Add minunit test framework (#168)

* add minunit tests

* fix logging

* ignore unexisting time service on embedded targets

* fix warning, issue with printf

* add exitcode

* migrate to printf

* indicate test by leds

* add testing description

* redesigned minunit tests to allow testing in separate files

* add test step for local target

* add failure test

* add restore test_check

* testing description

Co-authored-by: rusdacent <rusdacentx0x08@gmail.com>
Co-authored-by: DrZlo13 <who.just.the.doctor@gmail.com>
This commit is contained in:
coreglitch 2020-10-10 16:32:06 +06:00 committed by GitHub
parent aa3ac5b242
commit 176e608c6d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
18 changed files with 903 additions and 243 deletions

View File

@ -51,6 +51,11 @@ jobs:
with:
run: make -C firmware TARGET=local
- name: Run local tests
uses: ./.github/actions/docker
with:
run: make -C firmware TARGET=local APP_TEST=1 run
- name: Build F2 firmware in docker
uses: ./.github/actions/docker
with:

View File

@ -15,6 +15,7 @@ CFLAGS += -DAPP_TEST
C_SOURCES += $(APP_DIR)/tests/furiac_test.c
C_SOURCES += $(APP_DIR)/tests/furi_record_test.c
C_SOURCES += $(APP_DIR)/tests/test_index.c
C_SOURCES += $(APP_DIR)/tests/minunit_test.c
endif
APP_EXAMPLE_BLINK ?= 0

