flipperzero-firmware/lib/lfrfid/protocols/protocol_keri.c

264 lines
9.0 KiB
C
Raw Normal View History

#include <furi.h>
#include <toolbox/protocols/protocol.h>
#include <lfrfid/tools/bit_lib.h>
#include "lfrfid_protocols.h"
#define KERI_PREAMBLE_BIT_SIZE (33)
#define KERI_PREAMBLE_DATA_SIZE (5)
#define KERI_ENCODED_BIT_SIZE (64)
#define KERI_ENCODED_DATA_SIZE (((KERI_ENCODED_BIT_SIZE) / 8) + KERI_PREAMBLE_DATA_SIZE)
#define KERI_ENCODED_DATA_LAST ((KERI_ENCODED_BIT_SIZE) / 8)
#define KERI_DECODED_BIT_SIZE (28)
#define KERI_DECODED_DATA_SIZE (4)
#define KERI_US_PER_BIT (255)
#define KERI_ENCODER_PULSES_PER_BIT (16)
typedef struct {
uint8_t data_index;
uint8_t bit_clock_index;
bool last_bit;
bool current_polarity;
bool pulse_phase;
} ProtocolKeriEncoder;
typedef struct {
uint8_t encoded_data[KERI_ENCODED_DATA_SIZE];
uint8_t negative_encoded_data[KERI_ENCODED_DATA_SIZE];
uint8_t corrupted_encoded_data[KERI_ENCODED_DATA_SIZE];
uint8_t corrupted_negative_encoded_data[KERI_ENCODED_DATA_SIZE];
uint8_t data[KERI_DECODED_DATA_SIZE];
ProtocolKeriEncoder encoder;
} ProtocolKeri;
ProtocolKeri* protocol_keri_alloc(void) {
ProtocolKeri* protocol = malloc(sizeof(ProtocolKeri));
return protocol;
};
void protocol_keri_free(ProtocolKeri* protocol) {
free(protocol);
};
uint8_t* protocol_keri_get_data(ProtocolKeri* protocol) {
return protocol->data;
};
void protocol_keri_decoder_start(ProtocolKeri* protocol) {
memset(protocol->encoded_data, 0, KERI_ENCODED_DATA_SIZE);
memset(protocol->negative_encoded_data, 0, KERI_ENCODED_DATA_SIZE);
memset(protocol->corrupted_encoded_data, 0, KERI_ENCODED_DATA_SIZE);
memset(protocol->corrupted_negative_encoded_data, 0, KERI_ENCODED_DATA_SIZE);
};
static bool protocol_keri_check_preamble(uint8_t* data, size_t bit_index) {
// Preamble 11100000 00000000 00000000 00000000 1
if(*(uint32_t*)&data[bit_index / 8] != 0b00000000000000000000000011100000) return false;
if(bit_lib_get_bit(data, bit_index + 32) != 1) return false;
return true;
}
static bool protocol_keri_can_be_decoded(uint8_t* data) {
if(!protocol_keri_check_preamble(data, 0)) return false;
if(!protocol_keri_check_preamble(data, 64)) return false;
///if(bit_lib_get_bit(data, 61) != 0) return false;
//if(bit_lib_get_bit(data, 60) != 0) return false;
return true;
}
static bool protocol_keri_decoder_feed_internal(bool polarity, uint32_t time, uint8_t* data) {
time += (KERI_US_PER_BIT / 2);
size_t bit_count = (time / KERI_US_PER_BIT);
bool result = false;
if(bit_count < KERI_ENCODED_BIT_SIZE) {
for(size_t i = 0; i < bit_count; i++) {
bit_lib_push_bit(data, KERI_ENCODED_DATA_SIZE, polarity);
if(protocol_keri_can_be_decoded(data)) {
result = true;
break;
}
}
}
return result;
}
static void protocol_keri_descramble(uint32_t* fc, uint32_t* cn, uint32_t* internal_id) {
const uint8_t card_to_id[] = {255, 255, 255, 255, 13, 12, 20, 5, 16, 6, 21,
17, 8, 255, 0, 7, 10, 15, 255, 11, 4, 1,
255, 18, 255, 19, 2, 14, 3, 9, 255, 255};
const uint8_t card_to_fc[] = {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 0, 255, 255, 255, 255, 2, 255, 255, 255,
3, 255, 4, 255, 255, 255, 255, 255, 1, 255};
*fc = 0;
*cn = 0;
for(uint8_t card_idx = 0; card_idx < 32; card_idx++) {
bool bit = (*internal_id >> card_idx) & 1;
// Card ID
if(card_to_id[card_idx] < 32) {
*cn = *cn | (bit << card_to_id[card_idx]);
}
// Card FC
if(card_to_fc[card_idx] < 32) {
*fc = *fc | (bit << card_to_fc[card_idx]);
}
}
}
static void protocol_keri_decoder_save(uint8_t* data_to, const uint8_t* data_from) {
uint32_t id = bit_lib_get_bits_32(data_from, 32, 32);
data_to[3] = (uint8_t)id;
data_to[2] = (uint8_t)(id >>= 8);
data_to[1] = (uint8_t)(id >>= 8);
data_to[0] = (uint8_t)(id >>= 8);
}
bool protocol_keri_decoder_feed(ProtocolKeri* protocol, bool level, uint32_t duration) {
bool result = false;
if(duration > (KERI_US_PER_BIT / 2)) {
if(protocol_keri_decoder_feed_internal(level, duration, protocol->encoded_data)) {
protocol_keri_decoder_save(protocol->data, protocol->encoded_data);
