[FL-1505] Add RAW format (#576)

* Add RAW format
* F5 stubs for build to pass
* Fix saving decoded signal error
* Irda: set ISR before starting timer, remove explicit NVIC configuration

Co-authored-by: あく <alleteam@gmail.com>
This commit is contained in:
Albert Kharisov
2021-07-16 19:43:54 +03:00
committed by GitHub
parent a2dfa33a9f
commit 13c5a8cb20
50 changed files with 1236 additions and 941 deletions

View File

@@ -0,0 +1,248 @@
#include "irda.h"
#include "furi/check.h"
#include "irda_common_i.h"
#include "irda_protocol_defs_i.h"
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <furi.h>
#include "irda_i.h"
#include <api-hal-irda.h>
struct IrdaDecoderHandler {
void** ctx;
};
typedef struct {
IrdaAlloc alloc;
IrdaDecode decode;
IrdaReset reset;
IrdaFree free;
} IrdaDecoders;
typedef struct {
IrdaEncoderReset reset;
IrdaAlloc alloc;
IrdaEncode encode;
IrdaFree free;
} IrdaEncoders;
typedef struct {
IrdaProtocol protocol;
const char* name;
IrdaDecoders decoder;
IrdaEncoders encoder;
uint8_t address_length;
uint8_t command_length;
} IrdaProtocolImplementation;
struct IrdaEncoderHandler {
void* encoder;
IrdaProtocol protocol;
};
// TODO: replace with key-value, Now we refer by enum index, which is dangerous.
static const IrdaProtocolImplementation irda_protocols[] = {
// #0
{ .protocol = IrdaProtocolNEC,
.name = "NEC",
.decoder = {
.alloc = irda_decoder_nec_alloc,
.decode = irda_decoder_nec_decode,
.reset = irda_decoder_nec_reset,
.free = irda_decoder_nec_free},
.encoder = {
.alloc = irda_encoder_nec_alloc,
.encode = irda_encoder_nec_encode,
.reset = irda_encoder_nec_reset,
.free = irda_encoder_nec_free},
.address_length = 2,
.command_length = 2,
},
// #1 - have to be after NEC
{ .protocol = IrdaProtocolNECext,
.name = "NECext",
.decoder = {
.alloc = irda_decoder_necext_alloc,
.decode = irda_decoder_nec_decode,
.reset = irda_decoder_nec_reset,
.free = irda_decoder_nec_free},
.encoder = {
.alloc = irda_encoder_necext_alloc,
.encode = irda_encoder_nec_encode,
.reset = irda_encoder_necext_reset,
.free = irda_encoder_nec_free},
.address_length = 4,
.command_length = 2,
},
// #2
{ .protocol = IrdaProtocolSamsung32,
.name ="Samsung32",
.decoder = {
.alloc = irda_decoder_samsung32_alloc,
.decode = irda_decoder_samsung32_decode,
.reset = irda_decoder_samsung32_reset,
.free = irda_decoder_samsung32_free},
.encoder = {
.alloc = irda_encoder_samsung32_alloc,
.encode = irda_encoder_samsung32_encode,
.reset = irda_encoder_samsung32_reset,
.free = irda_encoder_samsung32_free},
.address_length = 2,
.command_length = 2,
},
// #3
{ .protocol = IrdaProtocolRC6,
.name = "RC6",
.decoder = {
.alloc = irda_decoder_rc6_alloc,
.decode = irda_decoder_rc6_decode,
.reset = irda_decoder_rc6_reset,
.free = irda_decoder_rc6_free},
.encoder = {
.alloc = irda_encoder_rc6_alloc,
.encode = irda_encoder_rc6_encode,
.reset = irda_encoder_rc6_reset,
.free = irda_encoder_rc6_free},
.address_length = 2,
.command_length = 2,
},
};
const IrdaMessage* irda_decode(IrdaDecoderHandler* handler, bool level, uint32_t duration) {
furi_assert(handler);
IrdaMessage* message = NULL;
IrdaMessage* result = NULL;
for (int i = 0; i < COUNT_OF(irda_protocols); ++i) {
if (irda_protocols[i].decoder.decode) {
message = irda_protocols[i].decoder.decode(handler->ctx[i], level, duration);
if (!result && message) {
message->protocol = irda_protocols[i].protocol;
result = message;
}
}
}
return result;
}
IrdaDecoderHandler* irda_alloc_decoder(void) {
IrdaDecoderHandler* handler = furi_alloc(sizeof(IrdaDecoderHandler));
handler->ctx = furi_alloc(sizeof(void*) * COUNT_OF(irda_protocols));
for (int i = 0; i < COUNT_OF(irda_protocols); ++i) {
handler->ctx[i] = 0;
if (irda_protocols[i].decoder.alloc)
handler->ctx[i] = irda_protocols[i].decoder.alloc();
}
return handler;
}
void irda_free_decoder(IrdaDecoderHandler* handler) {
furi_assert(handler);
furi_assert(handler->ctx);
for (int i = 0; i < COUNT_OF(irda_protocols); ++i) {
if (irda_protocols[i].decoder.free)
irda_protocols[i].decoder.free(handler->ctx[i]);
}
free(handler->ctx);
free(handler);
}
void irda_reset_decoder(IrdaDecoderHandler* handler) {
for (int i = 0; i < COUNT_OF(irda_protocols); ++i) {
if (irda_protocols[i].decoder.reset)
irda_protocols[i].decoder.reset(handler->ctx[i]);
}
}
IrdaEncoderHandler* irda_alloc_encoder(void) {
IrdaEncoderHandler* handler = furi_alloc(sizeof(IrdaEncoderHandler));
handler->encoder = NULL;
handler->protocol = IrdaProtocolUnknown;
return handler;
}
void irda_free_encoder(IrdaEncoderHandler* handler) {
furi_assert(handler);
if (handler->encoder) {
furi_assert(irda_is_protocol_valid(handler->protocol));
furi_assert(irda_protocols[handler->protocol].encoder.free);
irda_protocols[handler->protocol].encoder.free(handler->encoder);
}
free(handler);
}
void irda_reset_encoder(IrdaEncoderHandler* handler, const IrdaMessage* message) {
furi_assert(handler);
furi_assert(message);
furi_assert(irda_is_protocol_valid(message->protocol));
furi_assert(irda_protocols[message->protocol].encoder.reset);
furi_assert(irda_protocols[message->protocol].encoder.alloc);
/* Realloc encoder if different protocol set */
if (message->protocol != handler->protocol) {
if (handler->encoder != NULL) {
furi_assert(handler->protocol != IrdaProtocolUnknown);
irda_protocols[handler->protocol].encoder.free(handler->encoder);
}
handler->encoder = irda_protocols[message->protocol].encoder.alloc();
handler->protocol = message->protocol;
}
irda_protocols[handler->protocol].encoder.reset(handler->encoder, message);
}
IrdaStatus irda_encode(IrdaEncoderHandler* handler, uint32_t* duration, bool* level) {
furi_assert(handler);
furi_assert(irda_is_protocol_valid(handler->protocol));
furi_assert(irda_protocols[handler->protocol].encoder.encode);
IrdaStatus status = irda_protocols[handler->protocol].encoder.encode(handler->encoder, duration, level);
furi_assert(status != IrdaStatusError);
return status;
}
bool irda_is_protocol_valid(IrdaProtocol protocol) {
return (protocol >= 0) && (protocol < COUNT_OF(irda_protocols));
}
IrdaProtocol irda_get_protocol_by_name(const char* protocol_name) {
for (int i = 0; i < COUNT_OF(irda_protocols); ++i) {
if (!strcmp(irda_protocols[i].name, protocol_name))
return i;
}
return IrdaProtocolUnknown;
}
const char* irda_get_protocol_name(IrdaProtocol protocol) {
if (irda_is_protocol_valid(protocol))
return irda_protocols[protocol].name;
else
return "Invalid";
}
uint8_t irda_get_protocol_address_length(IrdaProtocol protocol) {
if (irda_is_protocol_valid(protocol))
return irda_protocols[protocol].address_length;
else
return 0;
}
uint8_t irda_get_protocol_command_length(IrdaProtocol protocol) {
if (irda_is_protocol_valid(protocol))
return irda_protocols[protocol].command_length;
else
return 0;
}