View File

@ -22,10 +22,10 @@ void pipe_record_cb(const void* value, size_t size, void* ctx) {
pipe_record_value = *((uint8_t*)value);
}
bool test_furi_pipe_record(FuriRecordSubscriber* log) {
bool test_furi_pipe_record() {
// 1. create pipe record
if(!furi_create("test/pipe", NULL, 0)) {
fuprintf(log, "cannot create record\n");
printf("cannot create record\n");
return false;
}
@ -33,27 +33,27 @@ bool test_furi_pipe_record(FuriRecordSubscriber* log) {
FuriRecordSubscriber* pipe_record =
furi_open("test/pipe", false, false, pipe_record_cb, NULL, NULL);
if(pipe_record == NULL) {
fuprintf(log, "cannot open record\n");
printf("cannot open record\n");
return false;
}
const uint8_t WRITE_VALUE = 1;
// 3. write data
if(!furi_write(pipe_record, &WRITE_VALUE, sizeof(uint8_t))) {
fuprintf(log, "cannot write to record\n");
printf("cannot write to record\n");
return false;
}
// 4. check that subscriber get data
if(pipe_record_value != WRITE_VALUE) {
fuprintf(log, "wrong value (get %d, write %d)\n", pipe_record_value, WRITE_VALUE);
printf("wrong value (get %d, write %d)\n", pipe_record_value, WRITE_VALUE);
return false;
}
// 5. try to read, get error
uint8_t read_value = 0;
if(furi_read(pipe_record, &read_value, sizeof(uint8_t))) {
fuprintf(log, "reading from pipe record not allowed\n");
printf("reading from pipe record not allowed\n");
return false;
}
@ -62,7 +62,7 @@ bool test_furi_pipe_record(FuriRecordSubscriber* log) {
// 7. try to write, get error
if(furi_write(pipe_record, &WRITE_VALUE, sizeof(uint8_t))) {
fuprintf(log, "writing to closed record not allowed\n");
printf("writing to closed record not allowed\n");
return false;
}
@ -87,11 +87,11 @@ void holding_record_cb(const void* value, size_t size, void* ctx) {
holding_record_value = *((uint8_t*)value);
}
bool test_furi_holding_data(FuriRecordSubscriber* log) {
bool test_furi_holding_data() {
// 1. Create holding record
uint8_t holder = 0;
if(!furi_create("test/holding", (void*)&holder, sizeof(holder))) {
fuprintf(log, "cannot create record\n");
printf("cannot create record\n");
return false;
}
@ -99,43 +99,43 @@ bool test_furi_holding_data(FuriRecordSubscriber* log) {
FuriRecordSubscriber* holding_record =
furi_open("test/holding", false, false, holding_record_cb, NULL, NULL);
if(holding_record == NULL) {
fuprintf(log, "cannot open record\n");
printf("cannot open record\n");
return false;
}
const uint8_t WRITE_VALUE = 1;
// 3. write data
if(!furi_write(holding_record, &WRITE_VALUE, sizeof(uint8_t))) {
fuprintf(log, "cannot write to record\n");
printf("cannot write to record\n");
return false;
}
// 4. check that subscriber get data
if(holding_record_value != WRITE_VALUE) {
fuprintf(log, "wrong sub value (get %d, write %d)\n", holding_record_value, WRITE_VALUE);
printf("wrong sub value (get %d, write %d)\n", holding_record_value, WRITE_VALUE);
return false;
}
// 5. Read and check data
uint8_t read_value = 0;
if(!furi_read(holding_record, &read_value, sizeof(uint8_t))) {
fuprintf(log, "cannot read from record\n");
printf("cannot read from record\n");
return false;
}
if(read_value != WRITE_VALUE) {
fuprintf(log, "wrong read value (get %d, write %d)\n", read_value, WRITE_VALUE);
printf("wrong read value (get %d, write %d)\n", read_value, WRITE_VALUE);
return false;
}
// 6. Try to write/read wrong size of data
if(furi_write(holding_record, &WRITE_VALUE, 100)) {
fuprintf(log, "overflowed write not allowed\n");
printf("overflowed write not allowed\n");
return false;
}
if(furi_read(holding_record, &read_value, 100)) {
fuprintf(log, "overflowed read not allowed\n");
printf("overflowed read not allowed\n");
return false;
}
@ -159,12 +159,10 @@ typedef struct {
} ConcurrentValue;
void furi_concurent_app(void* p) {
FuriRecordSubscriber* log = (FuriRecordSubscriber*)p;
FuriRecordSubscriber* holding_record =
furi_open("test/concurrent", false, false, NULL, NULL, NULL);
if(holding_record == NULL) {
fuprintf(log, "cannot open record\n");
printf("cannot open record\n");
furiac_exit(NULL);
}
@ -172,7 +170,7 @@ void furi_concurent_app(void* p) {
ConcurrentValue* value = (ConcurrentValue*)furi_take(holding_record);
if(value == NULL) {
fuprintf(log, "cannot take record\n");
printf("cannot take record\n");
furi_give(holding_record);
furiac_exit(NULL);
}
@ -190,11 +188,11 @@ void furi_concurent_app(void* p) {
furiac_exit(NULL);
}
bool test_furi_concurrent_access(FuriRecordSubscriber* log) {
bool test_furi_concurrent_access() {
// 1. Create holding record
ConcurrentValue holder = {.a = 0, .b = 0};
if(!furi_create("test/concurrent", (void*)&holder, sizeof(ConcurrentValue))) {
fuprintf(log, "cannot create record\n");
printf("cannot create record\n");
return false;
}
@ -202,19 +200,19 @@ bool test_furi_concurrent_access(FuriRecordSubscriber* log) {
FuriRecordSubscriber* holding_record =
furi_open("test/concurrent", false, false, NULL, NULL, NULL);
if(holding_record == NULL) {
fuprintf(log, "cannot open record\n");
printf("cannot open record\n");
return false;
}
// 3. Create second app for interact with it
FuriApp* second_app = furiac_start(furi_concurent_app, "furi concurent app", (void*)log);
