flipperzero-firmware/lib/subghz/protocols/princeton.c

357 lines
12 KiB
C
Raw Normal View History

#include "princeton.h"
#include "../blocks/const.h"
#include "../blocks/decoder.h"
#include "../blocks/encoder.h"
#include "../blocks/generic.h"
#include "../blocks/math.h"
/*
* Help
* https://phreakerclub.com/447
*
*/
#define TAG "SubGhzProtocolCAME"
static const SubGhzBlockConst subghz_protocol_princeton_const = {
.te_short = 400,
.te_long = 1200,
.te_delta = 250,
.min_count_bit_for_found = 24,
};
struct SubGhzProtocolDecoderPrinceton {
SubGhzProtocolDecoderBase base;
SubGhzBlockDecoder decoder;
SubGhzBlockGeneric generic;
uint32_t te;
};
struct SubGhzProtocolEncoderPrinceton {
SubGhzProtocolEncoderBase base;
SubGhzProtocolBlockEncoder encoder;
SubGhzBlockGeneric generic;
uint32_t te;
};
typedef enum {
PrincetonDecoderStepReset = 0,
PrincetonDecoderStepSaveDuration,
PrincetonDecoderStepCheckDuration,
} PrincetonDecoderStep;
const SubGhzProtocolDecoder subghz_protocol_princeton_decoder = {
.alloc = subghz_protocol_decoder_princeton_alloc,
.free = subghz_protocol_decoder_princeton_free,
.feed = subghz_protocol_decoder_princeton_feed,
.reset = subghz_protocol_decoder_princeton_reset,
.get_hash_data = subghz_protocol_decoder_princeton_get_hash_data,
.serialize = subghz_protocol_decoder_princeton_serialize,
.deserialize = subghz_protocol_decoder_princeton_deserialize,
.get_string = subghz_protocol_decoder_princeton_get_string,
};
const SubGhzProtocolEncoder subghz_protocol_princeton_encoder = {
.alloc = subghz_protocol_encoder_princeton_alloc,
.free = subghz_protocol_encoder_princeton_free,
.deserialize = subghz_protocol_encoder_princeton_deserialize,
.stop = subghz_protocol_encoder_princeton_stop,
.yield = subghz_protocol_encoder_princeton_yield,
};
const SubGhzProtocol subghz_protocol_princeton = {
.name = SUBGHZ_PROTOCOL_PRINCETON_NAME,
.type = SubGhzProtocolTypeStatic,
.flag = SubGhzProtocolFlag_433 | SubGhzProtocolFlag_868 | SubGhzProtocolFlag_315 |
SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable | SubGhzProtocolFlag_Load |
SubGhzProtocolFlag_Save | SubGhzProtocolFlag_Send,
.decoder = &subghz_protocol_princeton_decoder,
.encoder = &subghz_protocol_princeton_encoder,
};
void* subghz_protocol_encoder_princeton_alloc(SubGhzEnvironment* environment) {
SubGhzProtocolEncoderPrinceton* instance = malloc(sizeof(SubGhzProtocolEncoderPrinceton));
instance->base.protocol = &subghz_protocol_princeton;
instance->generic.protocol_name = instance->base.protocol->name;
instance->encoder.repeat = 10;
instance->encoder.size_upload = 52; //max 24bit*2 + 2 (start, stop)
instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration));
instance->encoder.is_runing = false;
return instance;
}
void subghz_protocol_encoder_princeton_free(void* context) {
furi_assert(context);
SubGhzProtocolEncoderPrinceton* instance = context;
free(instance->encoder.upload);
free(instance);
}
/**
* Generating an upload from data.