View File

@@ -0,0 +1,156 @@
#pragma once
#include <stdbool.h>
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
#define IRDA_COMMON_CARRIER_FREQUENCY 38000
#define IRDA_COMMON_DUTY_CYCLE 0.33
typedef struct IrdaDecoderHandler IrdaDecoderHandler;
typedef struct IrdaEncoderHandler IrdaEncoderHandler;
// Do not change protocol order, as it can be saved into memory and fw update can be performed!
typedef enum {
IrdaProtocolUnknown = -1,
IrdaProtocolNEC = 0,
IrdaProtocolNECext = 1,
IrdaProtocolSamsung32 = 2,
IrdaProtocolRC6 = 3,
} IrdaProtocol;
typedef struct {
IrdaProtocol protocol;
uint32_t address;
uint32_t command;
bool repeat;
} IrdaMessage;
typedef enum {
IrdaStatusError,
IrdaStatusOk,
IrdaStatusDone,
IrdaStatusReady,
} IrdaStatus;
/**
* Initialize decoder.
*
* \return returns pointer to IRDA decoder handler if success, otherwise - error.
*/
IrdaDecoderHandler* irda_alloc_decoder(void);
/**
* Provide to decoder next timing.
*
* \param[in] handler - handler to IRDA decoders. Should be aquired with \c irda_alloc_decoder().
* \param[in] level - high(true) or low(false) level of input signal to analyze.
* it should alternate every call, otherwise it is an error case,
* and decoder resets its state and start decoding from the start.
* \param[in] duration - duration of steady high/low input signal.
* \return if message is ready, returns pointer to decoded message, returns NULL.
*/
const IrdaMessage* irda_decode(IrdaDecoderHandler* handler, bool level, uint32_t duration);
/**
* Deinitialize decoder and free allocated memory.
*
* \param[in] handler - handler to IRDA decoders. Should be aquired with \c irda_alloc_decoder().
*/
void irda_free_decoder(IrdaDecoderHandler* handler);
/**
* Reset IRDA decoder.
*
* \param[in] handler - handler to IRDA decoders. Should be aquired with \c irda_alloc_decoder().
*/
void irda_reset_decoder(IrdaDecoderHandler* handler);
/**
* Get protocol name by protocol enum.
*
* \param[in] protocol - protocol identifier.
* \return string to protocol name.
*/
const char* irda_get_protocol_name(IrdaProtocol protocol);
/**
* Get protocol enum by protocol name.
*
* \param[in] protocol_name - string to protocol name.
* \return protocol identifier.
*/
IrdaProtocol irda_get_protocol_by_name(const char* protocol_name);
/**
* Get address length by protocol enum.
*
* \param[in] protocol - protocol identifier.
* \return length of address in nibbles.
*/
uint8_t irda_get_protocol_address_length(IrdaProtocol protocol);
/**
* Get command length by protocol enum.
*
* \param[in] protocol - protocol identifier.
* \return length of command in nibbles.
*/
uint8_t irda_get_protocol_command_length(IrdaProtocol protocol);
/**
* Checks whether protocol valid.
*
* \param[in] protocol - protocol identifier.
* \return true if protocol is valid, false otherwise.
*/
bool irda_is_protocol_valid(IrdaProtocol protocol);
/**
* Allocate IRDA encoder.
*
* \return encoder handler.
*/
IrdaEncoderHandler* irda_alloc_encoder(void);
/**
* Free encoder handler previously allocated with \c irda_alloc_encoder().
*
* \param[in] handler - handler to IRDA encoder. Should be aquired with \c irda_alloc_encoder().
*/
void irda_free_encoder(IrdaEncoderHandler* handler);
/**
* Encode previously set IRDA message.
* Usage:
* 1) alloc with \c irda_alloc_encoder()
* 2) set message to encode with \c irda_reset_encoder()
* 3) call for \c irda_encode() to continuously get one at a time timings.
* 4) when \c irda_encode() returns IrdaStatusDone, it means new message is fully encoded.
* 5) to encode additional timings, just continue calling \c irda_encode().
*
* \param[in] handler - handler to IRDA encoder. Should be aquired with \c irda_alloc_encoder().
* \param[out] duration - encoded timing.
* \param[out] level - encoded level.
*
* \return status of encode operation.
*/
IrdaStatus irda_encode(IrdaEncoderHandler* handler, uint32_t* duration, bool* level);
/**
* Reset IRDA encoder and set new message to encode. If it's not called after receiveing
* IrdaStatusDone in \c irda_encode(), encoder will encode repeat messages
* till the end of time.
*
* \param[in] handler - handler to IRDA encoder. Should be aquired with \c irda_alloc_encoder().
* \param[in] message - message to encode.
*/
void irda_reset_encoder(IrdaEncoderHandler* handler, const IrdaMessage* message);
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,255 @@
#include "furi/check.h"
#include "irda.h"
#include "irda_common_i.h"
#include <stdbool.h>
#include <furi.h>
#include "irda_i.h"
static void irda_common_decoder_reset_state(IrdaCommonDecoder* common_decoder);
static bool irda_check_preamble(IrdaCommonDecoder* decoder) {
furi_assert(decoder);
bool result = false;
bool start_level = (decoder->level + decoder->timings_cnt + 1) % 2;
// align to start at Mark timing
if (!start_level) {
if (decoder->timings_cnt > 0) {
--decoder->timings_cnt;
shift_left_array(decoder->timings, decoder->timings_cnt, 1);
}
}
while ((!result) && (decoder->timings_cnt >= 2)) {
float preamble_tolerance = decoder->protocol->timings.preamble_tolerance;
uint16_t preamble_mark = decoder->protocol->timings.preamble_mark;
uint16_t preamble_space = decoder->protocol->timings.preamble_space;
if ((MATCH_PREAMBLE_TIMING(decoder->timings[0], preamble_mark, preamble_tolerance))
&& (MATCH_PREAMBLE_TIMING(decoder->timings[1], preamble_space, preamble_tolerance))) {
result = true;
}
decoder->timings_cnt -= 2;
shift_left_array(decoder->timings, decoder->timings_cnt, 2);
}
return result;
}
/* Pulse Distance-Width Modulation */
IrdaStatus irda_common_decode_pdwm(IrdaCommonDecoder* decoder) {
furi_assert(decoder);
uint32_t* timings = decoder->timings;
uint16_t index = 0;
uint8_t shift = 0;
IrdaStatus status = IrdaStatusError;