FuriApp* second_app = furiac_start(furi_concurent_app, "furi concurent app", NULL);
// 4. multiply ConcurrentValue::a
for(size_t i = 0; i < 4; i++) {
ConcurrentValue* value = (ConcurrentValue*)furi_take(holding_record);
if(value == NULL) {
fuprintf(log, "cannot take record\n");
printf("cannot take record\n");
furi_give(holding_record);
return false;
}
@ -232,12 +230,12 @@ bool test_furi_concurrent_access(FuriRecordSubscriber* log) {
delay(50);
if(second_app->handler != NULL) {
fuprintf(log, "second app still alive\n");
printf("second app still alive\n");
return false;
}
if(holder.a != holder.b) {
fuprintf(log, "broken integrity: a=%d, b=%d\n", holder.a, holder.b);
printf("broken integrity: a=%d, b=%d\n", holder.a, holder.b);
return false;
}
@ -252,7 +250,7 @@ TEST: non-existent data
TODO: implement this test
*/
bool test_furi_nonexistent_data(FuriRecordSubscriber* log) {
bool test_furi_nonexistent_data() {
return true;
}
@ -310,11 +308,9 @@ void mute_record_state_cb(FlipperRecordState state, void* ctx) {
}
void furi_mute_parent_app(void* p) {
FuriRecordSubscriber* log = (FuriRecordSubscriber*)p;
// 1. Create pipe record
if(!furi_create("test/mute", NULL, 0)) {
fuprintf(log, "cannot create record\n");
printf("cannot create record\n");
furiac_exit(NULL);
}
@ -322,7 +318,7 @@ void furi_mute_parent_app(void* p) {
FuriRecordSubscriber* watch_handler =
furi_open("test/mute", false, false, mute_record_cb, NULL, NULL);
if(watch_handler == NULL) {
fuprintf(log, "cannot open watch handler\n");
printf("cannot open watch handler\n");
furiac_exit(NULL);
}
@ -332,9 +328,9 @@ void furi_mute_parent_app(void* p) {
}
}
bool test_furi_mute_algorithm(FuriRecordSubscriber* log) {
bool test_furi_mute_algorithm() {
// 1. Create "parent" application:
FuriApp* parent_app = furiac_start(furi_mute_parent_app, "parent app", (void*)log);
FuriApp* parent_app = furiac_start(furi_mute_parent_app, "parent app", NULL);
delay(2); // wait creating record
@ -342,7 +338,7 @@ bool test_furi_mute_algorithm(FuriRecordSubscriber* log) {
FuriRecordSubscriber* handler_a =
furi_open("test/mute", false, false, NULL, mute_record_state_cb, NULL);
if(handler_a == NULL) {
fuprintf(log, "cannot open handler A\n");
printf("cannot open handler A\n");
return false;
}
@ -350,25 +346,25 @@ bool test_furi_mute_algorithm(FuriRecordSubscriber* log) {
// Try to write data to A and check subscriber
if(!furi_write(handler_a, &test_counter, sizeof(uint8_t))) {
fuprintf(log, "write to A failed\n");
printf("write to A failed\n");
return false;
}
if(mute_last_value != test_counter) {
fuprintf(log, "value A mismatch: %d vs %d\n", mute_last_value, test_counter);
printf("value A mismatch: %d vs %d\n", mute_last_value, test_counter);
return false;
}
// 3. Open handler B: solo=true, no_mute=true, NULL subscriber.
FuriRecordSubscriber* handler_b = furi_open("test/mute", true, true, NULL, NULL, NULL);
if(handler_b == NULL) {
fuprintf(log, "cannot open handler B\n");
printf("cannot open handler B\n");
return false;
}
// Check A state cb get FlipperRecordStateMute.
if(mute_last_state != FlipperRecordStateMute) {
fuprintf(log, "A state is not FlipperRecordStateMute: %d\n", mute_last_state);
printf("A state is not FlipperRecordStateMute: %d\n", mute_last_state);
return false;
}
@ -376,12 +372,12 @@ bool test_furi_mute_algorithm(FuriRecordSubscriber* log) {
// Try to write data to A and check that subscriber get no data. (muted)
if(furi_write(handler_a, &test_counter, sizeof(uint8_t))) {
fuprintf(log, "A not muted\n");
printf("A not muted\n");
return false;
}
if(mute_last_value == test_counter) {
fuprintf(log, "value A must be muted\n");
printf("value A must be muted\n");
return false;
}
@ -389,19 +385,19 @@ bool test_furi_mute_algorithm(FuriRecordSubscriber* log) {
// Try to write data to B and check that subscriber get data.
if(!furi_write(handler_b, &test_counter, sizeof(uint8_t))) {
fuprintf(log, "write to B failed\n");
printf("write to B failed\n");
return false;
}
if(mute_last_value != test_counter) {
fuprintf(log, "value B mismatch: %d vs %d\n", mute_last_value, test_counter);
printf("value B mismatch: %d vs %d\n", mute_last_value, test_counter);
return false;
}
// 4. Open hadler C: solo=true, no_mute=false, NULL subscriber.
FuriRecordSubscriber* handler_c = furi_open("test/mute", true, false, NULL, NULL, NULL);
if(handler_c == NULL) {
fuprintf(log, "cannot open handler C\n");
printf("cannot open handler C\n");
return false;
}
@ -412,7 +408,7 @@ bool test_furi_mute_algorithm(FuriRecordSubscriber* log) {
// 5. Open handler D: solo=false, no_mute=false, NULL subscriber.
FuriRecordSubscriber* handler_d = furi_open("test/mute", false, false, NULL, NULL, NULL);
if(handler_d == NULL) {
fuprintf(log, "cannot open handler D\n");
printf("cannot open handler D\n");
return false;
}
@ -428,7 +424,7 @@ bool test_furi_mute_algorithm(FuriRecordSubscriber* log) {
// 7. Exit "parent application"
if(!furiac_kill(parent_app)) {
fuprintf(log, "kill parent_app fail\n");
printf("kill parent_app fail\n");
return false;
}

