flipperzero-firmware/firmware/targets/f6/api-hal/api-hal-subghz.c

561 lines
20 KiB
C
Raw Normal View History

#include "api-hal-subghz.h"
#include <api-hal-gpio.h>
#include <api-hal-spi.h>
#include <api-hal-interrupt.h>
#include <api-hal-resources.h>
#include <furi.h>
#include <cc1101.h>
#include <stdio.h>
static volatile SubGhzState api_hal_subghz_state = SubGhzStateInit;
static const uint8_t api_hal_subghz_preset_ook_async_regs[][2] = {
/* Base setting */
{ CC1101_IOCFG0, 0x0D }, // GD0 as async serial data output/input
{ CC1101_MCSM0, 0x18 }, // Autocalibrate on idle to TRX, ~150us OSC guard time
/* Async OOK Specific things */
{ CC1101_MDMCFG2, 0x30 }, // ASK/OOK, No preamble/sync
{ CC1101_PKTCTRL0, 0x32 }, // Async, no CRC, Infinite
{ CC1101_FREND0, 0x01 }, // OOK/ASK PATABLE
/* End */
{ 0, 0 },
};
static const uint8_t api_hal_subghz_preset_ook_async_patable[8] = {
0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
static const uint8_t api_hal_subghz_preset_mp_regs[][2] = {
//https://e2e.ti.com/support/wireless-connectivity/sub-1-ghz-group/sub-1-ghz/f/sub-1-ghz-forum/382066/cc1101---don-t-know-the-correct-registers-configuration
//конфигугация GO0
{ CC1101_IOCFG0, 0x0D }, //Конфигурация вывода GDO2, Инвертирование логического уровня: низкий = "1", высокий = "0"
{ CC1101_FIFOTHR, 0x47 }, //Пороги RX FIFO и TX FIFO
//настройка синтезатора частоты
{ CC1101_PKTCTRL0, 0x32 },
//{ CC1101_FSCTRL1, 0x0E },
{ CC1101_FSCTRL1, 0x06 },
//настройка частоты
{ CC1101_FREQ2, 0x10 },
{ CC1101_FREQ1, 0xB0 },
{ CC1101_FREQ0, 0x7F },
//{ CC1101_MDMCFG4, 0x17 }, //ширина диапазона фильтра канала 650кГц изменить CC1101_FIFOTHR 0х07, CC1101_TEST2 0х88, CC1101_TEST1 0х31
{ CC1101_MDMCFG4, 0x67 }, //ширина диапазона фильтра канала 270кГц изменить CC1101_FIFOTHR 0х47, CC1101_TEST2 0х81, CC1101_TEST1 0х35
//{ CC1101_MDMCFG4, 0xC7 }, //ширина диапазона фильтра канала 101кГц изменить CC1101_FIFOTHR 0х47, CC1101_TEST2 0х81, CC1101_TEST1 0х35
{ CC1101_MDMCFG3, 0x32 }, //Мантисса пользовательской скорости символов
//настройка модуляции
{ CC1101_MDMCFG2, 0x30 }, //<---OOK/ASK без преамбулы, без манчестерского кодирования
{ CC1101_MDMCFG1, 0x23 },
{ CC1101_MDMCFG0, 0xF8 },
{ CC1101_MCSM0, 0x18 }, //Конфигурация конечного автомата управления радио
{ CC1101_FOCCFG, 0x18 },
//настройки АРУ
{ CC1101_AGCTRL2, 0x07 }, // MAGN_TARGET для фильтра RX BW = <100 кГц составляет 0x3. Для более высокого фильтра RX MAGN_TARGET BW равен 0x7.