uint32_t bit_tolerance = decoder->protocol->timings.bit_tolerance;
uint16_t bit1_mark = decoder->protocol->timings.bit1_mark;
uint16_t bit1_space = decoder->protocol->timings.bit1_space;
uint16_t bit0_mark = decoder->protocol->timings.bit0_mark;
uint16_t bit0_space = decoder->protocol->timings.bit0_space;
while (1) {
// Stop bit
if ((decoder->databit_cnt == decoder->protocol->databit_len) && (decoder->timings_cnt == 1)) {
if (MATCH_BIT_TIMING(timings[0], bit1_mark, bit_tolerance)) {
decoder->timings_cnt = 0;
status = IrdaStatusReady;
} else {
status = IrdaStatusError;
}
break;
}
if (decoder->timings_cnt >= 2) {
index = decoder->databit_cnt / 8;
shift = decoder->databit_cnt % 8; // LSB first
if (!shift)
decoder->data[index] = 0;
if (MATCH_BIT_TIMING(timings[0], bit1_mark, bit_tolerance)
&& MATCH_BIT_TIMING(timings[1], bit1_space, bit_tolerance)) {
decoder->data[index] |= (0x1 << shift); // add 1
} else if (MATCH_BIT_TIMING(timings[0], bit0_mark, bit_tolerance)
&& MATCH_BIT_TIMING(timings[1], bit0_space, bit_tolerance)) {
(void) decoder->data[index]; // add 0
} else {
status = IrdaStatusError;
break;
}
++decoder->databit_cnt;
decoder->timings_cnt -= 2;
shift_left_array(decoder->timings, decoder->timings_cnt, 2);
} else {
status = IrdaStatusOk;
break;
}
}
return status;
}
/* level switch detection goes in middle of time-quant */
IrdaStatus irda_common_decode_manchester(IrdaCommonDecoder* decoder) {
furi_assert(decoder);
IrdaStatus status = IrdaStatusError;
uint16_t bit = decoder->protocol->timings.bit1_mark;
uint16_t tolerance = decoder->protocol->timings.bit_tolerance;
while (decoder->timings_cnt) {
uint32_t timing = decoder->timings[0];
bool* switch_detect = &decoder->switch_detect;
furi_assert((*switch_detect == true) || (*switch_detect == false));
bool single_timing = MATCH_BIT_TIMING(timing, bit, tolerance);
bool double_timing = MATCH_BIT_TIMING(timing, 2*bit, tolerance);
if((!single_timing && !double_timing) || (double_timing && !*switch_detect)) {
status = IrdaStatusError;
break;
}
if (*switch_detect == 0) {
/* only single timing - level switch required in the middle of time-quant */
*switch_detect = 1;
} else {
/* double timing means we in the middle of time-quant again */
if (single_timing)
*switch_detect = 0;
}
--decoder->timings_cnt;
shift_left_array(decoder->timings, decoder->timings_cnt, 1);
status = IrdaStatusOk;
if (decoder->databit_cnt < decoder->protocol->databit_len) {
if (*switch_detect) {
uint8_t index = decoder->databit_cnt / 8;
uint8_t shift = decoder->databit_cnt % 8; // LSB first
if (!shift)
decoder->data[index] = 0;
bool inverse_level = decoder->protocol->manchester_inverse_level;
uint8_t logic_value = inverse_level ? !decoder->level : decoder->level;
decoder->data[index] |= (logic_value << shift);
++decoder->databit_cnt;
}
if (decoder->databit_cnt == decoder->protocol->databit_len) {
if (decoder->level) {
status = IrdaStatusReady;
break;
}
}
} else {
furi_assert(decoder->level);
/* cover case: sequence should be stopped after last bit was received */
if (single_timing) {
status = IrdaStatusReady;
break;
} else {
status = IrdaStatusError;
}
}
}
return status;
}
IrdaMessage* irda_common_decode(IrdaCommonDecoder* decoder, bool level, uint32_t duration) {
furi_assert(decoder);
IrdaMessage* message = 0;
IrdaStatus status = IrdaStatusError;
if (decoder->level == level) {
decoder->timings_cnt = 0;
}
decoder->level = level; // start with low level (Space timing)
decoder->timings[decoder->timings_cnt] = duration;
decoder->timings_cnt++;
furi_check(decoder->timings_cnt <= sizeof(decoder->timings));
while(1) {
switch (decoder->state) {
case IrdaCommonDecoderStateWaitPreamble:
if (irda_check_preamble(decoder)) {
decoder->state = IrdaCommonDecoderStateDecode;
decoder->databit_cnt = 0;
decoder->switch_detect = false;
}
break;
case IrdaCommonDecoderStateDecode:
status = decoder->protocol->decode(decoder);
if (status == IrdaStatusReady) {
if (decoder->protocol->interpret(decoder)) {
message = &decoder->message;
decoder->state = IrdaCommonDecoderStateProcessRepeat;
} else {
decoder->state = IrdaCommonDecoderStateWaitPreamble;
}
} else if (status == IrdaStatusError) {
irda_common_decoder_reset_state(decoder);
continue;
}
break;
case IrdaCommonDecoderStateProcessRepeat:
if (!decoder->protocol->decode_repeat) {
decoder->state = IrdaCommonDecoderStateWaitPreamble;
continue;
}
status = decoder->protocol->decode_repeat(decoder);
if (status == IrdaStatusError) {
irda_common_decoder_reset_state(decoder);
continue;
} else if (status == IrdaStatusReady) {
decoder->message.repeat = true;
message = &decoder->message;
}
break;
}
break;
}
return message;
}
void* irda_common_decoder_alloc(const IrdaCommonProtocolSpec* protocol) {
furi_assert(protocol);
uint32_t alloc_size = sizeof(IrdaCommonDecoder)
+ protocol->databit_len / 8
+ !!(protocol->databit_len % 8);
IrdaCommonDecoder* decoder = furi_alloc(alloc_size);
memset(decoder, 0, alloc_size);
decoder->protocol = protocol;
decoder->level = true;
return decoder;
}
void irda_common_decoder_set_context(void* decoder, void* context) {
IrdaCommonDecoder* common_decoder = decoder;
common_decoder->context = context;
}
void irda_common_decoder_free(void* decoder) {
furi_assert(decoder);
free(decoder);
}
void irda_common_decoder_reset_state(IrdaCommonDecoder* common_decoder) {
common_decoder->state = IrdaCommonDecoderStateWaitPreamble;
common_decoder->databit_cnt = 0;
common_decoder->switch_detect = false;
common_decoder->message.protocol = IrdaProtocolUnknown;
}
void irda_common_decoder_reset(void* decoder) {
furi_assert(decoder);
IrdaCommonDecoder* common_decoder = decoder;
irda_common_decoder_reset_state(common_decoder);
common_decoder->timings_cnt = 0;
}

