* furiac start and thread create implementation"

* create and kill task

* rename debug, add header

* remove write.c

* kill itself

* furi exit/switch

* success switch and exit

* WIP furi records

* add furi record interface

* rename furi app control file

* record implementation in progress

* wip furi implementation

* add automatic tests for FURI AC

* differ build tests

* small changes

* FURI record tests description

* change furi statuses

* FURI record test blank

* exit after all application ends

* delay: print then wait

* fix FURI implementatnion building

* pipe record test

* concurrent access

* uncomplete mute-test

* update FURI documentation
This commit is contained in:
coreglitch
2020-08-24 21:31:22 +06:00
committed by GitHub
parent 04035ce52d
commit 1759787334
21 changed files with 1448 additions and 47 deletions

View File

@@ -0,0 +1,455 @@
#include <stdio.h>
#include <string.h>
#include "flipper.h"
#include "debug.h"
/*
TEST: pipe record
1. create pipe record
2. Open/subscribe to it
3. write data
4. check that subscriber get data
5. try to read, get error
6. close record
7. try to write, get error
*/
static uint8_t pipe_record_value = 0;
void pipe_record_cb(const void* value, size_t size) {
// hold value to static var
pipe_record_value = *((uint8_t*)value);
}
bool furi_pipe_record(FILE* debug_uart) {
// 1. create pipe record
if(!furi_create("test/pipe", NULL, 0)) {
fprintf(debug_uart, "cannot create record\n");
return false;
}
// 2. Open/subscribe to it
FuriRecordHandler pipe_record = furi_open(
"test/pipe", false, false, pipe_record_cb, NULL
);
if(pipe_record.record == NULL) {
fprintf(debug_uart, "cannot open record\n");
return false;
}
const uint8_t WRITE_VALUE = 1;
// 3. write data
if(!furi_write(&pipe_record, &WRITE_VALUE, sizeof(uint8_t))) {
fprintf(debug_uart, "cannot write to record\n");
return false;
}
// 4. check that subscriber get data
if(pipe_record_value != WRITE_VALUE) {
fprintf(debug_uart, "wrong value (get %d, write %d)\n", pipe_record_value, WRITE_VALUE);
return false;
}
// 5. try to read, get error
uint8_t read_value = 0;
if(furi_read(&pipe_record, &read_value, sizeof(uint8_t))) {
fprintf(debug_uart, "reading from pipe record not allowed\n");
return false;
}
// 6. close record
furi_close(&pipe_record);
// 7. try to write, get error
if(furi_write(&pipe_record, &WRITE_VALUE, sizeof(uint8_t))) {
fprintf(debug_uart, "writing to closed record not allowed\n");
return false;
}
return true;
}
/*
TEST: holding data
1. Create holding record
2. Open/Subscribe on it
3. Write data
4. Check that subscriber get data
5. Read and check data
6. Try to write/read wrong size of data
*/
static uint8_t holding_record_value = 0;
void holding_record_cb(const void* value, size_t size) {
// hold value to static var
holding_record_value = *((uint8_t*)value);
}
bool furi_holding_data(FILE* debug_uart) {
// 1. Create holding record
uint8_t holder = 0;
if(!furi_create("test/holding", (void*)&holder, sizeof(holder))) {
fprintf(debug_uart, "cannot create record\n");
return false;
}
// 2. Open/Subscribe on it
FuriRecordHandler holding_record = furi_open(
"test/holding", false, false, holding_record_cb, NULL
);
if(holding_record.record == NULL) {
fprintf(debug_uart, "cannot open record\n");
return false;
}
const uint8_t WRITE_VALUE = 1;
// 3. write data
if(!furi_write(&holding_record, &WRITE_VALUE, sizeof(uint8_t))) {
fprintf(debug_uart, "cannot write to record\n");
return false;
}
// 4. check that subscriber get data
if(holding_record_value != WRITE_VALUE) {
fprintf(debug_uart, "wrong sub value (get %d, write %d)\n", holding_record_value, WRITE_VALUE);
return false;
}
// 5. Read and check data
uint8_t read_value = 0;
if(!furi_read(&holding_record, &read_value, sizeof(uint8_t))) {
fprintf(debug_uart, "cannot read from record\n");
return false;
}
if(read_value != WRITE_VALUE) {
fprintf(debug_uart, "wrong read value (get %d, write %d)\n", read_value, WRITE_VALUE);
return false;
}
// 6. Try to write/read wrong size of data
if(furi_write(&holding_record, &WRITE_VALUE, 100)) {
fprintf(debug_uart, "overflowed write not allowed\n");
return false;
}
if(furi_read(&holding_record, &read_value, 100)) {
fprintf(debug_uart, "overflowed read not allowed\n");
return false;