{ CC1101_AGCTRL1, 0x00 },
{ CC1101_AGCTRL0, 0x91 },
// { CC1101_AGCTRL2, 0x03 },
// { CC1101_AGCTRL1, 0x00 },
// { CC1101_AGCTRL0, 0x40 },
// { CC1101_AGCTRL2, 0x07 },
// { CC1101_AGCTRL1, 0x47 },
// { CC1101_AGCTRL0, 0x91 },
{ CC1101_WORCTRL, 0xFB },
//настройка RX тракта FREND1 зависит от полосы пропускания фильтра RX: 0xB6, если полоса фильтра RX> 100 кГц, иначе 0x56
//{ CC1101_FREND1, 0x56 },
{ CC1101_FREND1, 0xB6 },
//настрйока TX тракта
{ CC1101_FREND0, 0x11 },
//{ CC1101_FREND0, 0x01 },
//Калибровка синтезатора частоты
{ CC1101_FSCAL3, 0xE9 },
{ CC1101_FSCAL2, 0x2A },
{ CC1101_FSCAL1, 0x00 },
{ CC1101_FSCAL0, 0x1F },
//Если вы используете TEST2 = 0x81, TEST1 = 0x35 (применимо, если фильтр RX <325 кГц),
// обязательно установите FIFOTHR [6] = 1; иначе TEST2 = 0x88, TEST1 = 0x31 и FIFOTHR [6] = 0
{ CC1101_TEST2, 0x81 },
{ CC1101_TEST1, 0x35 },
{ CC1101_TEST0, 0x09 },
/* End */
{ 0, 0 },
};
static const uint8_t api_hal_subghz_preset_mp_patable[8] = {
0x00,
0xC0, // 10dBm 0xC0, 7dBm 0xC8, 5dBm 0x84, 0dBm 0x60, -10dBm 0x34, -15dBm 0x1D, -20dBm 0x0E, -30dBm 0x12
0x00,
0x00,
0x00,
0x00,
0x00,
0x00
};
static const uint8_t api_hal_subghz_preset_2fsk_packet_regs[][2] = {
/* Base setting */
{ CC1101_IOCFG0, 0x06 }, // GD0 as async serial data output/input
{ CC1101_MCSM0, 0x18 }, // Autocalibrate on idle to TRX, ~150us OSC guard time
/* Magic */
{ CC1101_TEST2, 0x81},
{ CC1101_TEST1, 0x35},
{ CC1101_TEST0, 0x09},
/* End */
{ 0, 0 },
};
static const uint8_t api_hal_subghz_preset_2fsk_packet_patable[8] = {
0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
void api_hal_subghz_init() {
furi_assert(api_hal_subghz_state == SubGhzStateInit);
api_hal_subghz_state = SubGhzStateIdle;
const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz);
#ifdef API_HAL_SUBGHZ_TX_GPIO
hal_gpio_init(&API_HAL_SUBGHZ_TX_GPIO, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
#endif
// Reset
hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
cc1101_reset(device);
cc1101_write_reg(device, CC1101_IOCFG0, CC1101IocfgHighImpedance);
// Prepare GD0 for power on self test
hal_gpio_init(&gpio_cc1101_g0, GpioModeInput, GpioPullNo, GpioSpeedLow);
// GD0 low
cc1101_write_reg(device, CC1101_IOCFG0, CC1101IocfgHW);
while(hal_gpio_read(&gpio_cc1101_g0) != false);
// GD0 high
cc1101_write_reg(device, CC1101_IOCFG0, CC1101IocfgHW | CC1101_IOCFG_INV);
while(hal_gpio_read(&gpio_cc1101_g0) != true);
// Reset GD0 to floating state
cc1101_write_reg(device, CC1101_IOCFG0, CC1101IocfgHighImpedance);
hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
// RF switches
hal_gpio_init(&gpio_rf_sw_0, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
cc1101_write_reg(device, CC1101_IOCFG2, CC1101IocfgHW);
// Go to sleep
cc1101_shutdown(device);
api_hal_spi_device_return(device);
}
void api_hal_subghz_sleep() {
furi_assert(api_hal_subghz_state == SubGhzStateIdle);
const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz);
cc1101_switch_to_idle(device);
cc1101_write_reg(device, CC1101_IOCFG0, CC1101IocfgHighImpedance);
hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
cc1101_shutdown(device);