View File

@@ -0,0 +1,161 @@
#include "furi/check.h"
#include "irda.h"
#include "irda_common_i.h"
#include <stdbool.h>
#include <furi.h>
#include "irda_i.h"
/*
*
* 3:
* even_timing = 0
* level = 0 ^ 1 = 1
* 4:
* even_timing = 1
* level = 1 ^ 1 = 0
* ++timing;
*
*
* 0 1 2 | 3 4 |
* _____-------_____---___
*/
IrdaStatus irda_common_encode_manchester(IrdaCommonEncoder* encoder, uint32_t* duration, bool* level) {
furi_assert(encoder);
furi_assert(duration);
furi_assert(level);
const IrdaTimings* timings = &encoder->protocol->timings;
uint8_t index = encoder->bits_encoded / 8;
uint8_t shift = encoder->bits_encoded % 8; // LSB first
bool logic_value = !!(encoder->data[index] & (0x01 << shift));
bool inverse = encoder->protocol->manchester_inverse_level;
bool even_timing = !(encoder->timings_encoded % 2);
*level = even_timing ^ logic_value ^ inverse;
*duration = timings->bit1_mark;
if (even_timing) /* start encoding from space */
++encoder->bits_encoded;
++encoder->timings_encoded;
bool finish = (encoder->bits_encoded == encoder->protocol->databit_len);
finish |= (encoder->bits_encoded == (encoder->protocol->databit_len-1)) && *level && !even_timing;
return finish ? IrdaStatusDone : IrdaStatusOk;
}
IrdaStatus irda_common_encode_pdwm(IrdaCommonEncoder* encoder, uint32_t* duration, bool* level) {
furi_assert(encoder);
furi_assert(duration);
furi_assert(level);
const IrdaTimings* timings = &encoder->protocol->timings;
uint8_t index = encoder->bits_encoded / 8;
uint8_t shift = encoder->bits_encoded % 8; // LSB first
bool logic_value = !!(encoder->data[index] & (0x01 << shift));
// stop bit
if (encoder->bits_encoded == encoder->protocol->databit_len) {
*duration = timings->bit1_mark;
*level = true;
++encoder->timings_encoded;
return IrdaStatusDone;
}
if (encoder->timings_encoded % 2) { /* start encoding from space */
*duration = logic_value ? timings->bit1_mark : timings->bit0_mark;
*level = true;
} else {
*duration = logic_value ? timings->bit1_space : timings->bit0_space;
*level = false;
++encoder->bits_encoded;
}
++encoder->timings_encoded;
return IrdaStatusOk;
}
IrdaStatus irda_common_encode(IrdaCommonEncoder* encoder, uint32_t* duration, bool* level) {
furi_assert(encoder);
furi_assert(duration);
furi_assert(level);
IrdaStatus status = IrdaStatusOk;
const IrdaTimings* timings = &encoder->protocol->timings;
switch (encoder->state) {
case IrdaCommonEncoderStateSpace:
*duration = encoder->protocol->timings.silence_time;
*level = false;
status = IrdaStatusOk;
encoder->state = IrdaCommonEncoderStatePreamble;
++encoder->timings_encoded;
break;
case IrdaCommonEncoderStatePreamble:
if (timings->preamble_mark) {
if (encoder->timings_encoded == 1) {
*duration = timings->preamble_mark;
*level = true;
} else {
*duration = timings->preamble_space;
*level = false;
encoder->state = IrdaCommonEncoderStateEncode;
}
++encoder->timings_encoded;
break;
} else {
encoder->state = IrdaCommonEncoderStateEncode;
}
/* FALLTHROUGH */
case IrdaCommonEncoderStateEncode:
status = encoder->protocol->encode(encoder, duration, level);
if (status == IrdaStatusDone) {
if (encoder->protocol->encode_repeat) {
encoder->state = IrdaCommonEncoderStateEncodeRepeat;
} else {
encoder->timings_encoded = 0;
encoder->bits_encoded = 0;
encoder->switch_detect = 0;
encoder->state = IrdaCommonEncoderStateSpace;
}
}
break;
case IrdaCommonEncoderStateEncodeRepeat:
status = encoder->protocol->encode_repeat(encoder, duration, level);
break;
}
return status;
}
void* irda_common_encoder_alloc(const IrdaCommonProtocolSpec* protocol) {
furi_assert(protocol);
uint32_t alloc_size = sizeof(IrdaCommonEncoder)
+ protocol->databit_len / 8
+ !!(protocol->databit_len % 8);
IrdaCommonEncoder* encoder = furi_alloc(alloc_size);
memset(encoder, 0, alloc_size);
encoder->protocol = protocol;
return encoder;
}
void irda_common_encoder_free(IrdaCommonEncoder* encoder) {
furi_assert(encoder);
free(encoder);
}
void irda_common_encoder_reset(IrdaCommonEncoder* encoder) {
furi_assert(encoder);
encoder->timings_encoded = 0;
encoder->bits_encoded = 0;
encoder->state = IrdaCommonEncoderStateSpace;
encoder->switch_detect = 0;
uint8_t bytes_to_clear = encoder->protocol->databit_len / 8
+ !!(encoder->protocol->databit_len % 8);
memset(encoder->data, 0, bytes_to_clear);
}
void irda_common_encoder_set_context(void* decoder, void* context) {
IrdaCommonEncoder* common_encoder = decoder;
common_encoder->context = context;
}

View File

@@ -0,0 +1,90 @@
#pragma once
#include <stdint.h>
#include "irda.h"
#include "irda_i.h"
#define MATCH_BIT_TIMING(x, v, delta) ( ((x) < (v + delta)) \
&& ((x) > (v - delta)))
#define MATCH_PREAMBLE_TIMING(x, v, delta) ( ((x) < ((v) * (1 + (delta)))) \
&& ((x) > ((v) * (1 - (delta)))))
typedef struct IrdaCommonDecoder IrdaCommonDecoder;
typedef struct IrdaCommonEncoder IrdaCommonEncoder;
typedef IrdaStatus (*IrdaCommonDecode)(IrdaCommonDecoder*);
typedef bool (*IrdaCommonInterpret)(IrdaCommonDecoder*);
typedef IrdaStatus (*IrdaCommonEncode)(IrdaCommonEncoder* encoder, uint32_t* out, bool* polarity);
typedef struct {
IrdaTimings timings;
bool manchester_inverse_level;
uint32_t databit_len;
IrdaCommonDecode decode;
IrdaCommonDecode decode_repeat;
IrdaCommonInterpret interpret;
IrdaCommonEncode encode;
IrdaCommonEncode encode_repeat;
} IrdaCommonProtocolSpec;
typedef enum {
IrdaCommonDecoderStateWaitPreamble,
IrdaCommonDecoderStateDecode,
IrdaCommonDecoderStateProcessRepeat,
} IrdaCommonStateDecoder;
typedef enum {
IrdaCommonEncoderStateSpace,
IrdaCommonEncoderStatePreamble,
IrdaCommonEncoderStateEncode,
IrdaCommonEncoderStateEncodeRepeat,
} IrdaCommonStateEncoder;
struct IrdaCommonDecoder {
const IrdaCommonProtocolSpec* protocol;
IrdaCommonStateDecoder state;
IrdaMessage message;
uint32_t timings[6];
uint8_t timings_cnt;
void* context;
bool switch_detect;
uint32_t level;
uint16_t databit_cnt;
uint8_t data[];
};
struct IrdaCommonEncoder {
const IrdaCommonProtocolSpec* protocol;
IrdaCommonStateEncoder state;
bool switch_detect;
uint32_t bits_encoded;
uint32_t timings_encoded;
void* context;
uint8_t data[];
};
static inline void shift_left_array(uint32_t *array, uint32_t len, uint32_t shift) {
for (int i = 0; i < len; ++i)
array[i] = array[i + shift];
}
IrdaMessage* irda_common_decode(IrdaCommonDecoder *decoder, bool level, uint32_t duration);
IrdaStatus irda_common_decode_pdwm(IrdaCommonDecoder* decoder);
IrdaStatus irda_common_decode_manchester(IrdaCommonDecoder* decoder);
void irda_common_decoder_set_context(void* decoder, void* context);
void* irda_common_decoder_alloc(const IrdaCommonProtocolSpec *protocol);
void irda_common_decoder_free(void* decoder);
void irda_common_decoder_reset(void* decoder);
IrdaStatus irda_common_encode(IrdaCommonEncoder* encoder, uint32_t* duration, bool* polarity);
IrdaStatus irda_common_encode_pdwm(IrdaCommonEncoder* encoder, uint32_t* duration, bool* polarity);
IrdaStatus irda_common_encode_manchester(IrdaCommonEncoder* encoder, uint32_t* duration, bool* polarity);
void irda_common_encoder_set_context(void* decoder, void* context);
void* irda_common_encoder_alloc(const IrdaCommonProtocolSpec* protocol);
void irda_common_encoder_free(IrdaCommonEncoder* encoder);
void irda_common_encoder_reset(IrdaCommonEncoder* encoder);

