flipperzero-firmware/lib/subghz/protocols/bin_raw.c

1149 lines
45 KiB
C
Raw Normal View History

#include "bin_raw.h"
#include "../blocks/const.h"
#include "../blocks/decoder.h"
#include "../blocks/encoder.h"
#include "../blocks/generic.h"
#include "../blocks/math.h"
#include <lib/toolbox/float_tools.h>
#include <lib/toolbox/stream/stream.h>
#include <lib/flipper_format/flipper_format_i.h>
#define TAG "SubGhzProtocolBinRAW"
//change very carefully, RAM ends at the most inopportune moment
#define BIN_RAW_BUF_RAW_SIZE 2048
#define BIN_RAW_BUF_DATA_SIZE 512
#define BIN_RAW_THRESHOLD_RSSI -85.0f
#define BIN_RAW_DELTA_RSSI 7.0f
#define BIN_RAW_SEARCH_CLASSES 20
#define BIN_RAW_TE_MIN_COUNT 40
#define BIN_RAW_BUF_MIN_DATA_COUNT 128
#define BIN_RAW_MAX_MARKUP_COUNT 20
//#define BIN_RAW_DEBUG
#ifdef BIN_RAW_DEBUG
#define bin_raw_debug(...) FURI_LOG_RAW_D(__VA_ARGS__)
#define bin_raw_debug_tag(tag, ...) \
FURI_LOG_RAW_D("\033[0;32m[" tag "]\033[0m "); \
FURI_LOG_RAW_D(__VA_ARGS__)
#else
#define bin_raw_debug(...)
#define bin_raw_debug_tag(...)
#endif
static const SubGhzBlockConst subghz_protocol_bin_raw_const = {
.te_short = 30,
.te_long = 65000,
.te_delta = 0,
.min_count_bit_for_found = 0,
};
typedef enum {
BinRAWDecoderStepReset = 0,
BinRAWDecoderStepWrite,
BinRAWDecoderStepBufFull,
BinRAWDecoderStepNoParse,
} BinRAWDecoderStep;
typedef enum {
BinRAWTypeUnknown = 0,
BinRAWTypeNoGap,
BinRAWTypeGap,
BinRAWTypeGapRecurring,
BinRAWTypeGapRolling,
BinRAWTypeGapUnknown,
} BinRAWType;
struct BinRAW_Markup {
uint16_t byte_bias;
uint16_t bit_count;
};
typedef struct BinRAW_Markup BinRAW_Markup;
struct SubGhzProtocolDecoderBinRAW {
SubGhzProtocolDecoderBase base;
SubGhzBlockDecoder decoder;
SubGhzBlockGeneric generic;
int32_t* data_raw;
uint8_t* data;
BinRAW_Markup data_markup[BIN_RAW_MAX_MARKUP_COUNT];
size_t data_raw_ind;
uint32_t te;
float adaptive_threshold_rssi;
};
struct SubGhzProtocolEncoderBinRAW {
SubGhzProtocolEncoderBase base;
SubGhzProtocolBlockEncoder encoder;
SubGhzBlockGeneric generic;
uint8_t* data;
BinRAW_Markup data_markup[BIN_RAW_MAX_MARKUP_COUNT];
uint32_t te;
};
const SubGhzProtocolDecoder subghz_protocol_bin_raw_decoder = {
.alloc = subghz_protocol_decoder_bin_raw_alloc,
.free = subghz_protocol_decoder_bin_raw_free,
.feed = subghz_protocol_decoder_bin_raw_feed,
.reset = subghz_protocol_decoder_bin_raw_reset,
.get_hash_data = subghz_protocol_decoder_bin_raw_get_hash_data,
.serialize = subghz_protocol_decoder_bin_raw_serialize,
.deserialize = subghz_protocol_decoder_bin_raw_deserialize,
.get_string = subghz_protocol_decoder_bin_raw_get_string,
};
const SubGhzProtocolEncoder subghz_protocol_bin_raw_encoder = {
.alloc = subghz_protocol_encoder_bin_raw_alloc,
.free = subghz_protocol_encoder_bin_raw_free,
.deserialize = subghz_protocol_encoder_bin_raw_deserialize,
.stop = subghz_protocol_encoder_bin_raw_stop,
.yield = subghz_protocol_encoder_bin_raw_yield,
};
const SubGhzProtocol subghz_protocol_bin_raw = {
.name = SUBGHZ_PROTOCOL_BIN_RAW_NAME,
.type = SubGhzProtocolTypeStatic,
#ifdef BIN_RAW_DEBUG
.flag = SubGhzProtocolFlag_433 | SubGhzProtocolFlag_315 | SubGhzProtocolFlag_868 |
SubGhzProtocolFlag_AM | SubGhzProtocolFlag_FM | SubGhzProtocolFlag_Decodable |
SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save | SubGhzProtocolFlag_Send,
#else
.flag = SubGhzProtocolFlag_433 | SubGhzProtocolFlag_315 | SubGhzProtocolFlag_868 |
SubGhzProtocolFlag_AM | SubGhzProtocolFlag_FM | SubGhzProtocolFlag_BinRAW |
SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save | SubGhzProtocolFlag_Send,
#endif
.decoder = &subghz_protocol_bin_raw_decoder,
.encoder = &subghz_protocol_bin_raw_encoder,
};
static uint16_t subghz_protocol_bin_raw_get_full_byte(uint16_t bit_count) {
if(bit_count & 0x7) {
return (bit_count >> 3) + 1;
} else {
return (bit_count >> 3);
}
}
void* subghz_protocol_encoder_bin_raw_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolEncoderBinRAW* instance = malloc(sizeof(SubGhzProtocolEncoderBinRAW));
instance->base.protocol = &subghz_protocol_bin_raw;
instance->generic.protocol_name = instance->base.protocol->name;
instance->encoder.repeat = 10;
instance->encoder.size_upload = BIN_RAW_BUF_DATA_SIZE * 5;
instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration));
instance->data = malloc(instance->encoder.size_upload * sizeof(uint8_t));
memset(instance->data_markup, 0x00, BIN_RAW_MAX_MARKUP_COUNT * sizeof(BinRAW_Markup));
instance->encoder.is_running = false;
return instance;
}
void subghz_protocol_encoder_bin_raw_free(void* context) {
furi_assert(context);
SubGhzProtocolEncoderBinRAW* instance = context;
free(instance->encoder.upload);
free(instance->data);
free(instance);
}
/**
* Generating an upload from data.