api_hal_spi_device_return(device);
}
void api_hal_subghz_dump_state() {
const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz);
printf(
"[api_hal_subghz] cc1101 chip %d, version %d\r\n",
cc1101_get_partnumber(device),
cc1101_get_version(device)
);
api_hal_spi_device_return(device);
}
void api_hal_subghz_load_preset(ApiHalSubGhzPreset preset) {
if(preset == ApiHalSubGhzPresetOokAsync) {
api_hal_subghz_load_registers(api_hal_subghz_preset_ook_async_regs);
api_hal_subghz_load_patable(api_hal_subghz_preset_ook_async_patable);
} else if(preset == ApiHalSubGhzPreset2FskPacket) {
api_hal_subghz_load_registers(api_hal_subghz_preset_2fsk_packet_regs);
api_hal_subghz_load_patable(api_hal_subghz_preset_2fsk_packet_patable);
} else if(preset == ApiHalSubGhzPresetMP) {
api_hal_subghz_load_registers(api_hal_subghz_preset_mp_regs);
api_hal_subghz_load_patable(api_hal_subghz_preset_mp_patable);
}
}
uint8_t api_hal_subghz_get_status() {
const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz);
CC1101StatusRaw st;
st.status = cc1101_get_status(device);
api_hal_spi_device_return(device);
return st.status_raw;
}
void api_hal_subghz_load_registers(const uint8_t data[][2]) {
const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz);
cc1101_reset(device);
uint32_t i = 0;
while (data[i][0]) {
cc1101_write_reg(device, data[i][0], data[i][1]);
i++;
}
api_hal_spi_device_return(device);
}
void api_hal_subghz_load_patable(const uint8_t data[8]) {
const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz);
cc1101_set_pa_table(device, data);
api_hal_spi_device_return(device);
}
void api_hal_subghz_write_packet(const uint8_t* data, uint8_t size) {
const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz);
cc1101_flush_tx(device);
cc1101_write_fifo(device, data, size);
api_hal_spi_device_return(device);
}
void api_hal_subghz_flush_rx() {
const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz);
cc1101_flush_rx(device);
api_hal_spi_device_return(device);
}
void api_hal_subghz_read_packet(uint8_t* data, uint8_t* size) {
const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz);
cc1101_read_fifo(device, data, size);
api_hal_spi_device_return(device);
}
void api_hal_subghz_shutdown() {
const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz);
// Reset and shutdown
cc1101_shutdown(device);
api_hal_spi_device_return(device);
}
void api_hal_subghz_reset() {
const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz);
hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
cc1101_switch_to_idle(device);
cc1101_reset(device);
cc1101_write_reg(device, CC1101_IOCFG0, CC1101IocfgHighImpedance);
api_hal_spi_device_return(device);
}
void api_hal_subghz_idle() {
const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz);
cc1101_switch_to_idle(device);
api_hal_spi_device_return(device);
}
void api_hal_subghz_rx() {
const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz);
cc1101_switch_to_rx(device);
api_hal_spi_device_return(device);
}
void api_hal_subghz_tx() {
const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz);
cc1101_switch_to_tx(device);