}
return true;
}
/*
TEST: concurrent access
1. Create holding record
2. Open it twice
3. Change value simultaneously in two app and check integrity
*/
// TODO this test broke because mutex in furi is not implemented
typedef struct {
// a and b must be equal
uint8_t a;
uint8_t b;
} ConcurrentValue;
void furi_concurent_app(void* p) {
FILE* debug_uart = (FILE*)p;
FuriRecordHandler holding_record = furi_open(
"test/concurrent", false, false, NULL, NULL
);
if(holding_record.record == NULL) {
fprintf(debug_uart, "cannot open record\n");
furiac_exit(NULL);
}
for(size_t i = 0; i < 10; i++) {
ConcurrentValue* value = (ConcurrentValue*)furi_take(&holding_record);
if(value == NULL) {
fprintf(debug_uart, "cannot take record\n");
furiac_exit(NULL);
}
// emulate read-modify-write broken by context switching
uint8_t a = value->a;
uint8_t b = value->b;
a++;
b++;
delay(2); // this is only for test, do not add delay between take/give in prod!
value->a = a;
value->b = b;
furi_give(&holding_record);
}
furiac_exit(NULL);
}
bool furi_concurrent_access(FILE* debug_uart) {
// 1. Create holding record
ConcurrentValue holder = {.a = 0, .b = 0};
if(!furi_create("test/concurrent", (void*)&holder, sizeof(ConcurrentValue))) {
fprintf(debug_uart, "cannot create record\n");
return false;
}
// 2. Open it
FuriRecordHandler holding_record = furi_open(
"test/concurrent", false, false, NULL, NULL
);
if(holding_record.record == NULL) {
fprintf(debug_uart, "cannot open record\n");
return false;
}
// 3. Create second app for interact with it
FuriApp* second_app = furiac_start(
furi_concurent_app, "furi concurent app", (void*)debug_uart
);
// 4. multiply ConcurrentValue::a
for(size_t i = 0; i < 4; i++) {
ConcurrentValue* value = (ConcurrentValue*)furi_take(&holding_record);
if(value == NULL) {
fprintf(debug_uart, "cannot take record\n");
return false;
}
// emulate read-modify-write broken by context switching
uint8_t a = value->a;
uint8_t b = value->b;
a++;
b++;
value->a = a;
delay(10); // this is only for test, do not add delay between take/give in prod!
value->b = b;
furi_give(&holding_record);
}
delay(20);
if(second_app->handler != NULL) {
fprintf(debug_uart, "second app still alive\n");
return false;
}
if(holder.a != holder.b) {
fprintf(debug_uart, "broken integrity: a=%d, b=%d\n", holder.a, holder.b);
return false;
}
return true;
}
/*
TEST: non-existent data
1. Try to open non-existent record
2. Check for NULL handler
3. Try to write/read, get error
TODO: implement this test
*/
bool furi_nonexistent_data(FILE* debug_uart) {
return true;
}
/*
TEST: mute algorithm
1. Create "parent" application:
1. Create pipe record
2. Open watch handler: no_mute=false, solo=false, subscribe to data.
2. Open handler A: no_mute=false, solo=false, NULL subscriber. Subscribe to state.
Try to write data to A and check subscriber.
3. Open handler B: no_mute=true, solo=true, NULL subscriber.
Check A state cb get FlipperRecordStateMute.
Try to write data to A and check that subscriber get no data. (muted)
Try to write data to B and check that subscriber get data.
TODO: test 3 not pass beacuse state callback not implemented
4. Open hadler C: no_mute=false, solo=true, NULL subscriber.
Try to write data to A and check that subscriber get no data. (muted)
Try to write data to B and check that subscriber get data. (not muted because open with no_mute)
Try to write data to C and check that subscriber get data.
5. Open handler D: no_mute=false, solo=false, NULL subscriber.
Try to write data to A and check that subscriber get no data. (muted)
Try to write data to B and check that subscriber get data. (not muted because open with no_mute)
Try to write data to C and check that subscriber get data. (not muted because D open without solo)
Try to write data to D and check that subscriber get data.
6. Close C, close B.
Check A state cb get FlipperRecordStateUnmute
Try to write data to A and check that subscriber get data. (unmuted)
Try to write data to D and check that subscriber get data.
TODO: test 6 not pass beacuse cleanup is not implemented
TODO: test 6 not pass because mute algorithm is unfinished.
7. Exit "parent application"
Check A state cb get FlipperRecordStateDeleted
TODO: test 7 not pass beacuse cleanup is not implemented
*/