* @param instance Pointer to a SubGhzProtocolEncoderBinRAW instance
* @return true On success
*/
static bool subghz_protocol_encoder_bin_raw_get_upload(SubGhzProtocolEncoderBinRAW* instance) {
furi_assert(instance);
//we glue all the pieces of the package into 1 long sequence with left alignment,
//in the uploaded data we have right alignment.
bin_raw_debug_tag(TAG, "Recovery of offset bits in sequences\r\n");
uint16_t i = 0;
uint16_t ind = 0;
bin_raw_debug("\tind byte_bias\tbit_count\tbit_bias\r\n");
while((i < BIN_RAW_MAX_MARKUP_COUNT) && (instance->data_markup[i].bit_count != 0)) {
uint8_t bit_bias =
subghz_protocol_bin_raw_get_full_byte(instance->data_markup[i].bit_count) * 8 -
instance->data_markup[i].bit_count;
bin_raw_debug(
"\t%d\t%d\t%d :\t\t%d\r\n",
i,
instance->data_markup[i].byte_bias,
instance->data_markup[i].bit_count,
bit_bias);
for(uint16_t y = instance->data_markup[i].byte_bias * 8;
y < instance->data_markup[i].byte_bias * 8 +
subghz_protocol_bin_raw_get_full_byte(instance->data_markup[i].bit_count) * 8 -
bit_bias;
y++) {
subghz_protocol_blocks_set_bit_array(
subghz_protocol_blocks_get_bit_array(instance->data, y + bit_bias),
instance->data,
ind++,
BIN_RAW_BUF_DATA_SIZE);
}
i++;
}
bin_raw_debug("\r\n");
#ifdef BIN_RAW_DEBUG
bin_raw_debug_tag(TAG, "Restored Sequence left aligned\r\n");
for(uint16_t y = 0; y < subghz_protocol_bin_raw_get_full_byte(ind); y++) {
bin_raw_debug("%02X ", instance->data[y]);
}
bin_raw_debug("\r\n\tbin_count_result= %d\r\n\r\n", ind);
bin_raw_debug_tag(
TAG, "Maximum levels encoded in upload %zu\r\n", instance->encoder.size_upload);
#endif
instance->encoder.size_upload = subghz_protocol_blocks_get_upload_from_bit_array(
instance->data,
ind,
instance->encoder.upload,
instance->encoder.size_upload,
instance->te,
SubGhzProtocolBlockAlignBitLeft);
bin_raw_debug_tag(TAG, "The result %zu is levels\r\n", instance->encoder.size_upload);
bin_raw_debug_tag(TAG, "Remaining free memory %zu\r\n", memmgr_get_free_heap());
return true;
}
SubGhzProtocolStatus
subghz_protocol_encoder_bin_raw_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolEncoderBinRAW* instance = context;
SubGhzProtocolStatus res = SubGhzProtocolStatusError;
uint32_t temp_data = 0;
do {
if(!flipper_format_rewind(flipper_format)) {
FURI_LOG_E(TAG, "Rewind error");
res = SubGhzProtocolStatusErrorParserOthers;
break;
}
if(!flipper_format_read_uint32(flipper_format, "Bit", (uint32_t*)&temp_data, 1)) {
FURI_LOG_E(TAG, "Missing Bit");
res = SubGhzProtocolStatusErrorParserBitCount;
break;
}
instance->generic.data_count_bit = (uint16_t)temp_data;
if(!flipper_format_read_uint32(flipper_format, "TE", (uint32_t*)&instance->te, 1)) {
FURI_LOG_E(TAG, "Missing TE");
res = SubGhzProtocolStatusErrorParserTe;
break;
}
temp_data = 0;
uint16_t ind = 0;
uint16_t byte_bias = 0;
uint16_t byte_count = 0;
memset(instance->data_markup, 0x00, BIN_RAW_MAX_MARKUP_COUNT * sizeof(BinRAW_Markup));
while(flipper_format_read_uint32(flipper_format, "Bit_RAW", (uint32_t*)&temp_data, 1)) {
if(ind >= BIN_RAW_MAX_MARKUP_COUNT) {
FURI_LOG_E(TAG, "Markup overflow");
res = SubGhzProtocolStatusErrorParserOthers;
break;
}
byte_count += subghz_protocol_bin_raw_get_full_byte(temp_data);
if(byte_count > BIN_RAW_BUF_DATA_SIZE) {
FURI_LOG_E(TAG, "Receive buffer overflow");
res = SubGhzProtocolStatusErrorParserOthers;
break;
}
instance->data_markup[ind].bit_count = temp_data;
instance->data_markup[ind].byte_bias = byte_bias;
byte_bias += subghz_protocol_bin_raw_get_full_byte(temp_data);
if(!flipper_format_read_hex(
flipper_format,
"Data_RAW",
instance->data + instance->data_markup[ind].byte_bias,
subghz_protocol_bin_raw_get_full_byte(temp_data))) {
instance->data_markup[ind].bit_count = 0;
FURI_LOG_E(TAG, "Missing Data_RAW");
res = SubGhzProtocolStatusErrorParserOthers;
break;
}
ind++;
}
#ifdef BIN_RAW_DEBUG
uint16_t i = 0;
bin_raw_debug_tag(TAG, "Download data to encoder\r\n");
bin_raw_debug("\tind byte_bias\tbit_count\t\tbin_data");
while((i < BIN_RAW_MAX_MARKUP_COUNT) && (instance->data_markup[i].bit_count != 0)) {
bin_raw_debug(
"\r\n\t%d\t%d\t%d :\t",
i,
instance->data_markup[i].byte_bias,
instance->data_markup[i].bit_count);