api_hal_spi_device_return(device);
}
float api_hal_subghz_get_rssi() {
const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz);
int32_t rssi_dec = cc1101_get_rssi(device);
api_hal_spi_device_return(device);
float rssi = rssi_dec;
if(rssi_dec >= 128) {
rssi = ((rssi - 256.0f) / 2.0f) - 74.0f;
} else {
rssi = (rssi / 2.0f) - 74.0f;
}
return rssi;
}
uint32_t api_hal_subghz_set_frequency_and_path(uint32_t value) {
value = api_hal_subghz_set_frequency(value);
if(value >= 300000000 && value <= 348000335) {
api_hal_subghz_set_path(ApiHalSubGhzPath315);
} else if(value >= 387000000 && value <= 464000000) {
api_hal_subghz_set_path(ApiHalSubGhzPath433);
} else if(value >= 779000000 && value <= 928000000) {
api_hal_subghz_set_path(ApiHalSubGhzPath868);
} else {
furi_check(0);
}
return value;
}
uint32_t api_hal_subghz_set_frequency(uint32_t value) {
const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz);
// Compensate rounding
if (value % cc1101_get_frequency_step(device) > (cc1101_get_frequency_step(device) / 2)) {
value += cc1101_get_frequency_step(device);
}
uint32_t real_frequency = cc1101_set_frequency(device, value);
cc1101_calibrate(device);
api_hal_spi_device_return(device);
return real_frequency;
}
void api_hal_subghz_set_path(ApiHalSubGhzPath path) {
const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz);
if (path == ApiHalSubGhzPath433) {
hal_gpio_write(&gpio_rf_sw_0, 0);
cc1101_write_reg(device, CC1101_IOCFG2, CC1101IocfgHW | CC1101_IOCFG_INV);
} else if (path == ApiHalSubGhzPath315) {
hal_gpio_write(&gpio_rf_sw_0, 1);
cc1101_write_reg(device, CC1101_IOCFG2, CC1101IocfgHW);
} else if (path == ApiHalSubGhzPath868) {
hal_gpio_write(&gpio_rf_sw_0, 1);
cc1101_write_reg(device, CC1101_IOCFG2, CC1101IocfgHW | CC1101_IOCFG_INV);
} else if (path == ApiHalSubGhzPathIsolate) {
hal_gpio_write(&gpio_rf_sw_0, 0);
cc1101_write_reg(device, CC1101_IOCFG2, CC1101IocfgHW);
} else {
furi_check(0);
}
api_hal_spi_device_return(device);
}
volatile uint32_t api_hal_subghz_capture_delta_duration = 0;
volatile ApiHalSubGhzCaptureCallback api_hal_subghz_capture_callback = NULL;
volatile void* api_hal_subghz_capture_callback_context = NULL;
static void api_hal_subghz_capture_ISR() {
// Channel 1
if(LL_TIM_IsActiveFlag_CC1(TIM2)) {
LL_TIM_ClearFlag_CC1(TIM2);
api_hal_subghz_capture_delta_duration = LL_TIM_IC_GetCaptureCH1(TIM2);
if (api_hal_subghz_capture_callback) {
api_hal_subghz_capture_callback(true, api_hal_subghz_capture_delta_duration,
(void*)api_hal_subghz_capture_callback_context
);
}
}
// Channel 2
if(LL_TIM_IsActiveFlag_CC2(TIM2)) {
LL_TIM_ClearFlag_CC2(TIM2);
if (api_hal_subghz_capture_callback) {
api_hal_subghz_capture_callback(false, LL_TIM_IC_GetCaptureCH2(TIM2) - api_hal_subghz_capture_delta_duration,
(void*)api_hal_subghz_capture_callback_context
);
}
}
}
void api_hal_subghz_set_async_rx_callback(ApiHalSubGhzCaptureCallback callback, void* context) {
api_hal_subghz_capture_callback = callback;
api_hal_subghz_capture_callback_context = context;
}
void api_hal_subghz_start_async_rx() {
furi_assert(api_hal_subghz_state == SubGhzStateIdle);