static uint8_t mute_last_value = 0;
static FlipperRecordState mute_last_state = 255;
void mute_record_cb(const void* value, size_t size) {
// hold value to static var
mute_last_value = *((uint8_t*)value);
}
void mute_record_state_cb(FlipperRecordState state) {
mute_last_state = state;
}
void furi_mute_parent_app(void* p) {
FILE* debug_uart = (FILE*)p;
// 1. Create pipe record
if(!furi_create("test/mute", NULL, 0)) {
fprintf(debug_uart, "cannot create record\n");
furiac_exit(NULL);
}
// 2. Open watch handler: solo=false, no_mute=false, subscribe to data
FuriRecordHandler watch_handler = furi_open(
"test/mute", false, false, mute_record_cb, NULL
);
if(watch_handler.record == NULL) {
fprintf(debug_uart, "cannot open watch handler\n");
furiac_exit(NULL);
}
while(1) {
// TODO we don't have thread sleep
delay(100000);
}
}
bool furi_mute_algorithm(FILE* debug_uart) {
// 1. Create "parent" application:
FuriApp* parent_app = furiac_start(
furi_mute_parent_app, "parent app", (void*)debug_uart
);
delay(2); // wait creating record
// 2. Open handler A: solo=false, no_mute=false, NULL subscriber. Subscribe to state.
FuriRecordHandler handler_a = furi_open(
"test/mute", false, false, NULL, mute_record_state_cb
);
if(handler_a.record == NULL) {
fprintf(debug_uart, "cannot open handler A\n");
return false;
}
uint8_t test_counter = 1;
// Try to write data to A and check subscriber
if(!furi_write(&handler_a, &test_counter, sizeof(uint8_t))) {
fprintf(debug_uart, "write to A failed\n");
return false;
}
if(mute_last_value != test_counter) {
fprintf(debug_uart, "value A mismatch: %d vs %d\n", mute_last_value, test_counter);
return false;
}
// 3. Open handler B: solo=true, no_mute=true, NULL subscriber.
FuriRecordHandler handler_b = furi_open(
"test/mute", true, true, NULL, NULL
);
if(handler_b.record == NULL) {
fprintf(debug_uart, "cannot open handler B\n");
return false;
}
// Check A state cb get FlipperRecordStateMute.
if(mute_last_state != FlipperRecordStateMute) {
fprintf(debug_uart, "A state is not FlipperRecordStateMute: %d\n", mute_last_state);
return false;
}
test_counter = 2;
// Try to write data to A and check that subscriber get no data. (muted)
if(furi_write(&handler_a, &test_counter, sizeof(uint8_t))) {
fprintf(debug_uart, "A not muted\n");
return false;
}
if(mute_last_value == test_counter) {
fprintf(debug_uart, "value A must be muted\n");
return false;
}
test_counter = 3;
// Try to write data to B and check that subscriber get data.
if(!furi_write(&handler_b, &test_counter, sizeof(uint8_t))) {
fprintf(debug_uart, "write to B failed\n");
return false;
}
if(mute_last_value != test_counter) {
fprintf(debug_uart, "value B mismatch: %d vs %d\n", mute_last_value, test_counter);
return false;
}
// 4. Open hadler C: solo=true, no_mute=false, NULL subscriber.
FuriRecordHandler handler_c = furi_open(
"test/mute", true, false, NULL, NULL
);
if(handler_c.record == NULL) {
fprintf(debug_uart, "cannot open handler C\n");
return false;
}
// TODO: Try to write data to A and check that subscriber get no data. (muted)
// TODO: Try to write data to B and check that subscriber get data. (not muted because open with no_mute)
// TODO: Try to write data to C and check that subscriber get data.
// 5. Open handler D: solo=false, no_mute=false, NULL subscriber.
FuriRecordHandler handler_d = furi_open(
"test/mute", false, false, NULL, NULL
);
if(handler_d.record == NULL) {
fprintf(debug_uart, "cannot open handler D\n");
return false;
}
// TODO: Try to write data to A and check that subscriber get no data. (muted)
// TODO: Try to write data to B and check that subscriber get data. (not muted because open with no_mute)
// TODO: Try to write data to C and check that subscriber get data. (not muted because D open without solo)
// TODO: Try to write data to D and check that subscriber get data.
// 6. Close C, close B.
// TODO: Check A state cb get FlipperRecordStateUnmute
// TODO: Try to write data to A and check that subscriber get data. (unmuted)
// TODO: Try to write data to D and check that subscriber get data.
// 7. Exit "parent application"
if(!furiac_kill(parent_app)) {
fprintf(debug_uart, "kill parent_app fail\n");
return false;
}
// TODO: Check A state cb get FlipperRecordStateDeleted
return true;
}

