return false;
}
// store low time
OneWiteTimeType time_remaining = wait_while_gpio_is(OWET::RESET_MAX[0], false);
// low time more than RESET_MAX time
if(time_remaining == 0) {
error = OneWireGpioSlaveError::VERY_LONG_RESET;
return false;
}
// get real reset time
time_remaining = OWET::RESET_MAX[0] - time_remaining;
// if time, while bus was low, fit in standart reset timings
if(overdrive_mode && ((OWET::RESET_MAX[0] - OWET::RESET_MIN[0]) <= time_remaining)) {
// normal reset detected
overdrive_mode = false;
};
bool result = (time_remaining <= OWET::RESET_MAX[0]) &&
time_remaining >= OWET::RESET_MIN[overdrive_mode];
return result;
}
bool OneWireGpioSlave::show_presence(void) {
// wait while master delay presence check
wait_while_gpio_is(OWET::PRESENCE_TIMEOUT, true);
// show presence
pin_set_low();
delay_us(OWET::PRESENCE_MIN[overdrive_mode]);
pin_set_float();
// somebody also can show presence
const OneWiteTimeType wait_low_time =
OWET::PRESENCE_MAX[overdrive_mode] - OWET::PRESENCE_MIN[overdrive_mode];
// so we will wait
if(wait_while_gpio_is(wait_low_time, false) == 0) {
error = OneWireGpioSlaveError::PRESENCE_LOW_ON_LINE;
return false;
}
return true;
}
bool OneWireGpioSlave::receive_and_process_cmd(void) {
receive(&cmd);
if(error == OneWireGpioSlaveError::RESET_IN_PROGRESS) return true;
if(error != OneWireGpioSlaveError::NO_ERROR) return false;
switch(cmd) {
case 0xF0:
// SEARCH ROM
device_selected = nullptr;
cmd_search_rom();
// trigger reinit
return true;
case 0x33:
// READ ROM
// work only when one slave on the bus
if((device_selected == nullptr) && (devices_count == 1)) {
device_selected = devices[get_next_device_index()];
}
if(device_selected != nullptr) {
device_selected->send_id(this);
}
return false;
default: // Unknown command
error = OneWireGpioSlaveError::INCORRECT_ONEWIRE_CMD;
//error_cmd = cmd;
}
if(error == OneWireGpioSlaveError::RESET_IN_PROGRESS) return true;
return (error == OneWireGpioSlaveError::NO_ERROR);
}
bool OneWireGpioSlave::receive_bit(void) {
// wait while bus is low
OneWiteTimeType time = OWET::SLOT_MAX[overdrive_mode];
time = wait_while_gpio_is(time, false);
if(time == 0) {
error = OneWireGpioSlaveError::RESET_IN_PROGRESS;
return false;
}
// wait while bus is high
time = OWET::MSG_HIGH_TIMEOUT;
time = wait_while_gpio_is(time, true);
if(time == 0) {
error = OneWireGpioSlaveError::AWAIT_TIMESLOT_TIMEOUT_HIGH;
error_place = 1;
return false;
}
// wait a time of zero
time = OWET::READ_MIN[overdrive_mode];
time = wait_while_gpio_is(time, false);
return (time > 0);
}
bool OneWireGpioSlave::send_bit(bool value) {
const bool write_zero = !value;
// wait while bus is low
OneWiteTimeType time = OWET::SLOT_MAX[overdrive_mode];
time = wait_while_gpio_is(time, false);
if(time == 0) {
error = OneWireGpioSlaveError::RESET_IN_PROGRESS;
return false;
}
// wait while bus is high
time = OWET::MSG_HIGH_TIMEOUT;
time = wait_while_gpio_is(time, true);
if(time == 0) {
error = OneWireGpioSlaveError::AWAIT_TIMESLOT_TIMEOUT_HIGH;
error_place = 2;
return false;
}
// choose write time
if(write_zero) {
pin_set_low();
time = OWET::WRITE_ZERO[overdrive_mode];
} else {
time = OWET::READ_MAX[overdrive_mode];
}
// hold line for ZERO or ONE time
delay_us(time);
pin_set_float();
return true;
}
bool OneWireGpioSlave::send(const uint8_t* address, const uint8_t data_length) {
uint8_t bytes_sent = 0;
pin_set_float();
// bytes loop
for(; bytes_sent < data_length; ++bytes_sent) {
const uint8_t data_byte = address[bytes_sent];
// bit loop
for(uint8_t bit_mask = 0x01; bit_mask != 0; bit_mask <<= 1) {
if(!send_bit(static_cast<bool>(bit_mask & data_byte))) {
// if we cannot send first bit
if((bit_mask == 0x01) &&
(error == OneWireGpioSlaveError::AWAIT_TIMESLOT_TIMEOUT_HIGH))
error = OneWireGpioSlaveError::FIRST_BIT_OF_BYTE_TIMEOUT;
return false;
}
}
}
return true;
}
bool OneWireGpioSlave::receive(uint8_t* data, const uint8_t data_length) {
uint8_t bytes_received = 0;
pin_set_float();
for(; bytes_received < data_length; ++bytes_received) {
uint8_t value = 0;
for(uint8_t bit_mask = 0x01; bit_mask != 0; bit_mask <<= 1) {
if(receive_bit()) value |= bit_mask;
}
data[bytes_received] = value;
}
return (bytes_received != data_length);
}