* @param instance Pointer to a SubGhzProtocolEncoderPrinceton instance
* @return true On success
*/
static bool
subghz_protocol_encoder_princeton_get_upload(SubGhzProtocolEncoderPrinceton* instance) {
furi_assert(instance);
size_t index = 0;
size_t size_upload = (instance->generic.data_count_bit * 2) + 2;
if(size_upload > instance->encoder.size_upload) {
FURI_LOG_E(TAG, "Size upload exceeds allocated encoder buffer.");
return false;
} else {
instance->encoder.size_upload = size_upload;
}
//Send key data
for(uint8_t i = instance->generic.data_count_bit; i > 0; i--) {
if(bit_read(instance->generic.data, i - 1)) {
//send bit 1
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)instance->te * 3);
instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)instance->te);
} else {
//send bit 0
instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)instance->te);
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)instance->te * 3);
}
}
//Send Stop bit
instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)instance->te);
//Send PT_GUARD
instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)instance->te * 30);
return true;
}
bool subghz_protocol_encoder_princeton_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolEncoderPrinceton* instance = context;
bool res = false;
do {
if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
FURI_LOG_E(TAG, "Deserialize error");
break;
}
if(!flipper_format_rewind(flipper_format)) {
FURI_LOG_E(TAG, "Rewind error");
break;
}
if(!flipper_format_read_uint32(flipper_format, "TE", (uint32_t*)&instance->te, 1)) {
FURI_LOG_E(TAG, "Missing TE");
break;
}
//optional parameter parameter
flipper_format_read_uint32(
flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1);
subghz_protocol_encoder_princeton_get_upload(instance);
instance->encoder.is_runing = true;
res = true;
} while(false);
return res;
}
void subghz_protocol_encoder_princeton_stop(void* context) {
SubGhzProtocolEncoderPrinceton* instance = context;
instance->encoder.is_runing = false;
}
LevelDuration subghz_protocol_encoder_princeton_yield(void* context) {
SubGhzProtocolEncoderPrinceton* instance = context;
if(instance->encoder.repeat == 0 || !instance->encoder.is_runing) {
instance->encoder.is_runing = false;
return level_duration_reset();
}
LevelDuration ret = instance->encoder.upload[instance->encoder.front];
if(++instance->encoder.front == instance->encoder.size_upload) {
instance->encoder.repeat--;
instance->encoder.front = 0;
}
return ret;
}
void* subghz_protocol_decoder_princeton_alloc(SubGhzEnvironment* environment) {
SubGhzProtocolDecoderPrinceton* instance = malloc(sizeof(SubGhzProtocolDecoderPrinceton));
instance->base.protocol = &subghz_protocol_princeton;
instance->generic.protocol_name = instance->base.protocol->name;
return instance;
}
void subghz_protocol_decoder_princeton_free(void* context) {
furi_assert(context);
SubGhzProtocolDecoderPrinceton* instance = context;
free(instance);
}
void subghz_protocol_decoder_princeton_reset(void* context) {
furi_assert(context);
SubGhzProtocolDecoderPrinceton* instance = context;
instance->decoder.parser_step = PrincetonDecoderStepReset;
}
void subghz_protocol_decoder_princeton_feed(void* context, bool level, uint32_t duration) {
furi_assert(context);
SubGhzProtocolDecoderPrinceton* instance = context;
switch(instance->decoder.parser_step) {
case PrincetonDecoderStepReset:
if((!level) && (DURATION_DIFF(duration, subghz_protocol_princeton_const.te_short * 36) <
subghz_protocol_princeton_const.te_delta * 36)) {
//Found Preambula
instance->decoder.parser_step = PrincetonDecoderStepSaveDuration;
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
instance->te = 0;
}
break;
case PrincetonDecoderStepSaveDuration:
//save duration
if(level) {
instance->decoder.te_last = duration;