for(uint16_t y = instance->data_markup[i].byte_bias;
y < instance->data_markup[i].byte_bias +
subghz_protocol_bin_raw_get_full_byte(instance->data_markup[i].bit_count);
y++) {
bin_raw_debug("%02X ", instance->data[y]);
}
i++;
}
bin_raw_debug("\r\n\r\n");
#endif
if(!flipper_format_rewind(flipper_format)) {
FURI_LOG_E(TAG, "Rewind error");
res = SubGhzProtocolStatusErrorParserOthers;
break;
}
//optional parameter parameter
flipper_format_read_uint32(
flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1);
if(!subghz_protocol_encoder_bin_raw_get_upload(instance)) {
break;
res = SubGhzProtocolStatusErrorEncoderGetUpload;
}
instance->encoder.is_running = true;
res = SubGhzProtocolStatusOk;
} while(0);
return res;
}
void subghz_protocol_encoder_bin_raw_stop(void* context) {
SubGhzProtocolEncoderBinRAW* instance = context;
instance->encoder.is_running = false;
}
LevelDuration subghz_protocol_encoder_bin_raw_yield(void* context) {
SubGhzProtocolEncoderBinRAW* instance = context;
if(instance->encoder.repeat == 0 || !instance->encoder.is_running) {
instance->encoder.is_running = false;
return level_duration_reset();
}
LevelDuration ret = instance->encoder.upload[instance->encoder.front];
if(++instance->encoder.front == instance->encoder.size_upload) {
instance->encoder.repeat--;
instance->encoder.front = 0;
}
return ret;
}
void* subghz_protocol_decoder_bin_raw_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolDecoderBinRAW* instance = malloc(sizeof(SubGhzProtocolDecoderBinRAW));
instance->base.protocol = &subghz_protocol_bin_raw;
instance->generic.protocol_name = instance->base.protocol->name;
instance->data_raw_ind = 0;
instance->data_raw = malloc(BIN_RAW_BUF_RAW_SIZE * sizeof(int32_t));
instance->data = malloc(BIN_RAW_BUF_RAW_SIZE * sizeof(uint8_t));
memset(instance->data_markup, 0x00, BIN_RAW_MAX_MARKUP_COUNT * sizeof(BinRAW_Markup));
instance->adaptive_threshold_rssi = BIN_RAW_THRESHOLD_RSSI;
return instance;
}
void subghz_protocol_decoder_bin_raw_free(void* context) {
furi_assert(context);
SubGhzProtocolDecoderBinRAW* instance = context;
free(instance->data_raw);
free(instance->data);
free(instance);
}
void subghz_protocol_decoder_bin_raw_reset(void* context) {
furi_assert(context);
SubGhzProtocolDecoderBinRAW* instance = context;
#ifdef BIN_RAW_DEBUG
UNUSED(instance);
#else
instance->decoder.parser_step = BinRAWDecoderStepNoParse;
instance->data_raw_ind = 0;
#endif
}
void subghz_protocol_decoder_bin_raw_feed(void* context, bool level, uint32_t duration) {
furi_assert(context);
SubGhzProtocolDecoderBinRAW* instance = context;
if(instance->decoder.parser_step == BinRAWDecoderStepWrite) {
if(instance->data_raw_ind == BIN_RAW_BUF_RAW_SIZE) {
instance->decoder.parser_step = BinRAWDecoderStepBufFull;
} else {
instance->data_raw[instance->data_raw_ind++] = (level ? duration : -duration);
}
}
}
/**
* Analysis of received data
* @param instance Pointer to a SubGhzProtocolDecoderBinRAW* instance
*/
static bool
subghz_protocol_bin_raw_check_remote_controller(SubGhzProtocolDecoderBinRAW* instance) {
struct {
float data;
uint16_t count;
} classes[BIN_RAW_SEARCH_CLASSES];
size_t ind = 0;
memset(classes, 0x00, sizeof(classes));
uint16_t data_markup_ind = 0;
memset(instance->data_markup, 0x00, BIN_RAW_MAX_MARKUP_COUNT * sizeof(BinRAW_Markup));
if(instance->data_raw_ind < 512) {
ind =
instance->data_raw_ind -
100; //there is usually garbage at the end of the record, we exclude it from the classification
} else {
ind = 512;
}
//sort the durations to find the shortest correlated interval
for(size_t i = 0; i < ind; i++) {
for(size_t k = 0; k < BIN_RAW_SEARCH_CLASSES; k++) {
if(classes[k].count == 0) {
classes[k].data = (float)(abs(instance->data_raw[i]));
classes[k].count++;
break;
} else if(
DURATION_DIFF((float)(abs(instance->data_raw[i])), (classes[k].data)) <
(classes[k].data / 4)) { //if the test value does not differ by more than 25%
classes[k].data += ((float)(abs(instance->data_raw[i])) - classes[k].data) *
0.05f; //running average k=0.05
classes[k].count++;
break;
}
}
}
// if(classes[BIN_RAW_SEARCH_CLASSES - 1].count != 0) {
// //filling the classifier, it means that they received an unclean signal
// return false;
// }