View File

@ -23,26 +23,26 @@ void create_kill_app(void* p) {
}
}
bool test_furi_ac_create_kill(FuriRecordSubscriber* log) {
bool test_furi_ac_create_kill() {
uint8_t counter = 0;
uint8_t value_a = counter;
FuriApp* widget = furiac_start(create_kill_app, "create_kill_app", (void*)&counter);
if(widget == NULL) {
fuprintf(log, "create widget fail\n");
printf("create widget fail\n");
return false;
}
delay(10);
if(!furiac_kill(widget)) {
fuprintf(log, "kill widget fail\n");
printf("kill widget fail\n");
return false;
}
if(value_a == counter) {
fuprintf(log, "counter unchanged\n");
printf("counter unchanged\n");
return false;
}
@ -51,7 +51,7 @@ bool test_furi_ac_create_kill(FuriRecordSubscriber* log) {
delay(10);
if(value_a != counter) {
fuprintf(log, "counter changes after kill (counter = %d vs %d)\n", value_a, counter);
printf("counter changes after kill (counter = %d vs %d)\n", value_a, counter);
return false;
}
@ -111,7 +111,7 @@ void task_b(void* p) {
furiac_exit(p);
}
bool test_furi_ac_switch_exit(FuriRecordSubscriber* log) {
bool test_furi_ac_switch_exit() {
// init sequence
TestSwitchSequence seq;
seq.count = 0;
@ -124,7 +124,7 @@ bool test_furi_ac_switch_exit(FuriRecordSubscriber* log) {
seq.sequence[seq.count] = '\0';
if(strcmp(seq.sequence, "ABA/") != 0) {
fuprintf(log, "wrong sequence: %s\n", seq.sequence);
printf("wrong sequence: %s\n", seq.sequence);
return false;
}