View File

@@ -0,0 +1,130 @@
#include <stdio.h>
#include <string.h>
#include "flipper.h"
#include "debug.h"
/*
Test: creating and killing task
1. create task
2. delay 10 ms
3. kill task
4. check that value changes
5. delay 2 ms
6. check that value stay unchanged
*/
void create_kill_app(void* p) {
// this app simply increase counter
uint8_t* counter = (uint8_t*)p;
while(1) {
*counter = *counter + 1;
delay(1);
}
}
bool furi_ac_create_kill(FILE* debug_uart) {
uint8_t counter = 0;
uint8_t value_a = counter;
FuriApp* widget = furiac_start(create_kill_app, "create_kill_app", (void*)&counter);
if(widget == NULL) {
fprintf(debug_uart, "create widget fail\n");
return false;
}
delay(10);
if(!furiac_kill(widget)) {
fprintf(debug_uart, "kill widget fail\n");
return false;
}
if(value_a == counter) {
fprintf(debug_uart, "counter unchanged\n");
return false;
}
value_a = counter;
delay(10);
if(value_a != counter) {
fprintf(debug_uart, "counter changes after kill (counter = %d vs %d)\n", value_a, counter);
return false;
}
return true;
}
/*
Test: switch between tasks
1. init s
2. create task A, add 'A" to sequence'
3. switch to task B, add 'B' to sequence
4. exit from task B -> switch to A and add 'A' to sequence
5. cleanup: exit from task A
6. check sequence
*/
#define TEST_SWITCH_CONTEXT_SEQ_SIZE 8
typedef struct {
char sequence[TEST_SWITCH_CONTEXT_SEQ_SIZE];
size_t count;
} TestSwitchSequence;
void task_a(void*);
void task_b(void*);
void task_a(void *p) {
// simply starts, add 'A' letter to sequence and switch
// if sequence counter = 0, call task B, exit otherwise
TestSwitchSequence* seq = (TestSwitchSequence*)p;
seq->sequence[seq->count] = 'A';
seq->count++;
if(seq->count == 1) {
furiac_switch(task_b, "task B", p);
// if switch unsuccessfull, this code will executed
seq->sequence[seq->count] = 'x';
seq->count++;
} else {
// add '/' symbol on exit
seq->sequence[seq->count] = '/';
seq->count++;
furiac_exit(NULL);
}
}
// application simply add 'B' end exit
void task_b(void* p) {
TestSwitchSequence* seq = (TestSwitchSequence*)p;
seq->sequence[seq->count] = 'B';
seq->count++;
furiac_exit(p);
}
bool furi_ac_switch_exit(FILE* debug_uart) {
// init sequence
TestSwitchSequence seq;
seq.count = 0;
furiac_start(task_a, "task A", (void*)&seq);
// TODO how to check that all child task ends?
delay(10); // wait while task do its work
if(strcmp(seq.sequence, "ABA/") != 0) {
fprintf(debug_uart, "wrong sequence: %s\n", seq.sequence);
return false;
}
return true;
}