//looking for the minimum te with an occurrence greater than BIN_RAW_TE_MIN_COUNT
instance->te = subghz_protocol_bin_raw_const.te_long * 2;
bool te_ok = false;
uint16_t gap_ind = 0;
uint16_t gap_delta = 0;
uint32_t gap = 0;
int data_temp = 0;
BinRAWType bin_raw_type = BinRAWTypeUnknown;
//sort by number of occurrences
bool swap = true;
while(swap) {
swap = false;
for(size_t i = 1; i < BIN_RAW_SEARCH_CLASSES; i++) {
if(classes[i].count > classes[i - 1].count) {
uint32_t data = classes[i - 1].data;
uint32_t count = classes[i - 1].count;
classes[i - 1].data = classes[i].data;
classes[i - 1].count = classes[i].count;
classes[i].data = data;
classes[i].count = count;
swap = true;
}
}
}
#ifdef BIN_RAW_DEBUG
bin_raw_debug_tag(TAG, "Sorted durations\r\n");
bin_raw_debug("\t\tind\tcount\tus\r\n");
for(size_t k = 0; k < BIN_RAW_SEARCH_CLASSES; k++) {
bin_raw_debug("\t\t%zu\t%u\t%lu\r\n", k, classes[k].count, (uint32_t)classes[k].data);
}
bin_raw_debug("\r\n");
#endif
if((classes[0].count > BIN_RAW_TE_MIN_COUNT) && (classes[1].count == 0)) {
//adopted only the preamble
instance->te = (uint32_t)classes[0].data;
te_ok = true;
gap = 0; //gap no
} else {
//take the 2 most common durations
//check that there are enough
if((classes[0].count < BIN_RAW_TE_MIN_COUNT) ||
(classes[1].count < (BIN_RAW_TE_MIN_COUNT >> 1)))
return false;
//arrange the first 2 date values in ascending order
if(classes[0].data > classes[1].data) {
uint32_t data = classes[1].data;
classes[0].data = classes[1].data;
classes[1].data = data;
}
//determine the value to be corrected
for(uint8_t k = 1; k < 5; k++) {
float delta = (classes[1].data / (classes[0].data / k));
bin_raw_debug_tag(TAG, "K_div= %f\r\n", (double)(delta));
delta -= (uint32_t)delta;
if((delta < 0.20f) || (delta > 0.80f)) {
instance->te = (uint32_t)classes[0].data / k;
bin_raw_debug_tag(TAG, "K= %d\r\n", k);
te_ok = true; //found a correlated duration
break;
}
}
if(!te_ok) {
//did not find the minimum TE satisfying the condition
return false;
}
bin_raw_debug_tag(TAG, "TE= %lu\r\n\r\n", instance->te);
//looking for a gap
for(size_t k = 2; k < BIN_RAW_SEARCH_CLASSES; k++) {
if((classes[k].count > 2) && (classes[k].data > gap)) {
gap = (uint32_t)classes[k].data;
gap_delta = gap / 5; //calculate 20% deviation from ideal value
}
}
if((gap / instance->te) <
10) { //make an assumption, the longest gap should be more than 10 TE
gap = 0; //check that our signal has a gap greater than 10*TE
bin_raw_type = BinRAWTypeNoGap;
} else {
bin_raw_type = BinRAWTypeGap;
//looking for the last occurrence of gap
ind = instance->data_raw_ind - 1;
while((ind > 0) && (DURATION_DIFF(abs(instance->data_raw[ind]), gap) > gap_delta)) {
ind--;
}
gap_ind = ind;
}
}
//if we consider that there is a gap, then we divide the signal with respect to this gap
//processing input data from the end
if(bin_raw_type == BinRAWTypeGap) {
bin_raw_debug_tag(TAG, "Tinted sequence\r\n");
ind = (BIN_RAW_BUF_DATA_SIZE * 8);
uint16_t bit_count = 0;
do {
gap_ind--;
data_temp = (int)(round((float)(instance->data_raw[gap_ind]) / instance->te));
bin_raw_debug("%d ", data_temp);
if(data_temp == 0) bit_count++; //there is noise in the package
for(size_t i = 0; i < abs(data_temp); i++) {
bit_count++;
if(ind) {
ind--;
} else {
break;
}
if(data_temp > 0) {
subghz_protocol_blocks_set_bit_array(
true, instance->data, ind, BIN_RAW_BUF_DATA_SIZE);
} else {
subghz_protocol_blocks_set_bit_array(
false, instance->data, ind, BIN_RAW_BUF_DATA_SIZE);
}
}
//split into full bytes if gap is caught
if(DURATION_DIFF(abs(instance->data_raw[gap_ind]), gap) < gap_delta) {
instance->data_markup[data_markup_ind].byte_bias = ind >> 3;
instance->data_markup[data_markup_ind++].bit_count = bit_count;
bit_count = 0;
if(data_markup_ind == BIN_RAW_MAX_MARKUP_COUNT) break;
ind &= 0xFFFFFFF8; //jump to the pre whole byte
}
} while(gap_ind != 0);
if((data_markup_ind != BIN_RAW_MAX_MARKUP_COUNT) && (ind != 0)) {
instance->data_markup[data_markup_ind].byte_bias = ind >> 3;
instance->data_markup[data_markup_ind++].bit_count = bit_count;
}
bin_raw_debug("\r\n\t count bit= %zu\r\n\r\n", (BIN_RAW_BUF_DATA_SIZE * 8) - ind);
//reset the classifier and classify the received data