View File

@ -0,0 +1,562 @@
/*
* Copyright (c) 2012 David Siñuela Pastor, siu.4coders@gmail.com
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef MINUNIT_MINUNIT_H
#define MINUNIT_MINUNIT_H
#ifdef __cplusplus
extern "C" {
#endif
#if defined(_WIN32)
#include <Windows.h>
#if defined(_MSC_VER) && _MSC_VER < 1900
#define snprintf _snprintf
#define __func__ __FUNCTION__
#endif
#elif defined(__unix__) || defined(__unix) || defined(unix) || (defined(__APPLE__) && defined(__MACH__))
/* Change POSIX C SOURCE version for pure c99 compilers */
#if !defined(_POSIX_C_SOURCE) || _POSIX_C_SOURCE < 200112L
#undef _POSIX_C_SOURCE
#define _POSIX_C_SOURCE 200112L
#endif
#include <unistd.h> /* POSIX flags */
#include <time.h> /* clock_gettime(), time() */
#include <sys/time.h> /* gethrtime(), gettimeofday() */
#include <sys/resource.h>
#include <sys/times.h>
#include <string.h>
#if defined(__MACH__) && defined(__APPLE__)
#include <mach/mach.h>
#include <mach/mach_time.h>
#endif
#if __GNUC__ >= 5 && !defined(__STDC_VERSION__)
#define __func__ __extension__ __FUNCTION__
#endif
#else
// #error "Unable to define timers for an unknown OS."
#endif
#include <stdio.h>
#include <math.h>
/* Maximum length of last message */
#define MINUNIT_MESSAGE_LEN 1024
/* Accuracy with which floats are compared */
#define MINUNIT_EPSILON 1E-12
#include "minunit_vars_ex.h"
/* Test setup and teardown function pointers */
static void (*minunit_setup)(void) = NULL;
static void (*minunit_teardown)(void) = NULL;
/* Definitions */
#define MU_TEST(method_name) static void method_name(void)
#define MU_TEST_SUITE(suite_name) static void suite_name(void)
#define MU__SAFE_BLOCK(block) do {\
block\
} while(0)
/* Run test suite and unset setup and teardown functions */
#define MU_RUN_SUITE(suite_name) MU__SAFE_BLOCK(\
suite_name();\
minunit_setup = NULL;\
minunit_teardown = NULL;\
)
/* Configure setup and teardown functions */
#define MU_SUITE_CONFIGURE(setup_fun, teardown_fun) MU__SAFE_BLOCK(\
minunit_setup = setup_fun;\
minunit_teardown = teardown_fun;\
)
/* Test runner */
#define MU_RUN_TEST(test) MU__SAFE_BLOCK(\
if (minunit_real_timer==0 && minunit_proc_timer==0) {\
minunit_real_timer = mu_timer_real();\
minunit_proc_timer = mu_timer_cpu();\
}\
if (minunit_setup) (*minunit_setup)();\
minunit_status = 0;\
test();\
minunit_run++;\
if (minunit_status) {\
minunit_fail++;\
printf("F");\
printf("\n%s\n", minunit_last_message);\
}\
fflush(stdout);\
if (minunit_teardown) (*minunit_teardown)();\
)
/* Report */
#define MU_REPORT() MU__SAFE_BLOCK(\
double minunit_end_real_timer;\
double minunit_end_proc_timer;\
printf("\n\n%d tests, %d assertions, %d failures\n", minunit_run, minunit_assert, minunit_fail);\
minunit_end_real_timer = mu_timer_real();\
minunit_end_proc_timer = mu_timer_cpu();\
printf("\nFinished in %.8f seconds (real) %.8f seconds (proc)\n\n",\
minunit_end_real_timer - minunit_real_timer,\
minunit_end_proc_timer - minunit_proc_timer);\
)
#define MU_EXIT_CODE minunit_fail
/* Assertions */
#define mu_check(test) MU__SAFE_BLOCK(\
minunit_assert++;\
if (!(test)) {\
snprintf(minunit_last_message, MINUNIT_MESSAGE_LEN, "%s failed:\n\t%s:%d: %s", __func__, __FILE__, __LINE__, #test);\
minunit_status = 1;\
return;\
} else {\
printf(".");\
}\
)
#define mu_fail(message) MU__SAFE_BLOCK(\
minunit_assert++;\
snprintf(minunit_last_message, MINUNIT_MESSAGE_LEN, "%s failed:\n\t%s:%d: %s", __func__, __FILE__, __LINE__, message);\
minunit_status = 1;\
return;\
)
#define mu_assert(test, message) MU__SAFE_BLOCK(\
minunit_assert++;\
if (!(test)) {\
snprintf(minunit_last_message, MINUNIT_MESSAGE_LEN, "%s failed:\n\t%s:%d: %s", __func__, __FILE__, __LINE__, message);\
minunit_status = 1;\
return;\
} else {\
printf(".");\
}\
)
#define mu_assert_int_eq(expected, result) MU__SAFE_BLOCK(\
int minunit_tmp_e;\
int minunit_tmp_r;\
minunit_assert++;\
minunit_tmp_e = (expected);\
minunit_tmp_r = (result);\
if (minunit_tmp_e != minunit_tmp_r) {\
snprintf(minunit_last_message, MINUNIT_MESSAGE_LEN, "%s failed:\n\t%s:%d: %d expected but was %d", __func__, __FILE__, __LINE__, minunit_tmp_e, minunit_tmp_r);\