result = true;
return result;
}
if(protocol_keri_decoder_feed_internal(!level, duration, protocol->negative_encoded_data)) {
protocol_keri_decoder_save(protocol->data, protocol->negative_encoded_data);
result = true;
return result;
}
}
if(duration > (KERI_US_PER_BIT / 4)) {
// Try to decode wrong phase synced data
if(level) {
duration += 120;
} else {
if(duration > 120) {
duration -= 120;
}
}
if(protocol_keri_decoder_feed_internal(level, duration, protocol->corrupted_encoded_data)) {
protocol_keri_decoder_save(protocol->data, protocol->corrupted_encoded_data);
result = true;
return result;
}
if(protocol_keri_decoder_feed_internal(
!level, duration, protocol->corrupted_negative_encoded_data)) {
protocol_keri_decoder_save(protocol->data, protocol->corrupted_negative_encoded_data);
result = true;
return result;
}
}
return result;
};
bool protocol_keri_encoder_start(ProtocolKeri* protocol) {
memset(protocol->encoded_data, 0, KERI_ENCODED_DATA_SIZE);
*(uint32_t*)&protocol->encoded_data[0] = 0b00000000000000000000000011100000;
bit_lib_copy_bits(protocol->encoded_data, 32, 32, protocol->data, 0);
protocol->encoder.last_bit =
bit_lib_get_bit(protocol->encoded_data, KERI_ENCODED_BIT_SIZE - 1);
protocol->encoder.data_index = 0;
protocol->encoder.current_polarity = true;
protocol->encoder.pulse_phase = true;
protocol->encoder.bit_clock_index = 0;
return true;
};
LevelDuration protocol_keri_encoder_yield(ProtocolKeri* protocol) {
LevelDuration level_duration;
ProtocolKeriEncoder* encoder = &protocol->encoder;
if(encoder->pulse_phase) {
level_duration = level_duration_make(encoder->current_polarity, 1);
encoder->pulse_phase = false;
} else {
level_duration = level_duration_make(!encoder->current_polarity, 1);
encoder->pulse_phase = true;
encoder->bit_clock_index++;
if(encoder->bit_clock_index >= KERI_ENCODER_PULSES_PER_BIT) {
encoder->bit_clock_index = 0;
bool current_bit = bit_lib_get_bit(protocol->encoded_data, encoder->data_index);
if(current_bit != encoder->last_bit) {
encoder->current_polarity = !encoder->current_polarity;
}
encoder->last_bit = current_bit;
bit_lib_increment_index(encoder->data_index, KERI_ENCODED_BIT_SIZE);
}
}
return level_duration;
};
void protocol_keri_render_data(ProtocolKeri* protocol, string_t result) {
uint32_t data = bit_lib_get_bits_32(protocol->data, 0, 32);
uint32_t internal_id = data & 0x7FFFFFFF;
uint32_t fc = 0;
uint32_t cn = 0;
protocol_keri_descramble(&fc, &cn, &data);
string_printf(result, "Internal ID: %u\r\nFC: %u, Card: %u\r\n", internal_id, fc, cn);
}
bool protocol_keri_write_data(ProtocolKeri* protocol, void* data) {
LFRFIDWriteRequest* request = (LFRFIDWriteRequest*)data;
bool result = false;
protocol_keri_encoder_start(protocol);
if(request->write_type == LFRFIDWriteTypeT5577) {
request->t5577.block[0] = LFRFID_T5577_TESTMODE_DISABLED | LFRFID_T5577_X_MODE |
LFRFID_T5577_MODULATION_PSK1 | LFRFID_T5577_PSKCF_RF_2 |
(2 << LFRFID_T5577_MAXBLOCK_SHIFT);
request->t5577.block[0] |= 0xF << 18;
request->t5577.block[1] = bit_lib_get_bits_32(protocol->encoded_data, 0, 32);
request->t5577.block[2] = bit_lib_get_bits_32(protocol->encoded_data, 32, 32);
request->t5577.blocks_to_write = 3;
result = true;
}
return result;
};
const ProtocolBase protocol_keri = {
.name = "Keri",
.manufacturer = "Keri",
.data_size = KERI_DECODED_DATA_SIZE,
.features = LFRFIDFeaturePSK,
.validate_count = 6,
.alloc = (ProtocolAlloc)protocol_keri_alloc,
.free = (ProtocolFree)protocol_keri_free,
.get_data = (ProtocolGetData)protocol_keri_get_data,
.decoder =
{
.start = (ProtocolDecoderStart)protocol_keri_decoder_start,
.feed = (ProtocolDecoderFeed)protocol_keri_decoder_feed,
},
.encoder =
{
.start = (ProtocolEncoderStart)protocol_keri_encoder_start,
.yield = (ProtocolEncoderYield)protocol_keri_encoder_yield,
},
.render_data = (ProtocolRenderData)protocol_keri_render_data,
.render_brief_data = (ProtocolRenderData)protocol_keri_render_data,
.write_data = (ProtocolWriteData)protocol_keri_write_data,
};