instance->te += duration;
instance->decoder.parser_step = PrincetonDecoderStepCheckDuration;
}
break;
case PrincetonDecoderStepCheckDuration:
if(!level) {
if(duration >= (subghz_protocol_princeton_const.te_short * 10 +
subghz_protocol_princeton_const.te_delta)) {
instance->decoder.parser_step = PrincetonDecoderStepSaveDuration;
if(instance->decoder.decode_count_bit ==
subghz_protocol_princeton_const.min_count_bit_for_found) {
instance->te /= (instance->decoder.decode_count_bit * 4 + 1);
instance->generic.data = instance->decoder.decode_data;
instance->generic.data_count_bit = instance->decoder.decode_count_bit;
instance->generic.serial = instance->decoder.decode_data >> 4;
instance->generic.btn = (uint8_t)instance->decoder.decode_data & 0x00000F;
if(instance->base.callback)
instance->base.callback(&instance->base, instance->base.context);
}
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
instance->te = 0;
break;
}
instance->te += duration;
if((DURATION_DIFF(instance->decoder.te_last, subghz_protocol_princeton_const.te_short) <
subghz_protocol_princeton_const.te_delta) &&
(DURATION_DIFF(duration, subghz_protocol_princeton_const.te_long) <
subghz_protocol_princeton_const.te_delta * 3)) {
subghz_protocol_blocks_add_bit(&instance->decoder, 0);
instance->decoder.parser_step = PrincetonDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->decoder.te_last, subghz_protocol_princeton_const.te_long) <
subghz_protocol_princeton_const.te_delta * 3) &&
(DURATION_DIFF(duration, subghz_protocol_princeton_const.te_short) <
subghz_protocol_princeton_const.te_delta)) {
subghz_protocol_blocks_add_bit(&instance->decoder, 1);
instance->decoder.parser_step = PrincetonDecoderStepSaveDuration;
} else {
instance->decoder.parser_step = PrincetonDecoderStepReset;
}
} else {
instance->decoder.parser_step = PrincetonDecoderStepReset;
}
break;
}
}
uint8_t subghz_protocol_decoder_princeton_get_hash_data(void* context) {
furi_assert(context);
SubGhzProtocolDecoderPrinceton* instance = context;
return subghz_protocol_blocks_get_hash_data(
&instance->decoder, (instance->decoder.decode_count_bit / 8) + 1);
}
bool subghz_protocol_decoder_princeton_serialize(
void* context,
FlipperFormat* flipper_format,
uint32_t frequency,
FuriHalSubGhzPreset preset) {
furi_assert(context);
SubGhzProtocolDecoderPrinceton* instance = context;
bool res =
subghz_block_generic_serialize(&instance->generic, flipper_format, frequency, preset);
if(res && !flipper_format_write_uint32(flipper_format, "TE", &instance->te, 1)) {
FURI_LOG_E(TAG, "Unable to add TE");
res = false;
}
return res;
}
bool subghz_protocol_decoder_princeton_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolDecoderPrinceton* instance = context;
bool res = false;
do {
if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
FURI_LOG_E(TAG, "Deserialize error");
break;
}
if(!flipper_format_rewind(flipper_format)) {
FURI_LOG_E(TAG, "Rewind error");
break;
}
if(!flipper_format_read_uint32(flipper_format, "TE", (uint32_t*)&instance->te, 1)) {
FURI_LOG_E(TAG, "Missing TE");
break;
}
res = true;
} while(false);
return res;
}
void subghz_protocol_decoder_princeton_get_string(void* context, string_t output) {
furi_assert(context);
SubGhzProtocolDecoderPrinceton* instance = context;
uint32_t code_found_lo = instance->generic.data & 0x00000000ffffffff;
uint64_t code_found_reverse = subghz_protocol_blocks_reverse_key(
instance->generic.data, instance->generic.data_count_bit);
uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff;
string_cat_printf(
output,
"%s %dbit\r\n"
"Key:0x%08lX\r\n"
"Yek:0x%08lX\r\n"
"Sn:0x%05lX BTN:%02X\r\n"
"Te:%dus\r\n",
instance->generic.protocol_name,
instance->generic.data_count_bit,
code_found_lo,
code_found_reverse_lo,
instance->generic.serial,
instance->generic.btn,
instance->te);
}