View File

@@ -0,0 +1,81 @@
#include "irda_common_i.h"
#include "irda_protocol_defs_i.h"
const IrdaCommonProtocolSpec protocol_nec = {
.timings = {
.preamble_mark = IRDA_NEC_PREAMBULE_MARK,
.preamble_space = IRDA_NEC_PREAMBULE_SPACE,
.bit1_mark = IRDA_NEC_BIT1_MARK,
.bit1_space = IRDA_NEC_BIT1_SPACE,
.bit0_mark = IRDA_NEC_BIT0_MARK,
.bit0_space = IRDA_NEC_BIT0_SPACE,
.preamble_tolerance = IRDA_NEC_PREAMBLE_TOLERANCE,
.bit_tolerance = IRDA_NEC_BIT_TOLERANCE,
.silence_time = IRDA_NEC_SILENCE,
},
.databit_len = 32,
.decode = irda_common_decode_pdwm,
.encode = irda_common_encode_pdwm,
.interpret = irda_decoder_nec_interpret,
.decode_repeat = irda_decoder_nec_decode_repeat,
.encode_repeat = irda_encoder_nec_encode_repeat,
};
const IrdaCommonProtocolSpec protocol_necext = {
.timings = {
.preamble_mark = IRDA_NEC_PREAMBULE_MARK,
.preamble_space = IRDA_NEC_PREAMBULE_SPACE,
.bit1_mark = IRDA_NEC_BIT1_MARK,
.bit1_space = IRDA_NEC_BIT1_SPACE,
.bit0_mark = IRDA_NEC_BIT0_MARK,
.bit0_space = IRDA_NEC_BIT0_SPACE,
.preamble_tolerance = IRDA_NEC_PREAMBLE_TOLERANCE,
.bit_tolerance = IRDA_NEC_BIT_TOLERANCE,
.silence_time = IRDA_NEC_SILENCE,
},
.databit_len = 32,
.decode = irda_common_decode_pdwm,
.encode = irda_common_encode_pdwm,
.interpret = irda_decoder_necext_interpret,
.decode_repeat = irda_decoder_nec_decode_repeat,
.encode_repeat = irda_encoder_nec_encode_repeat,
};
const IrdaCommonProtocolSpec protocol_samsung32 = {
.timings = {
.preamble_mark = IRDA_SAMSUNG_PREAMBULE_MARK,
.preamble_space = IRDA_SAMSUNG_PREAMBULE_SPACE,
.bit1_mark = IRDA_SAMSUNG_BIT1_MARK,
.bit1_space = IRDA_SAMSUNG_BIT1_SPACE,
.bit0_mark = IRDA_SAMSUNG_BIT0_MARK,
.bit0_space = IRDA_SAMSUNG_BIT0_SPACE,
.preamble_tolerance = IRDA_SAMSUNG_PREAMBLE_TOLERANCE,
.bit_tolerance = IRDA_SAMSUNG_BIT_TOLERANCE,
.silence_time = IRDA_SAMSUNG_SILENCE,
},
.databit_len = 32,
.decode = irda_common_decode_pdwm,
.encode = irda_common_encode_pdwm,
.interpret = irda_decoder_samsung32_interpret,
.decode_repeat = irda_decoder_samsung32_decode_repeat,
.encode_repeat = irda_encoder_samsung32_encode_repeat,
};
const IrdaCommonProtocolSpec protocol_rc6 = {
.timings = {
.preamble_mark = IRDA_RC6_PREAMBULE_MARK,
.preamble_space = IRDA_RC6_PREAMBULE_SPACE,
.bit1_mark = IRDA_RC6_BIT,
.preamble_tolerance = IRDA_RC6_PREAMBLE_TOLERANCE,
.bit_tolerance = IRDA_RC6_BIT_TOLERANCE,
.silence_time = IRDA_RC6_SILENCE,
},
.databit_len = 1 + 3 + 1 + 8 + 8, // start_bit + 3 mode bits, + 1 toggle bit (x2 timing) + 8 address + 8 command
.manchester_inverse_level = false,
.decode = irda_decoder_rc6_decode_manchester,
.encode = irda_encoder_rc6_encode_manchester,
.interpret = irda_decoder_rc6_interpret,
.decode_repeat = NULL,
.encode_repeat = NULL,
};

View File

@@ -0,0 +1,34 @@
#pragma once
#include "irda.h"
#include <stddef.h>
typedef struct {
uint32_t silence_time;
uint16_t preamble_mark;
uint16_t preamble_space;
uint16_t bit1_mark;
uint16_t bit1_space;
uint16_t bit0_mark;
uint16_t bit0_space;
float preamble_tolerance;
uint32_t bit_tolerance;
} IrdaTimings;
typedef void* (*IrdaAlloc) (void);
typedef IrdaMessage* (*IrdaDecode) (void* ctx, bool level, uint32_t duration);
typedef void (*IrdaReset) (void*);
typedef void (*IrdaFree) (void*);
typedef void (*IrdaEncoderReset)(void* encoder, const IrdaMessage* message);
typedef IrdaStatus (*IrdaEncode)(void* encoder, uint32_t* out, bool* polarity);
typedef IrdaTimings (*IrdaTimingsGet)(void);
static inline uint8_t reverse(uint8_t value) {
uint8_t reverse_value = 0;
for (int i = 0; i < 8; ++i) {
reverse_value |= (value & (0x01 << i)) ? 1 << (7 - i) : 0;
}
return reverse_value;
}