minunit_status = 1;\
return;\
} else {\
printf(".");\
}\
)
#define mu_assert_int_not_eq(expected, result) MU__SAFE_BLOCK(\
int minunit_tmp_e;\
int minunit_tmp_r;\
minunit_assert++;\
minunit_tmp_e = (expected);\
minunit_tmp_r = (result);\
if (minunit_tmp_e == minunit_tmp_r) {\
snprintf(minunit_last_message, MINUNIT_MESSAGE_LEN, "%s failed:\n\t%s:%d: expected different results but both were %d", __func__, __FILE__, __LINE__, minunit_tmp_e);\
minunit_status = 1;\
return;\
} else {\
printf(".");\
}\
)
#define mu_assert_int_greater_than(val, result) MU__SAFE_BLOCK(\
int minunit_tmp_e;\
int minunit_tmp_r;\
minunit_assert++;\
minunit_tmp_e = (val);\
minunit_tmp_r = (result);\
if (val >= minunit_tmp_r) {\
snprintf(minunit_last_message, MINUNIT_MESSAGE_LEN, "%s failed:\n\t%s:%d: %d <= %d", __func__, __FILE__, __LINE__, minunit_tmp_r, minunit_tmp_e);\
minunit_status = 1;\
return;\
} else {\
printf(".");\
}\
)
#define mu_assert_int_less_than(val, result) MU__SAFE_BLOCK(\
int minunit_tmp_e;\
int minunit_tmp_r;\
minunit_assert++;\
minunit_tmp_e = (val);\
minunit_tmp_r = (result);\
if (val <= minunit_tmp_r) {\
snprintf(minunit_last_message, MINUNIT_MESSAGE_LEN, "%s failed:\n\t%s:%d: %d >= %d", __func__, __FILE__, __LINE__, minunit_tmp_r, minunit_tmp_e);\
minunit_status = 1;\
return;\
} else {\
printf(".");\
}\
)
#define mu_assert_int_between(expected_lower, expected_upper, result) MU__SAFE_BLOCK(\
int minunit_tmp_e;\
int minunit_tmp_m;\
int minunit_tmp_r;\
minunit_assert++;\
minunit_tmp_e = (expected_lower);\
minunit_tmp_m = (expected_upper);\
minunit_tmp_r = (result);\
if (result < minunit_tmp_e || result > minunit_tmp_m) {\
snprintf(minunit_last_message, MINUNIT_MESSAGE_LEN, "%s failed:\n\t%s:%d: %d was not between (inclusive) %d and %d", __func__, __FILE__, __LINE__, minunit_tmp_e, minunit_tmp_r, minunit_tmp_m);\
minunit_status = 1;\
return;\
} else {\
printf(".");\
}\
)
#define mu_assert_int_in(expected, array_length, result) MU__SAFE_BLOCK(\
int minunit_tmp_r;\
minunit_assert++;\
minunit_tmp_r = (result);\
int t = 0;\
int i;\
for (i = 0; i < array_length; i++) {\
if (expected[i] == minunit_tmp_r)\
t = 1;\
}\
if (t == 0) {\
char tmp[500] = {0};\
tmp[0] = '[';\
for (i = 0; i < array_length; i++) {\
sprintf(tmp + strlen(tmp), "%d, ", expected[i]);\
}\
int len = strlen(tmp);\
tmp[len - 2] = ']';\
tmp[len - 1] = '\0';\
snprintf(minunit_last_message, MINUNIT_MESSAGE_LEN, "%s failed:\n\t%s:%d: expected to be one of %s but was %d", __func__, __FILE__, __LINE__, tmp, minunit_tmp_r);\
minunit_status = 1;\
return;\
} else {\
printf(".");\
}\
)
#define mu_assert_double_eq(expected, result) MU__SAFE_BLOCK(\
double minunit_tmp_e;\
double minunit_tmp_r;\
minunit_assert++;\
minunit_tmp_e = (expected);\
minunit_tmp_r = (result);\
if (fabs(minunit_tmp_e-minunit_tmp_r) > MINUNIT_EPSILON) {\
int minunit_significant_figures = 1 - log10(MINUNIT_EPSILON);\
snprintf(minunit_last_message, MINUNIT_MESSAGE_LEN, "%s failed:\n\t%s:%d: %.*g expected but was %.*g", __func__, __FILE__, __LINE__, minunit_significant_figures, minunit_tmp_e, minunit_significant_figures, minunit_tmp_r);\
minunit_status = 1;\
return;\
} else {\
printf(".");\
}\
)
#define mu_assert_double_greater_than(val, result) MU__SAFE_BLOCK(\
double minunit_tmp_e;\
double minunit_tmp_r;\
minunit_assert++;\
minunit_tmp_e = (val);\
minunit_tmp_r = (result);\
if (val >= minunit_tmp_r) {\
snprintf(minunit_last_message, MINUNIT_MESSAGE_LEN, "%s failed:\n\t%s:%d: %f <= %f", __func__, __FILE__, __LINE__, minunit_tmp_r, minunit_tmp_e);\
minunit_status = 1;\
return;\
} else {\
printf(".");\
}\
)
#define mu_assert_double_less_than(val, result) MU__SAFE_BLOCK(\
double minunit_tmp_e;\
double minunit_tmp_r;\
minunit_assert++;\
minunit_tmp_e = (val);\
minunit_tmp_r = (result);\
if (val <= minunit_tmp_r) {\
snprintf(minunit_last_message, MINUNIT_MESSAGE_LEN, "%s failed:\n\t%s:%d: %f >= %f", __func__, __FILE__, __LINE__, minunit_tmp_r, minunit_tmp_e);\
minunit_status = 1;\