memset(classes, 0x00, sizeof(classes));
bin_raw_debug_tag(TAG, "Sort the found pieces by the number of bits in them\r\n");
for(size_t i = 0; i < data_markup_ind; i++) {
for(size_t k = 0; k < BIN_RAW_SEARCH_CLASSES; k++) {
if(classes[k].count == 0) {
classes[k].data = instance->data_markup[i].bit_count;
classes[k].count++;
break;
} else if(instance->data_markup[i].bit_count == (uint16_t)classes[k].data) {
classes[k].count++;
break;
}
}
}
#ifdef BIN_RAW_DEBUG
bin_raw_debug("\t\tind\tcount\tus\r\n");
for(size_t k = 0; k < BIN_RAW_SEARCH_CLASSES; k++) {
bin_raw_debug("\t\t%zu\t%u\t%lu\r\n", k, classes[k].count, (uint32_t)classes[k].data);
}
bin_raw_debug("\r\n");
#endif
//choose the value with the maximum repetition
data_temp = 0;
for(size_t i = 0; i < BIN_RAW_SEARCH_CLASSES; i++) {
if((classes[i].count > 1) && (data_temp < classes[i].count))
data_temp = (int)classes[i].data;
}
//if(data_markup_ind == 0) return false;
#ifdef BIN_RAW_DEBUG
//output in reverse order
bin_raw_debug_tag(TAG, "Found sequences\r\n");
bin_raw_debug("\tind byte_bias\tbit_count\t\tbin_data\r\n");
uint16_t data_markup_ind_temp = data_markup_ind;
if(data_markup_ind) {
data_markup_ind_temp--;
for(size_t i = (ind / 8); i < BIN_RAW_BUF_DATA_SIZE; i++) {
if(instance->data_markup[data_markup_ind_temp].byte_bias == i) {
bin_raw_debug(
"\r\n\t%d\t%d\t%d :\t",
data_markup_ind_temp,
instance->data_markup[data_markup_ind_temp].byte_bias,
instance->data_markup[data_markup_ind_temp].bit_count);
if(data_markup_ind_temp != 0) data_markup_ind_temp--;
}
bin_raw_debug("%02X ", instance->data[i]);
}
bin_raw_debug("\r\n\r\n");
}
//compare data in chunks with the same number of bits
bin_raw_debug_tag(TAG, "Analyze sequences of long %d bit\r\n\r\n", data_temp);
#endif
//if(data_temp == 0) data_temp = (int)classes[0].data;
if(data_temp != 0) {
//check that data in transmission is repeated every packet
for(uint16_t i = 0; i < data_markup_ind - 1; i++) {
if((instance->data_markup[i].bit_count == data_temp) &&
(instance->data_markup[i + 1].bit_count == data_temp)) {
//if the number of bits in adjacent parcels is the same, compare the data
bin_raw_debug_tag(
TAG,
"Comparison of neighboring sequences ind_1=%d ind_2=%d %02X=%02X .... %02X=%02X\r\n",
i,
i + 1,
instance->data[instance->data_markup[i].byte_bias],
instance->data[instance->data_markup[i + 1].byte_bias],
instance->data
[instance->data_markup[i].byte_bias +
subghz_protocol_bin_raw_get_full_byte(
instance->data_markup[i].bit_count) -
1],
instance->data
[instance->data_markup[i + 1].byte_bias +
subghz_protocol_bin_raw_get_full_byte(
instance->data_markup[i + 1].bit_count) -
1]);
uint16_t byte_count =
subghz_protocol_bin_raw_get_full_byte(instance->data_markup[i].bit_count);
if(memcmp(
instance->data + instance->data_markup[i].byte_bias,
instance->data + instance->data_markup[i + 1].byte_bias,
byte_count - 1) == 0) {
bin_raw_debug_tag(
TAG, "Match found bin_raw_type=BinRAWTypeGapRecurring\r\n\r\n");
//place in 1 element the offset to valid data
instance->data_markup[0].bit_count = instance->data_markup[i].bit_count;
instance->data_markup[0].byte_bias = instance->data_markup[i].byte_bias;
//markup end sign
instance->data_markup[1].bit_count = 0;
instance->data_markup[1].byte_bias = 0;
bin_raw_type = BinRAWTypeGapRecurring;
i = data_markup_ind;
break;
}
}
}
}
if(bin_raw_type == BinRAWTypeGap) {
// check that retry occurs every n packets
for(uint16_t i = 0; i < data_markup_ind - 2; i++) {
uint16_t byte_count =
subghz_protocol_bin_raw_get_full_byte(instance->data_markup[i].bit_count);
for(uint16_t y = i + 1; y < data_markup_ind - 1; y++) {
bin_raw_debug_tag(
TAG,
"Comparison every N sequences ind_1=%d ind_2=%d %02X=%02X .... %02X=%02X\r\n",
i,
y,
instance->data[instance->data_markup[i].byte_bias],
instance->data[instance->data_markup[y].byte_bias],
instance->data
[instance->data_markup[i].byte_bias +
subghz_protocol_bin_raw_get_full_byte(
instance->data_markup[i].bit_count) -
1],
instance->data
[instance->data_markup[y].byte_bias +
subghz_protocol_bin_raw_get_full_byte(
instance->data_markup[y].bit_count) -
1]);
if(byte_count ==
subghz_protocol_bin_raw_get_full_byte(
instance->data_markup[y].bit_count)) { //if the length in bytes matches