View File

@@ -0,0 +1,156 @@
#pragma once
#include <stddef.h>
#include <stdbool.h>
#include <stdint.h>
#include "irda.h"
#include "irda_common_i.h"
/***************************************************************************************************
* NEC protocol description
* https://radioparty.ru/manuals/encyclopedia/213-ircontrol?start=1
****************************************************************************************************
* Preamble Preamble Pulse Distance/Width Pause Preamble Preamble Stop
* mark space Modulation repeat repeat bit
* mark space
*
* 9000 4500 32 bit + stop bit 40000/100000 9000 2250
* __________ _ _ _ _ _ _ _ _ _ _ _ _ _ ___________ _
* ____ __________ _ _ _ __ __ __ _ _ __ __ _ _ ________________ ____________ ___
*
***************************************************************************************************/
#define IRDA_NEC_PREAMBULE_MARK 9000
#define IRDA_NEC_PREAMBULE_SPACE 4500
#define IRDA_NEC_BIT1_MARK 560
#define IRDA_NEC_BIT1_SPACE 1600
#define IRDA_NEC_BIT0_MARK 560
#define IRDA_NEC_BIT0_SPACE 560
#define IRDA_NEC_REPEAT_PAUSE_MIN 30000
#define IRDA_NEC_REPEAT_PAUSE1 46000
#define IRDA_NEC_REPEAT_PAUSE2 97000
#define IRDA_NEC_SILENCE IRDA_NEC_REPEAT_PAUSE2
#define IRDA_NEC_REPEAT_PAUSE_MAX 150000
#define IRDA_NEC_REPEAT_MARK 9000
#define IRDA_NEC_REPEAT_SPACE 2250
#define IRDA_NEC_PREAMBLE_TOLERANCE 0.07 // percents
#define IRDA_NEC_BIT_TOLERANCE 120 // us
void* irda_decoder_nec_alloc(void);
void irda_decoder_nec_reset(void* decoder);
void irda_decoder_nec_free(void* decoder);
IrdaMessage* irda_decoder_nec_decode(void* decoder, bool level, uint32_t duration);
void* irda_encoder_nec_alloc(void);
IrdaStatus irda_encoder_nec_encode(void* encoder_ptr, uint32_t* duration, bool* level);
void irda_encoder_nec_reset(void* encoder_ptr, const IrdaMessage* message);
void irda_encoder_nec_free(void* encoder_ptr);
void* irda_decoder_necext_alloc(void);
void* irda_encoder_necext_alloc(void);
void irda_encoder_necext_reset(void* encoder_ptr, const IrdaMessage* message);
bool irda_decoder_nec_interpret(IrdaCommonDecoder* decoder);
bool irda_decoder_necext_interpret(IrdaCommonDecoder* decoder);
IrdaStatus irda_decoder_nec_decode_repeat(IrdaCommonDecoder* decoder);
IrdaStatus irda_encoder_nec_encode_repeat(IrdaCommonEncoder* encoder, uint32_t* duration, bool* level);
extern const IrdaCommonProtocolSpec protocol_necext;
extern const IrdaCommonProtocolSpec protocol_nec;
/***************************************************************************************************
* SAMSUNG32 protocol description
* https://www.mikrocontroller.net/articles/IRMP_-_english#SAMSUNG
****************************************************************************************************
* Preamble Preamble Pulse Distance/Width Pause Preamble Preamble Bit1 Stop
* mark space Modulation repeat repeat bit
* mark space
*
* 4500 4500 32 bit + stop bit 40000/100000 4500 4500
* __________ _ _ _ _ _ _ _ _ _ _ _ ___________ _ _
* _ __________ __ _ __ __ __ _ _ __ __ _ ________________ ____________ ____ ___
*
***************************************************************************************************/
#define IRDA_SAMSUNG_PREAMBULE_MARK 4500
#define IRDA_SAMSUNG_PREAMBULE_SPACE 4500
#define IRDA_SAMSUNG_BIT1_MARK 550
#define IRDA_SAMSUNG_BIT1_SPACE 1650
#define IRDA_SAMSUNG_BIT0_MARK 550
#define IRDA_SAMSUNG_BIT0_SPACE 550
#define IRDA_SAMSUNG_REPEAT_PAUSE_MIN 30000
#define IRDA_SAMSUNG_REPEAT_PAUSE1 46000
#define IRDA_SAMSUNG_REPEAT_PAUSE2 97000
/* Samsung silence have to be greater than REPEAT MAX
* otherwise there can be problems during unit tests parsing
* of some data. Real tolerances we don't know, but in real life
* silence time should be greater than max repeat time. This is
* because of similar preambule timings for repeat and first messages. */
#define IRDA_SAMSUNG_SILENCE 145000
#define IRDA_SAMSUNG_REPEAT_PAUSE_MAX 140000
#define IRDA_SAMSUNG_REPEAT_MARK 4500
#define IRDA_SAMSUNG_REPEAT_SPACE 4500
#define IRDA_SAMSUNG_PREAMBLE_TOLERANCE 0.07 // percents
#define IRDA_SAMSUNG_BIT_TOLERANCE 120 // us
void* irda_decoder_samsung32_alloc(void);
void irda_decoder_samsung32_reset(void* decoder);
void irda_decoder_samsung32_free(void* decoder);
IrdaMessage* irda_decoder_samsung32_decode(void* decoder, bool level, uint32_t duration);
IrdaStatus irda_encoder_samsung32_encode(void* encoder_ptr, uint32_t* duration, bool* level);
void irda_encoder_samsung32_reset(void* encoder_ptr, const IrdaMessage* message);
void* irda_encoder_samsung32_alloc(void);
void irda_encoder_samsung32_free(void* encoder_ptr);
bool irda_decoder_samsung32_interpret(IrdaCommonDecoder* decoder);
IrdaStatus irda_decoder_samsung32_decode_repeat(IrdaCommonDecoder* decoder);
IrdaStatus irda_encoder_samsung32_encode_repeat(IrdaCommonEncoder* encoder, uint32_t* duration, bool* level);
extern const IrdaCommonProtocolSpec protocol_samsung32;
/***************************************************************************************************
* RC6 protocol description
* https://www.mikrocontroller.net/articles/IRMP_-_english#RC6_.2B_RC6A
****************************************************************************************************
* Preamble Manchester/biphase Silence
* mark/space Modulation
*
* 2666 889 444/888 - bit (x2 for toggle bit) 2666
*
* ________ __ __ __ __ ____ __ __ __ __ __ __ __ __
* _ _________ ____ __ __ ____ __ __ __ __ __ __ __ __ _______________
* | 1 | 0 | 0 | 0 | 0 | ... | ... | |
* s m2 m1 m0 T address (MSB) command (MSB)
*
* s - start bit (always 1)
* m0-2 - mode (000 for RC6)
* T - toggle bit, twice longer
* address - 8 bit
* command - 8 bit
***************************************************************************************************/
#define IRDA_RC6_PREAMBULE_MARK 2666
#define IRDA_RC6_PREAMBULE_SPACE 889
#define IRDA_RC6_BIT 444 // half of time-quant for 1 bit
#define IRDA_RC6_PREAMBLE_TOLERANCE 0.07 // percents
#define IRDA_RC6_BIT_TOLERANCE 120 // us
#define IRDA_RC6_SILENCE 2700
void* irda_decoder_rc6_alloc(void);
void irda_decoder_rc6_reset(void* decoder);
void irda_decoder_rc6_free(void* decoder);
IrdaMessage* irda_decoder_rc6_decode(void* decoder, bool level, uint32_t duration);
void* irda_encoder_rc6_alloc(void);
void irda_encoder_rc6_reset(void* encoder_ptr, const IrdaMessage* message);
void irda_encoder_rc6_free(void* decoder);
IrdaStatus irda_encoder_rc6_encode(void* encoder_ptr, uint32_t* duration, bool* polarity);
bool irda_decoder_rc6_interpret(IrdaCommonDecoder* decoder);
IrdaStatus irda_decoder_rc6_decode_manchester(IrdaCommonDecoder* decoder);
IrdaStatus irda_encoder_rc6_encode_manchester(IrdaCommonEncoder* encoder_ptr, uint32_t* duration, bool* polarity);
extern const IrdaCommonProtocolSpec protocol_rc6;

View File

@@ -0,0 +1,88 @@
#include "irda_protocol_defs_i.h"
#include <stdbool.h>
#include <stdint.h>
#include <furi.h>
#include "../irda_i.h"
bool irda_decoder_nec_interpret(IrdaCommonDecoder* decoder) {
furi_assert(decoder);
bool result = false;
uint8_t address = decoder->data[0];
uint8_t address_inverse = decoder->data[1];
uint8_t command = decoder->data[2];
uint8_t command_inverse = decoder->data[3];
if ((command == (uint8_t) ~command_inverse) && (address == (uint8_t) ~address_inverse)) {
decoder->message.command = command;
decoder->message.address = address;
decoder->message.repeat = false;
result = true;
}
return result;
}
// Some NEC's extensions allow 16 bit address
bool irda_decoder_necext_interpret(IrdaCommonDecoder* decoder) {
furi_assert(decoder);
bool result = false;
uint8_t command = decoder->data[2];
uint8_t command_inverse = decoder->data[3];
if(command == (uint8_t)~command_inverse) {
decoder->message.command = command;
decoder->message.address = decoder->data[0] | (decoder->data[1] << 8);
decoder->message.repeat = false;
result = true;
}
return result;
}
// timings start from Space (delay between message and repeat)
IrdaStatus irda_decoder_nec_decode_repeat(IrdaCommonDecoder* decoder) {
furi_assert(decoder);
float preamble_tolerance = decoder->protocol->timings.preamble_tolerance;
uint32_t bit_tolerance = decoder->protocol->timings.bit_tolerance;
IrdaStatus status = IrdaStatusError;
if(decoder->timings_cnt < 4) return IrdaStatusOk;
if((decoder->timings[0] > IRDA_NEC_REPEAT_PAUSE_MIN) &&
(decoder->timings[0] < IRDA_NEC_REPEAT_PAUSE_MAX) &&
MATCH_PREAMBLE_TIMING(decoder->timings[1], IRDA_NEC_REPEAT_MARK, preamble_tolerance) &&
MATCH_PREAMBLE_TIMING(decoder->timings[2], IRDA_NEC_REPEAT_SPACE, preamble_tolerance) &&
MATCH_BIT_TIMING(decoder->timings[3], decoder->protocol->timings.bit1_mark, bit_tolerance)) {
status = IrdaStatusReady;
decoder->timings_cnt = 0;
} else {
status = IrdaStatusError;
}
return status;
}
void* irda_decoder_nec_alloc(void) {
return irda_common_decoder_alloc(&protocol_nec);
}
void* irda_decoder_necext_alloc(void) {
return irda_common_decoder_alloc(&protocol_necext);
}
IrdaMessage* irda_decoder_nec_decode(void* decoder, bool level, uint32_t duration) {
return irda_common_decode(decoder, level, duration);
}
void irda_decoder_nec_free(void* decoder) {
irda_common_decoder_free(decoder);
}
void irda_decoder_nec_reset(void* decoder) {
irda_common_decoder_reset(decoder);
}