return;\
} else {\
printf(".");\
}\
)
#define mu_assert_double_between(expected_lower, expected_upper, result) MU__SAFE_BLOCK(\
double minunit_tmp_e;\
double minunit_tmp_m;\
double minunit_tmp_r;\
minunit_assert++;\
minunit_tmp_e = (expected_lower);\
minunit_tmp_m = (expected_upper);\
minunit_tmp_r = (result);\
if (result < minunit_tmp_e || result > minunit_tmp_m) {\
snprintf(minunit_last_message, MINUNIT_MESSAGE_LEN, "%s failed:\n\t%s:%d: %f was not between (inclusive) %f and %f", __func__, __FILE__, __LINE__, minunit_tmp_e, minunit_tmp_r, minunit_tmp_m);\
minunit_status = 1;\
return;\
} else {\
printf(".");\
}\
)
#define mu_assert_string_eq(expected, result) MU__SAFE_BLOCK(\
const char* minunit_tmp_e = expected;\
const char* minunit_tmp_r = result;\
minunit_assert++;\
if (!minunit_tmp_e) {\
minunit_tmp_e = "<null pointer>";\
}\
if (!minunit_tmp_r) {\
minunit_tmp_r = "<null pointer>";\
}\
if(strcmp(minunit_tmp_e, minunit_tmp_r)) {\
snprintf(minunit_last_message, MINUNIT_MESSAGE_LEN, "%s failed:\n\t%s:%d: '%s' expected but was '%s'", __func__, __FILE__, __LINE__, minunit_tmp_e, minunit_tmp_r);\
minunit_status = 1;\
return;\
} else {\
printf(".");\
}\
)
#define mu_assert_null(result) MU__SAFE_BLOCK(\
minunit_assert++;\
if (result == NULL) {\
printf(".");\
} else {\
snprintf(minunit_last_message, MINUNIT_MESSAGE_LEN, "%s failed:\n\t%s:%d: Expected result was not NULL", __func__, __FILE__, __LINE__);\
minunit_status = 1;\
return;\
}\
)
#define mu_assert_not_null(result) MU__SAFE_BLOCK(\
minunit_assert++;\
if (result != NULL) {\
printf(".");\
} else {\
snprintf(minunit_last_message, MINUNIT_MESSAGE_LEN, "%s failed:\n\t%s:%d: Expected result was not NULL", __func__, __FILE__, __LINE__);\
minunit_status = 1;\
return;\
}\
)
#define mu_assert_pointers_eq(pointer1, pointer2) MU__SAFE_BLOCK(\
minunit_assert++;\
if (pointer1 == pointer2) {\
printf(".");\
} else {\
snprintf(minunit_last_message, MINUNIT_MESSAGE_LEN, "%s failed:\n\t%s:%d: Expected the pointers to point to the same memory location", __func__, __FILE__, __LINE__);\
minunit_status = 1;\
return;\
}\
)
#define mu_assert_pointers_not_eq(pointer1, pointer2) MU__SAFE_BLOCK(\
minunit_assert++;\
if (pointer1 != pointer2) {\
printf(".");\
} else {\
snprintf(minunit_last_message, MINUNIT_MESSAGE_LEN, "%s failed:\n\t%s:%d: Expected the pointers to point to the same memory location", __func__, __FILE__, __LINE__);\
minunit_status = 1;\
return;\
}\
)
/*
* The following two functions were written by David Robert Nadeau
* from http://NadeauSoftware.com/ and distributed under the
* Creative Commons Attribution 3.0 Unported License
*/
/**
* Returns the real time, in seconds, or -1.0 if an error occurred.
*
* Time is measured since an arbitrary and OS-dependent start time.
* The returned real time is only useful for computing an elapsed time
* between two calls to this function.
*/
static double mu_timer_real(void)
{
#if defined(_WIN32)
/* Windows 2000 and later. ---------------------------------- */
LARGE_INTEGER Time;
LARGE_INTEGER Frequency;
QueryPerformanceFrequency(&Frequency);
QueryPerformanceCounter(&Time);
Time.QuadPart *= 1000000;
Time.QuadPart /= Frequency.QuadPart;
return (double)Time.QuadPart / 1000000.0;
#elif (defined(__hpux) || defined(hpux)) || ((defined(__sun__) || defined(__sun) || defined(sun)) && (defined(__SVR4) || defined(__svr4__)))
/* HP-UX, Solaris. ------------------------------------------ */
return (double)gethrtime( ) / 1000000000.0;
#elif defined(__MACH__) && defined(__APPLE__)
/* OSX. ----------------------------------------------------- */
static double timeConvert = 0.0;
if ( timeConvert == 0.0 )
{
mach_timebase_info_data_t timeBase;
(void)mach_timebase_info( &timeBase );
timeConvert = (double)timeBase.numer /
(double)timeBase.denom /
1000000000.0;
}
return (double)mach_absolute_time( ) * timeConvert;
#elif defined(_POSIX_VERSION)
/* POSIX. --------------------------------------------------- */
struct timeval tm;
#if defined(_POSIX_TIMERS) && (_POSIX_TIMERS > 0)
{
struct timespec ts;