View File

@@ -0,0 +1,60 @@
#include <stdio.h>
#include "flipper.h"
#include "debug.h"
bool furi_ac_create_kill(FILE* debug_uart);
bool furi_ac_switch_exit(FILE* debug_uart);
bool furi_pipe_record(FILE* debug_uart);
bool furi_holding_data(FILE* debug_uart);
bool furi_concurrent_access(FILE* debug_uart);
bool furi_nonexistent_data(FILE* debug_uart);
bool furi_mute_algorithm(FILE* debug_uart);
void flipper_test_app(void* p) {
FILE* debug_uart = get_debug();
if(furi_ac_create_kill(debug_uart)) {
fprintf(debug_uart, "[TEST] furi_ac_create_kill PASSED\n");
} else {
fprintf(debug_uart, "[TEST] furi_ac_create_kill FAILED\n");
}
if(furi_ac_switch_exit(debug_uart)) {
fprintf(debug_uart, "[TEST] furi_ac_switch_exit PASSED\n");
} else {
fprintf(debug_uart, "[TEST] furi_ac_switch_exit FAILED\n");
}
if(furi_pipe_record(debug_uart)) {
fprintf(debug_uart, "[TEST] furi_pipe_record PASSED\n");
} else {
fprintf(debug_uart, "[TEST] furi_pipe_record FAILED\n");
}
if(furi_holding_data(debug_uart)) {
fprintf(debug_uart, "[TEST] furi_holding_data PASSED\n");
} else {
fprintf(debug_uart, "[TEST] furi_holding_data FAILED\n");
}
if(furi_concurrent_access(debug_uart)) {
fprintf(debug_uart, "[TEST] furi_concurrent_access PASSED\n");
} else {
fprintf(debug_uart, "[TEST] furi_concurrent_access FAILED\n");
}
if(furi_nonexistent_data(debug_uart)) {
fprintf(debug_uart, "[TEST] furi_nonexistent_data PASSED\n");
} else {
fprintf(debug_uart, "[TEST] furi_nonexistent_data FAILED\n");
}
if(furi_mute_algorithm(debug_uart)) {
fprintf(debug_uart, "[TEST] furi_mute_algorithm PASSED\n");
} else {
fprintf(debug_uart, "[TEST] furi_mute_algorithm FAILED\n");
}
furiac_exit(NULL);
}

View File

@@ -0,0 +1,2 @@
void flipper_test_app(void* p);