api_hal_subghz_state = SubGhzStateAsyncRx;
hal_gpio_init_ex(&gpio_cc1101_g0, GpioModeAltFunctionPushPull, GpioPullNo, GpioSpeedLow, GpioAltFn1TIM2);
// Timer: base
LL_TIM_InitTypeDef TIM_InitStruct = {0};
TIM_InitStruct.Prescaler = 64-1;
TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP;
TIM_InitStruct.Autoreload = 0x7FFFFFFE;
TIM_InitStruct.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
LL_TIM_Init(TIM2, &TIM_InitStruct);
// Timer: advanced
LL_TIM_SetClockSource(TIM2, LL_TIM_CLOCKSOURCE_INTERNAL);
LL_TIM_DisableARRPreload(TIM2);
LL_TIM_SetTriggerInput(TIM2, LL_TIM_TS_TI2FP2);
LL_TIM_SetSlaveMode(TIM2, LL_TIM_SLAVEMODE_RESET);
LL_TIM_SetTriggerOutput(TIM2, LL_TIM_TRGO_RESET);
LL_TIM_EnableMasterSlaveMode(TIM2);
LL_TIM_DisableDMAReq_TRIG(TIM2);
LL_TIM_DisableIT_TRIG(TIM2);
// Timer: channel 1 indirect
LL_TIM_IC_SetActiveInput(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_ACTIVEINPUT_INDIRECTTI);
LL_TIM_IC_SetPrescaler(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_ICPSC_DIV1);
LL_TIM_IC_SetPolarity(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_IC_POLARITY_FALLING);
LL_TIM_IC_SetFilter(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_IC_FILTER_FDIV1);
// Timer: channel 2 direct
LL_TIM_IC_SetActiveInput(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_ACTIVEINPUT_DIRECTTI);
LL_TIM_IC_SetPrescaler(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_ICPSC_DIV1);
LL_TIM_IC_SetPolarity(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_IC_POLARITY_RISING);
LL_TIM_IC_SetFilter(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_IC_FILTER_FDIV1);
// ISR setup
api_hal_interrupt_set_timer_isr(TIM2, api_hal_subghz_capture_ISR);
NVIC_SetPriority(TIM2_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(),5, 0));
NVIC_EnableIRQ(TIM2_IRQn);
// Interrupts and channels
LL_TIM_EnableIT_CC1(TIM2);
LL_TIM_EnableIT_CC2(TIM2);
LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH1);
LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH2);
// Start timer
LL_TIM_SetCounter(TIM2, 0);
LL_TIM_EnableCounter(TIM2);
// Switch to RX
api_hal_subghz_rx();
}
void api_hal_subghz_stop_async_rx() {
furi_assert(api_hal_subghz_state == SubGhzStateAsyncRx);
api_hal_subghz_state = SubGhzStateIdle;
// Shutdown radio
api_hal_subghz_idle();
LL_TIM_DeInit(TIM2);
api_hal_interrupt_set_timer_isr(TIM2, NULL);
hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
}
volatile size_t api_hal_subghz_tx_repeat = 0;
static void api_hal_subghz_tx_dma_isr() {
if (LL_DMA_IsActiveFlag_TC1(DMA1)) {
LL_DMA_ClearFlag_TC1(DMA1);
furi_assert(api_hal_subghz_state == SubGhzStateAsyncTx);
if (--api_hal_subghz_tx_repeat == 0) {
api_hal_subghz_state = SubGhzStateAsyncTxLast;
LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_1);
}
}
}
static void api_hal_subghz_tx_timer_isr() {
if(LL_TIM_IsActiveFlag_UPDATE(TIM2)) {
LL_TIM_ClearFlag_UPDATE(TIM2);
if (api_hal_subghz_state == SubGhzStateAsyncTxLast) {
LL_TIM_DisableCounter(TIM2);
api_hal_subghz_state = SubGhzStateAsyncTxEnd;
}
}
}
void api_hal_subghz_start_async_tx(uint32_t* buffer, size_t buffer_size, size_t repeat) {