if((memcmp(
instance->data + instance->data_markup[i].byte_bias,
instance->data + instance->data_markup[y].byte_bias,
byte_count - 1) == 0) &&
(memcmp(
instance->data + instance->data_markup[i + 1].byte_bias,
instance->data + instance->data_markup[y + 1].byte_bias,
byte_count - 1) == 0)) {
uint8_t index = 0;
#ifdef BIN_RAW_DEBUG
bin_raw_debug_tag(
TAG, "Match found bin_raw_type=BinRAWTypeGapRolling\r\n\r\n");
//output in reverse order
bin_raw_debug("\tind byte_bias\tbit_count\t\tbin_data\r\n");
index = y - 1;
for(size_t z = instance->data_markup[y].byte_bias + byte_count;
z < instance->data_markup[i].byte_bias + byte_count;
z++) {
if(instance->data_markup[index].byte_bias == z) {
bin_raw_debug(
"\r\n\t%d\t%d\t%d :\t",
index,
instance->data_markup[index].byte_bias,
instance->data_markup[index].bit_count);
if(index != 0) index--;
}
bin_raw_debug("%02X ", instance->data[z]);
}
bin_raw_debug("\r\n\r\n");
#endif
//todo can be optimized
BinRAW_Markup markup_temp[BIN_RAW_MAX_MARKUP_COUNT];
memcpy(
markup_temp,
instance->data_markup,
BIN_RAW_MAX_MARKUP_COUNT * sizeof(BinRAW_Markup));
memset(
instance->data_markup,
0x00,
BIN_RAW_MAX_MARKUP_COUNT * sizeof(BinRAW_Markup));
for(index = i; index < y; index++) {
instance->data_markup[index - i].bit_count =
markup_temp[y - index - 1].bit_count;
instance->data_markup[index - i].byte_bias =
markup_temp[y - index - 1].byte_bias;
}
bin_raw_type = BinRAWTypeGapRolling;
i = data_markup_ind;
break;
}
}
}
}
}
//todo can be optimized
if(bin_raw_type == BinRAWTypeGap) {
if(data_temp != 0) { //there are sequences with the same number of bits
BinRAW_Markup markup_temp[BIN_RAW_MAX_MARKUP_COUNT];
memcpy(
markup_temp,
instance->data_markup,
BIN_RAW_MAX_MARKUP_COUNT * sizeof(BinRAW_Markup));
memset(
instance->data_markup, 0x00, BIN_RAW_MAX_MARKUP_COUNT * sizeof(BinRAW_Markup));
uint16_t byte_count = subghz_protocol_bin_raw_get_full_byte(data_temp);
uint16_t index = 0;
uint16_t it = BIN_RAW_MAX_MARKUP_COUNT;
do {
it--;
if(subghz_protocol_bin_raw_get_full_byte(markup_temp[it].bit_count) ==
byte_count) {
instance->data_markup[index].bit_count = markup_temp[it].bit_count;
instance->data_markup[index].byte_bias = markup_temp[it].byte_bias;
index++;
bin_raw_type = BinRAWTypeGapUnknown;
}
} while(it != 0);
}
}
if(bin_raw_type != BinRAWTypeGap)
return true;
else
return false;
} else {
// if bin_raw_type == BinRAWTypeGap
bin_raw_debug_tag(TAG, "Sequence analysis without gap\r\n");
ind = 0;
for(size_t i = 0; i < instance->data_raw_ind; i++) {
int data_temp = (int)(round((float)(instance->data_raw[i]) / instance->te));
if(data_temp == 0) break; //found an interval 2 times shorter than TE, this is noise
bin_raw_debug("%d ", data_temp);
for(size_t k = 0; k < abs(data_temp); k++) {
if(data_temp > 0) {
subghz_protocol_blocks_set_bit_array(
true, instance->data, ind++, BIN_RAW_BUF_DATA_SIZE);
} else {
subghz_protocol_blocks_set_bit_array(
false, instance->data, ind++, BIN_RAW_BUF_DATA_SIZE);
}
if(ind == BIN_RAW_BUF_DATA_SIZE * 8) {
i = instance->data_raw_ind;
break;
}
}
}
if(ind != 0) {
bin_raw_type = BinRAWTypeNoGap;
//right alignment
uint8_t bit_bias = (subghz_protocol_bin_raw_get_full_byte(ind) << 3) - ind;
#ifdef BIN_RAW_DEBUG
bin_raw_debug(
"\r\n\t count bit= %zu\tcount full byte= %d\tbias bit= %d\r\n\r\n",
ind,
subghz_protocol_bin_raw_get_full_byte(ind),
bit_bias);
for(size_t i = 0; i < subghz_protocol_bin_raw_get_full_byte(ind); i++) {
bin_raw_debug("%02X ", instance->data[i]);
}
bin_raw_debug("\r\n\r\n");
#endif
//checking that the received sequence contains useful data
bool data_check = false;
for(size_t i = 0; i < subghz_protocol_bin_raw_get_full_byte(ind); i++) {
if(instance->data[i] != 0) {
data_check = true;
break;
}
}
if(data_check) {
for(size_t i = subghz_protocol_bin_raw_get_full_byte(ind) - 1; i > 0; i--) {
instance->data[i] = (instance->data[i - 1] << (8 - bit_bias)) |
(instance->data[i] >> bit_bias);
}
instance->data[0] = (instance->data[0] >> bit_bias);
#ifdef BIN_RAW_DEBUG
bin_raw_debug_tag(TAG, "Data right alignment\r\n");
for(size_t i = 0; i < subghz_protocol_bin_raw_get_full_byte(ind); i++) {
bin_raw_debug("%02X ", instance->data[i]);
}
bin_raw_debug("\r\n\r\n");
#endif