View File

@@ -0,0 +1,85 @@
#include "furi/check.h"
#include "irda_common_i.h"
#include <stdint.h>
#include "../irda_i.h"
#include "irda_protocol_defs_i.h"
#include <furi.h>
static const uint32_t repeat_timings[] = {
IRDA_NEC_REPEAT_PAUSE2,
IRDA_NEC_REPEAT_MARK,
IRDA_NEC_REPEAT_SPACE,
IRDA_NEC_BIT1_MARK,
};
void irda_encoder_nec_reset(void* encoder_ptr, const IrdaMessage* message) {
furi_assert(encoder_ptr);
IrdaCommonEncoder* encoder = encoder_ptr;
irda_common_encoder_reset(encoder);
uint8_t address = message->address;
uint8_t address_inverse = ~address;
uint8_t command = message->command;
uint8_t command_inverse = ~command;
uint32_t* data = (void*) encoder->data;
*data |= address;
*data |= address_inverse << 8;
*data |= command << 16;
*data |= command_inverse << 24;
}
void irda_encoder_necext_reset(void* encoder_ptr, const IrdaMessage* message) {
furi_assert(encoder_ptr);
IrdaCommonEncoder* encoder = encoder_ptr;
irda_common_encoder_reset(encoder);
uint16_t address = message->address;
uint8_t command = message->command;
uint8_t command_inverse = ~command;
uint32_t* data = (void*) encoder->data;
*data |= address;
*data |= command << 16;
*data |= command_inverse << 24;
}
IrdaStatus irda_encoder_nec_encode_repeat(IrdaCommonEncoder* encoder, uint32_t* duration, bool* level) {
furi_assert(encoder);
/* space + 2 timings preambule + payload + stop bit */
uint32_t timings_encoded_up_to_repeat = 1 + 2 + encoder->protocol->databit_len * 2 + 1;
uint32_t repeat_cnt = encoder->timings_encoded - timings_encoded_up_to_repeat;
furi_assert(encoder->timings_encoded >= timings_encoded_up_to_repeat);
if (repeat_cnt > 0)
*duration = repeat_timings[repeat_cnt % COUNT_OF(repeat_timings)];
else
*duration = IRDA_NEC_REPEAT_PAUSE1;
*level = repeat_cnt % 2;
++encoder->timings_encoded;
bool done = (!((repeat_cnt + 1) % COUNT_OF(repeat_timings)));
return done ? IrdaStatusDone : IrdaStatusOk;
}
void* irda_encoder_necext_alloc(void) {
return irda_common_encoder_alloc(&protocol_necext);
}
void* irda_encoder_nec_alloc(void) {
return irda_common_encoder_alloc(&protocol_nec);
}
void irda_encoder_nec_free(void* encoder_ptr) {
irda_common_encoder_free(encoder_ptr);
}
IrdaStatus irda_encoder_nec_encode(void* encoder_ptr, uint32_t* duration, bool* level) {
return irda_common_encode(encoder_ptr, duration, level);
}

View File

@@ -0,0 +1,113 @@
#include "irda.h"
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <furi.h>
#include "../irda_i.h"
#include "../irda_protocol_defs_i.h"
typedef struct {
IrdaCommonDecoder* common_decoder;
bool toggle;
} IrdaRc6Decoder;
bool irda_decoder_rc6_interpret(IrdaCommonDecoder* decoder) {
furi_assert(decoder);
bool result = false;
uint32_t* data = (void*) &decoder->data[0];
// MSB first
uint8_t address = reverse((uint8_t) (*data >> 5));
uint8_t command = reverse((uint8_t) (*data >> 13));
bool start_bit = *data & 0x01;
bool toggle = !!(*data & 0x10);
uint8_t mode = (*data >> 1) & 0x7;
if ((start_bit == 1) && (mode == 0)) {
IrdaMessage* message = &decoder->message;
IrdaRc6Decoder *rc6_decoder = decoder->context;
bool *prev_toggle = &rc6_decoder->toggle;
if ((message->address == address)
&& (message->command == command)
&& (message->protocol == IrdaProtocolRC6)) {
message->repeat = (toggle == *prev_toggle);
} else {
message->repeat = false;
}
*prev_toggle = toggle;
message->command = command;
message->address = address;
result = true;
}
return result;
}
/*
* RC6 Uses manchester encoding, but it has twice longer
* 4-th bit (toggle bit) time quant, so we need to decode
* it separately and than pass decoding for other bits to
* common manchester decode function.
*/
IrdaStatus irda_decoder_rc6_decode_manchester(IrdaCommonDecoder* decoder) {
// 4th bit lasts 2x times more
IrdaStatus status = IrdaStatusError;
uint16_t bit = decoder->protocol->timings.bit1_mark;
uint16_t tolerance = decoder->protocol->timings.bit_tolerance;
uint16_t timing = decoder->timings[0];
bool single_timing = MATCH_BIT_TIMING(timing, bit, tolerance);
bool double_timing = MATCH_BIT_TIMING(timing, 2*bit, tolerance);
bool triple_timing = MATCH_BIT_TIMING(timing, 3*bit, tolerance);
if (decoder->databit_cnt == 4) {
furi_assert(decoder->timings_cnt == 1);
furi_assert(decoder->switch_detect == true);
if (single_timing ^ triple_timing) {
--decoder->timings_cnt;
++decoder->databit_cnt;
decoder->data[0] |= (single_timing ? !decoder->level : decoder->level) << 4;
status = IrdaStatusOk;
}
} else if (decoder->databit_cnt == 5) {
if (single_timing || triple_timing) {
if (triple_timing)
decoder->timings[0] = bit;
decoder->switch_detect = false;
status = irda_common_decode_manchester(decoder);
} else if (double_timing) {
--decoder->timings_cnt;
status = IrdaStatusOk;
}
} else {
status = irda_common_decode_manchester(decoder);
}
return status;
}
void* irda_decoder_rc6_alloc(void) {
IrdaRc6Decoder* decoder = furi_alloc(sizeof(IrdaRc6Decoder));
decoder->toggle = false;
decoder->common_decoder = irda_common_decoder_alloc(&protocol_rc6);
irda_common_decoder_set_context(decoder->common_decoder, decoder);
return decoder;
}
IrdaMessage* irda_decoder_rc6_decode(void* decoder, bool level, uint32_t duration) {
IrdaRc6Decoder* decoder_rc6 = decoder;
return irda_common_decode(decoder_rc6->common_decoder, level, duration);
}
void irda_decoder_rc6_free(void* decoder) {
IrdaRc6Decoder* decoder_rc6 = decoder;
irda_common_decoder_free(decoder_rc6->common_decoder);
free(decoder_rc6);
}
void irda_decoder_rc6_reset(void* decoder) {
IrdaRc6Decoder* decoder_rc6 = decoder;
irda_common_decoder_reset(decoder_rc6->common_decoder);
}