furi_assert(api_hal_subghz_state == SubGhzStateIdle);
api_hal_subghz_state = SubGhzStateAsyncTx;
api_hal_subghz_tx_repeat = repeat;
// Connect CC1101_GD0 to TIM2 as output
hal_gpio_init_ex(&gpio_cc1101_g0, GpioModeAltFunctionPushPull, GpioPullDown, GpioSpeedLow, GpioAltFn1TIM2);
// Configure DMA
LL_DMA_InitTypeDef dma_config = {0};
dma_config.PeriphOrM2MSrcAddress = (uint32_t)&(TIM2->ARR);
dma_config.MemoryOrM2MDstAddress = (uint32_t)buffer;
dma_config.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
dma_config.Mode = LL_DMA_MODE_CIRCULAR;
dma_config.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
dma_config.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
dma_config.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_WORD;
dma_config.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_WORD;
dma_config.NbData = buffer_size / sizeof(uint32_t);
dma_config.PeriphRequest = LL_DMAMUX_REQ_TIM2_UP;
dma_config.Priority = LL_DMA_MODE_NORMAL;
LL_DMA_Init(DMA1, LL_DMA_CHANNEL_1, &dma_config);
api_hal_interrupt_set_dma_channel_isr(DMA1, LL_DMA_CHANNEL_1, api_hal_subghz_tx_dma_isr);
LL_DMA_EnableIT_TC(DMA1, LL_DMA_CHANNEL_1);
LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_1);
// Configure TIM2
LL_TIM_InitTypeDef TIM_InitStruct = {0};
TIM_InitStruct.Prescaler = 64-1;
TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP;
TIM_InitStruct.Autoreload = 1000;
TIM_InitStruct.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
LL_TIM_Init(TIM2, &TIM_InitStruct);
LL_TIM_SetClockSource(TIM2, LL_TIM_CLOCKSOURCE_INTERNAL);
LL_TIM_EnableARRPreload(TIM2);
// Configure TIM2 CH2
LL_TIM_OC_InitTypeDef TIM_OC_InitStruct = {0};
TIM_OC_InitStruct.OCMode = LL_TIM_OCMODE_TOGGLE;
TIM_OC_InitStruct.OCState = LL_TIM_OCSTATE_DISABLE;
TIM_OC_InitStruct.OCNState = LL_TIM_OCSTATE_DISABLE;
TIM_OC_InitStruct.CompareValue = 0;
TIM_OC_InitStruct.OCPolarity = LL_TIM_OCPOLARITY_HIGH;
LL_TIM_OC_Init(TIM2, LL_TIM_CHANNEL_CH2, &TIM_OC_InitStruct);
LL_TIM_OC_DisableFast(TIM2, LL_TIM_CHANNEL_CH2);
LL_TIM_DisableMasterSlaveMode(TIM2);
api_hal_interrupt_set_timer_isr(TIM2, api_hal_subghz_tx_timer_isr);
LL_TIM_EnableIT_UPDATE(TIM2);
LL_TIM_EnableDMAReq_UPDATE(TIM2);
LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH2);
// Start counter
LL_TIM_GenerateEvent_UPDATE(TIM2);
#ifdef API_HAL_SUBGHZ_TX_GPIO
hal_gpio_write(&API_HAL_SUBGHZ_TX_GPIO, true);
#endif
api_hal_subghz_tx();
LL_TIM_SetCounter(TIM2, 0);
LL_TIM_EnableCounter(TIM2);
}
void api_hal_subghz_wait_async_tx() {
while(api_hal_subghz_state != SubGhzStateAsyncTxEnd) osDelay(1);
}
void api_hal_subghz_stop_async_tx() {
furi_assert(api_hal_subghz_state == SubGhzStateAsyncTxEnd);
api_hal_subghz_state = SubGhzStateIdle;
// Shutdown radio
api_hal_subghz_idle();
#ifdef API_HAL_SUBGHZ_TX_GPIO
hal_gpio_write(&API_HAL_SUBGHZ_TX_GPIO, false);
#endif
// Deinitialize Timer
LL_TIM_DeInit(TIM2);
api_hal_interrupt_set_timer_isr(TIM2, NULL);
// Deinitialize DMA
LL_DMA_DeInit(DMA1, LL_DMA_CHANNEL_1);
api_hal_interrupt_set_dma_channel_isr(DMA1, LL_DMA_CHANNEL_1, NULL);
// Deinitialize GPIO
hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
}