instance->data_markup[0].bit_count = ind;
instance->data_markup[0].byte_bias = 0;
return true;
} else {
return false;
}
} else {
return false;
}
}
return false;
}
void subghz_protocol_decoder_bin_raw_data_input_rssi(
SubGhzProtocolDecoderBinRAW* instance,
float rssi) {
furi_assert(instance);
switch(instance->decoder.parser_step) {
case BinRAWDecoderStepReset:
bin_raw_debug("%ld %ld :", (int32_t)rssi, (int32_t)instance->adaptive_threshold_rssi);
if(rssi > (instance->adaptive_threshold_rssi + BIN_RAW_DELTA_RSSI)) {
instance->data_raw_ind = 0;
memset(instance->data_raw, 0x00, BIN_RAW_BUF_RAW_SIZE * sizeof(int32_t));
memset(instance->data, 0x00, BIN_RAW_BUF_RAW_SIZE * sizeof(uint8_t));
instance->decoder.parser_step = BinRAWDecoderStepWrite;
bin_raw_debug_tag(TAG, "RSSI\r\n");
} else {
//adaptive noise level adjustment
instance->adaptive_threshold_rssi += (rssi - instance->adaptive_threshold_rssi) * 0.2f;
}
break;
case BinRAWDecoderStepBufFull:
case BinRAWDecoderStepWrite:
#ifdef BIN_RAW_DEBUG
if(rssi > (instance->adaptive_threshold_rssi + BIN_RAW_DELTA_RSSI)) {
bin_raw_debug("\033[0;32m%ld \033[0m ", (int32_t)rssi);
} else {
bin_raw_debug("%ld ", (int32_t)rssi);
}
#endif
if(rssi < instance->adaptive_threshold_rssi + BIN_RAW_DELTA_RSSI) {
#ifdef BIN_RAW_DEBUG
bin_raw_debug("\r\n\r\n");
bin_raw_debug_tag(TAG, "Data for analysis, positive high, negative low, us\r\n");
for(size_t i = 0; i < instance->data_raw_ind; i++) {
bin_raw_debug("%ld ", instance->data_raw[i]);
}
bin_raw_debug("\r\n\t count data= %zu\r\n\r\n", instance->data_raw_ind);
#endif
instance->decoder.parser_step = BinRAWDecoderStepReset;
instance->generic.data_count_bit = 0;
if(instance->data_raw_ind >= BIN_RAW_BUF_MIN_DATA_COUNT) {
if(subghz_protocol_bin_raw_check_remote_controller(instance)) {
bin_raw_debug_tag(TAG, "Sequence found\r\n");
bin_raw_debug("\tind byte_bias\tbit_count\t\tbin_data");
uint16_t i = 0;
while((i < BIN_RAW_MAX_MARKUP_COUNT) &&
(instance->data_markup[i].bit_count != 0)) {
instance->generic.data_count_bit += instance->data_markup[i].bit_count;
#ifdef BIN_RAW_DEBUG
bin_raw_debug(
"\r\n\t%d\t%d\t%d :\t",
i,
instance->data_markup[i].byte_bias,
instance->data_markup[i].bit_count);
for(uint16_t y = instance->data_markup[i].byte_bias;
y < instance->data_markup[i].byte_bias +
subghz_protocol_bin_raw_get_full_byte(
instance->data_markup[i].bit_count);
y++) {
bin_raw_debug("%02X ", instance->data[y]);
}
#endif
i++;
}
bin_raw_debug("\r\n");
if(instance->base.callback)
instance->base.callback(&instance->base, instance->base.context);
}
}
}
break;
default:
//if instance->decoder.parser_step == BinRAWDecoderStepNoParse or others, restore the initial state
if(rssi < instance->adaptive_threshold_rssi + BIN_RAW_DELTA_RSSI) {
instance->decoder.parser_step = BinRAWDecoderStepReset;
}
break;
}
}
uint8_t subghz_protocol_decoder_bin_raw_get_hash_data(void* context) {
furi_assert(context);
SubGhzProtocolDecoderBinRAW* instance = context;
return subghz_protocol_blocks_add_bytes(
instance->data + instance->data_markup[0].byte_bias,
subghz_protocol_bin_raw_get_full_byte(instance->data_markup[0].bit_count));
}
SubGhzProtocolStatus subghz_protocol_decoder_bin_raw_serialize(
void* context,
FlipperFormat* flipper_format,
SubGhzRadioPreset* preset) {
furi_assert(context);
SubGhzProtocolDecoderBinRAW* instance = context;
SubGhzProtocolStatus res = SubGhzProtocolStatusError;
FuriString* temp_str;
temp_str = furi_string_alloc();
do {
stream_clean(flipper_format_get_raw_stream(flipper_format));
if(!flipper_format_write_header_cstr(
flipper_format, SUBGHZ_KEY_FILE_TYPE, SUBGHZ_KEY_FILE_VERSION)) {
FURI_LOG_E(TAG, "Unable to add header");
res = SubGhzProtocolStatusErrorParserHeader;
break;
}
if(!flipper_format_write_uint32(flipper_format, "Frequency", &preset->frequency, 1)) {
FURI_LOG_E(TAG, "Unable to add Frequency");
res = SubGhzProtocolStatusErrorParserFrequency;
break;
}
subghz_block_generic_get_preset_name(furi_string_get_cstr(preset->name), temp_str);
if(!flipper_format_write_string_cstr(
flipper_format, "Preset", furi_string_get_cstr(temp_str))) {
FURI_LOG_E(TAG, "Unable to add Preset");
res = SubGhzProtocolStatusErrorParserPreset;
break;
}