View File

@@ -0,0 +1,59 @@
#include "furi/memmgr.h"
#include "irda.h"
#include "irda_common_i.h"
#include "irda_protocol_defs_i.h"
#include <stdint.h>
#include "../irda_i.h"
typedef struct IrdaEncoderRC6 {
IrdaCommonEncoder* common_encoder;
bool toggle_bit;
} IrdaEncoderRC6;
void irda_encoder_rc6_reset(void* encoder_ptr, const IrdaMessage* message) {
furi_assert(encoder_ptr);
IrdaEncoderRC6* encoder = encoder_ptr;
IrdaCommonEncoder* common_encoder = encoder->common_encoder;
irda_common_encoder_reset(common_encoder);
uint32_t* data = (void*) common_encoder->data;
*data |= 0x01; // start bit
(void) *data; // 3 bits for mode == 0
*data |= encoder->toggle_bit ? 0x10 : 0;
*data |= reverse(message->address) << 5;
*data |= reverse(message->command) << 13;
encoder->toggle_bit ^= 1;
}
IrdaStatus irda_encoder_rc6_encode(void* encoder_ptr, uint32_t* duration, bool* level) {
IrdaEncoderRC6* encoder = encoder_ptr;
return irda_common_encode(encoder->common_encoder, duration, level);
}
void* irda_encoder_rc6_alloc(void) {
IrdaEncoderRC6* encoder = furi_alloc(sizeof(IrdaEncoderRC6));
encoder->common_encoder = irda_common_encoder_alloc(&protocol_rc6);
encoder->toggle_bit = false;
return encoder;
}
void irda_encoder_rc6_free(void* encoder_ptr) {
furi_assert(encoder_ptr);
IrdaEncoderRC6* encoder = encoder_ptr;
free(encoder->common_encoder);
free(encoder);
}
IrdaStatus irda_encoder_rc6_encode_manchester(IrdaCommonEncoder* common_encoder, uint32_t* duration, bool* polarity) {
IrdaStatus status = IrdaStatusError;
bool toggle_bit = (common_encoder->bits_encoded == 4);
status = irda_common_encode_manchester(common_encoder, duration, polarity);
if (toggle_bit)
*duration *= 2;
return status;
}

View File

@@ -0,0 +1,70 @@
#include "irda_protocol_defs_i.h"
#include <stdbool.h>
#include <stdint.h>
#include <furi.h>
#include "../irda_i.h"
bool irda_decoder_samsung32_interpret(IrdaCommonDecoder* decoder) {
furi_assert(decoder);
bool result = false;
uint8_t address1 = decoder->data[0];
uint8_t address2 = decoder->data[1];
uint8_t command = decoder->data[2];
uint8_t command_inverse = decoder->data[3];
if ((address1 == address2) && (command == (uint8_t) ~command_inverse)) {
decoder->message.command = command;
decoder->message.address = address1;
decoder->message.repeat = false;
result = true;
}
return result;
}
// timings start from Space (delay between message and repeat)
IrdaStatus irda_decoder_samsung32_decode_repeat(IrdaCommonDecoder* decoder) {
furi_assert(decoder);
float preamble_tolerance = decoder->protocol->timings.preamble_tolerance;
uint32_t bit_tolerance = decoder->protocol->timings.bit_tolerance;
IrdaStatus status = IrdaStatusError;
if (decoder->timings_cnt < 6)
return IrdaStatusOk;
if ((decoder->timings[0] > IRDA_SAMSUNG_REPEAT_PAUSE_MIN)
&& (decoder->timings[0] < IRDA_SAMSUNG_REPEAT_PAUSE_MAX)
&& MATCH_PREAMBLE_TIMING(decoder->timings[1], IRDA_SAMSUNG_REPEAT_MARK, preamble_tolerance)
&& MATCH_PREAMBLE_TIMING(decoder->timings[2], IRDA_SAMSUNG_REPEAT_SPACE, preamble_tolerance)
&& MATCH_BIT_TIMING(decoder->timings[3], decoder->protocol->timings.bit1_mark, bit_tolerance)
&& MATCH_BIT_TIMING(decoder->timings[4], decoder->protocol->timings.bit1_space, bit_tolerance)
&& MATCH_BIT_TIMING(decoder->timings[5], decoder->protocol->timings.bit1_mark, bit_tolerance)
) {
status = IrdaStatusReady;
decoder->timings_cnt = 0;
} else {
status = IrdaStatusError;
}
return status;
}
void* irda_decoder_samsung32_alloc(void) {
return irda_common_decoder_alloc(&protocol_samsung32);
}
IrdaMessage* irda_decoder_samsung32_decode(void* decoder, bool level, uint32_t duration) {
return irda_common_decode(decoder, level, duration);
}
void irda_decoder_samsung32_free(void* decoder) {
irda_common_decoder_free(decoder);
}
void irda_decoder_samsung32_reset(void* decoder) {
irda_common_decoder_reset(decoder);
}

View File

@@ -0,0 +1,67 @@
#include "furi/check.h"
#include "irda_common_i.h"
#include <stdint.h>
#include "../irda_i.h"
#include "irda_protocol_defs_i.h"
#include <furi.h>
static const uint32_t repeat_timings[] = {
IRDA_SAMSUNG_REPEAT_PAUSE2,
IRDA_SAMSUNG_REPEAT_MARK,
IRDA_SAMSUNG_REPEAT_SPACE,
IRDA_SAMSUNG_BIT1_MARK,
IRDA_SAMSUNG_BIT1_SPACE,
IRDA_SAMSUNG_BIT1_MARK,
};
void irda_encoder_samsung32_reset(void* encoder_ptr, const IrdaMessage* message) {
furi_assert(encoder_ptr);
IrdaCommonEncoder* encoder = encoder_ptr;
irda_common_encoder_reset(encoder);
uint8_t address = message->address;
uint8_t command = message->command;
uint8_t command_inverse = ~command;
uint32_t* data = (void*) encoder->data;
*data |= address;
*data |= address << 8;
*data |= command << 16;
*data |= command_inverse << 24;
}
IrdaStatus irda_encoder_samsung32_encode_repeat(IrdaCommonEncoder* encoder, uint32_t* duration, bool* level) {
furi_assert(encoder);
/* space + 2 timings preambule + payload + stop bit */
uint32_t timings_encoded_up_to_repeat = 1 + 2 + encoder->protocol->databit_len * 2 + 1;
uint32_t repeat_cnt = encoder->timings_encoded - timings_encoded_up_to_repeat;
furi_assert(encoder->timings_encoded >= timings_encoded_up_to_repeat);
if (repeat_cnt > 0)
*duration = repeat_timings[repeat_cnt % COUNT_OF(repeat_timings)];
else
*duration = IRDA_SAMSUNG_REPEAT_PAUSE1;
*level = repeat_cnt % 2;
++encoder->timings_encoded;
bool done = (!((repeat_cnt + 1) % COUNT_OF(repeat_timings)));
return done ? IrdaStatusDone : IrdaStatusOk;
}
void* irda_encoder_samsung32_alloc(void) {
return irda_common_encoder_alloc(&protocol_samsung32);
}
void irda_encoder_samsung32_free(void* encoder_ptr) {
irda_common_encoder_free(encoder_ptr);
}
IrdaStatus irda_encoder_samsung32_encode(void* encoder_ptr, uint32_t* duration, bool* level) {
return irda_common_encode(encoder_ptr, duration, level);
}