if(!strcmp(furi_string_get_cstr(temp_str), "FuriHalSubGhzPresetCustom")) {
if(!flipper_format_write_string_cstr(
flipper_format, "Custom_preset_module", "CC1101")) {
FURI_LOG_E(TAG, "Unable to add Custom_preset_module");
res = SubGhzProtocolStatusErrorParserCustomPreset;
break;
}
if(!flipper_format_write_hex(
flipper_format, "Custom_preset_data", preset->data, preset->data_size)) {
FURI_LOG_E(TAG, "Unable to add Custom_preset_data");
res = SubGhzProtocolStatusErrorParserCustomPreset;
break;
}
}
if(!flipper_format_write_string_cstr(
flipper_format, "Protocol", instance->generic.protocol_name)) {
FURI_LOG_E(TAG, "Unable to add Protocol");
res = SubGhzProtocolStatusErrorParserProtocolName;
break;
}
uint32_t temp = instance->generic.data_count_bit;
if(!flipper_format_write_uint32(flipper_format, "Bit", &temp, 1)) {
FURI_LOG_E(TAG, "Unable to add Bit");
res = SubGhzProtocolStatusErrorParserBitCount;
break;
}
if(!flipper_format_write_uint32(flipper_format, "TE", &instance->te, 1)) {
FURI_LOG_E(TAG, "Unable to add TE");
res = SubGhzProtocolStatusErrorParserTe;
break;
}
uint16_t i = 0;
while((i < BIN_RAW_MAX_MARKUP_COUNT) && (instance->data_markup[i].bit_count != 0)) {
temp = instance->data_markup[i].bit_count;
if(!flipper_format_write_uint32(flipper_format, "Bit_RAW", &temp, 1)) {
FURI_LOG_E(TAG, "Bit_RAW");
res = SubGhzProtocolStatusErrorParserOthers;
break;
}
if(!flipper_format_write_hex(
flipper_format,
"Data_RAW",
instance->data + instance->data_markup[i].byte_bias,
subghz_protocol_bin_raw_get_full_byte(instance->data_markup[i].bit_count))) {
FURI_LOG_E(TAG, "Unable to add Data_RAW");
res = SubGhzProtocolStatusErrorParserOthers;
break;
}
i++;
}
res = SubGhzProtocolStatusOk;
} while(false);
furi_string_free(temp_str);
return res;
}
SubGhzProtocolStatus
subghz_protocol_decoder_bin_raw_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolDecoderBinRAW* instance = context;
SubGhzProtocolStatus res = SubGhzProtocolStatusError;
uint32_t temp_data = 0;
do {
if(!flipper_format_rewind(flipper_format)) {
FURI_LOG_E(TAG, "Rewind error");
res = SubGhzProtocolStatusErrorParserOthers;
break;
}
if(!flipper_format_read_uint32(flipper_format, "Bit", (uint32_t*)&temp_data, 1)) {
FURI_LOG_E(TAG, "Missing Bit");
res = SubGhzProtocolStatusErrorParserBitCount;
break;
}
instance->generic.data_count_bit = (uint16_t)temp_data;
if(!flipper_format_read_uint32(flipper_format, "TE", (uint32_t*)&instance->te, 1)) {
FURI_LOG_E(TAG, "Missing TE");
res = SubGhzProtocolStatusErrorParserTe;
break;
}
temp_data = 0;
uint16_t ind = 0;
uint16_t byte_bias = 0;
uint16_t byte_count = 0;
memset(instance->data_markup, 0x00, BIN_RAW_MAX_MARKUP_COUNT * sizeof(BinRAW_Markup));
while(flipper_format_read_uint32(flipper_format, "Bit_RAW", (uint32_t*)&temp_data, 1)) {
if(ind >= BIN_RAW_MAX_MARKUP_COUNT) {
FURI_LOG_E(TAG, "Markup overflow");
res = SubGhzProtocolStatusErrorParserOthers;
break;
}
byte_count += subghz_protocol_bin_raw_get_full_byte(temp_data);
if(byte_count > BIN_RAW_BUF_DATA_SIZE) {
FURI_LOG_E(TAG, "Receive buffer overflow");
res = SubGhzProtocolStatusErrorParserOthers;
break;
}
instance->data_markup[ind].bit_count = temp_data;
instance->data_markup[ind].byte_bias = byte_bias;
byte_bias += subghz_protocol_bin_raw_get_full_byte(temp_data);
if(!flipper_format_read_hex(
flipper_format,
"Data_RAW",
instance->data + instance->data_markup[ind].byte_bias,
subghz_protocol_bin_raw_get_full_byte(temp_data))) {
instance->data_markup[ind].bit_count = 0;
FURI_LOG_E(TAG, "Missing Data_RAW");
res = SubGhzProtocolStatusErrorParserOthers;
break;
}
ind++;
}
res = SubGhzProtocolStatusOk;
} while(0);
return res;
}
void subghz_protocol_decoder_bin_raw_get_string(void* context, FuriString* output) {
furi_assert(context);
SubGhzProtocolDecoderBinRAW* instance = context;
furi_string_cat_printf(
output,
"%s %dbit\r\n"
"Key:",
instance->generic.protocol_name,
instance->generic.data_count_bit);
uint16_t byte_count = subghz_protocol_bin_raw_get_full_byte(instance->generic.data_count_bit);
for(size_t i = 0; (byte_count < 36 ? i < byte_count : i < 36); i++) {
furi_string_cat_printf(output, "%02X", instance->data[i]);
}
furi_string_cat_printf(output, "\r\nTe:%luus\r\n", instance->te);
}