#if defined(CLOCK_MONOTONIC_PRECISE)
/* BSD. --------------------------------------------- */
const clockid_t id = CLOCK_MONOTONIC_PRECISE;
#elif defined(CLOCK_MONOTONIC_RAW)
/* Linux. ------------------------------------------- */
const clockid_t id = CLOCK_MONOTONIC_RAW;
#elif defined(CLOCK_HIGHRES)
/* Solaris. ----------------------------------------- */
const clockid_t id = CLOCK_HIGHRES;
#elif defined(CLOCK_MONOTONIC)
/* AIX, BSD, Linux, POSIX, Solaris. ----------------- */
const clockid_t id = CLOCK_MONOTONIC;
#elif defined(CLOCK_REALTIME)
/* AIX, BSD, HP-UX, Linux, POSIX. ------------------- */
const clockid_t id = CLOCK_REALTIME;
#else
const clockid_t id = (clockid_t)-1; /* Unknown. */
#endif /* CLOCK_* */
if ( id != (clockid_t)-1 && clock_gettime( id, &ts ) != -1 )
return (double)ts.tv_sec +
(double)ts.tv_nsec / 1000000000.0;
/* Fall thru. */
}
#endif /* _POSIX_TIMERS */
/* AIX, BSD, Cygwin, HP-UX, Linux, OSX, POSIX, Solaris. ----- */
gettimeofday( &tm, NULL );
return (double)tm.tv_sec + (double)tm.tv_usec / 1000000.0;
#else
return -1.0; /* Failed. */
#endif
}
/**
* Returns the amount of CPU time used by the current process,
* in seconds, or -1.0 if an error occurred.
*/
static double mu_timer_cpu(void)
{
#if defined(_WIN32)
/* Windows -------------------------------------------------- */
FILETIME createTime;
FILETIME exitTime;
FILETIME kernelTime;
FILETIME userTime;
/* This approach has a resolution of 1/64 second. Unfortunately, Windows' API does not offer better */
if ( GetProcessTimes( GetCurrentProcess( ),
&createTime, &exitTime, &kernelTime, &userTime ) != 0 )
{
ULARGE_INTEGER userSystemTime;
memcpy(&userSystemTime, &userTime, sizeof(ULARGE_INTEGER));
return (double)userSystemTime.QuadPart / 10000000.0;
}
#elif defined(__unix__) || defined(__unix) || defined(unix) || (defined(__APPLE__) && defined(__MACH__))
/* AIX, BSD, Cygwin, HP-UX, Linux, OSX, and Solaris --------- */
#if defined(_POSIX_TIMERS) && (_POSIX_TIMERS > 0)
/* Prefer high-res POSIX timers, when available. */
{
clockid_t id;
struct timespec ts;
#if _POSIX_CPUTIME > 0
/* Clock ids vary by OS. Query the id, if possible. */
if ( clock_getcpuclockid( 0, &id ) == -1 )
#endif
#if defined(CLOCK_PROCESS_CPUTIME_ID)
/* Use known clock id for AIX, Linux, or Solaris. */
id = CLOCK_PROCESS_CPUTIME_ID;
#elif defined(CLOCK_VIRTUAL)
/* Use known clock id for BSD or HP-UX. */
id = CLOCK_VIRTUAL;
#else
id = (clockid_t)-1;
#endif
if ( id != (clockid_t)-1 && clock_gettime( id, &ts ) != -1 )
return (double)ts.tv_sec +
(double)ts.tv_nsec / 1000000000.0;
}
#endif
#if defined(RUSAGE_SELF)
{
struct rusage rusage;
if ( getrusage( RUSAGE_SELF, &rusage ) != -1 )
return (double)rusage.ru_utime.tv_sec +
(double)rusage.ru_utime.tv_usec / 1000000.0;
}
#endif
#if defined(_SC_CLK_TCK)
{
const double ticks = (double)sysconf( _SC_CLK_TCK );
struct tms tms;
if ( times( &tms ) != (clock_t)-1 )
return (double)tms.tms_utime / ticks;
}
#endif
#if defined(CLOCKS_PER_SEC)
{
clock_t cl = clock( );
if ( cl != (clock_t)-1 )
return (double)cl / (double)CLOCKS_PER_SEC;
}
#endif
#endif
return -1; /* Failed. */
}
#ifdef __cplusplus
}
#endif
#endif /* MINUNIT_MINUNIT_H */

View File

@ -0,0 +1,77 @@
#include <stdio.h>
#include "flipper.h"
#include "log.h"
#include "minunit_vars.h"
#include "minunit.h"
bool test_furi_ac_create_kill();
bool test_furi_ac_switch_exit();
bool test_furi_pipe_record();
bool test_furi_holding_data();
bool test_furi_concurrent_access();
bool test_furi_nonexistent_data();
bool test_furi_mute_algorithm();
static int foo = 0;
void test_setup(void) {
foo = 7;
}
void test_teardown(void) {
/* Nothing */
}
MU_TEST(test_check) {
mu_check(foo != 6);
}
MU_TEST(mu_test_furi_ac_create_kill) {
mu_assert_int_eq(test_furi_ac_create_kill(), true);
}
MU_TEST(mu_test_furi_ac_switch_exit) {
mu_assert_int_eq(test_furi_ac_switch_exit(), true);
}
MU_TEST(mu_test_furi_pipe_record) {
mu_assert_int_eq(test_furi_pipe_record(), true);
}
MU_TEST(mu_test_furi_holding_data) {
mu_assert_int_eq(test_furi_holding_data(), true);
}
MU_TEST(mu_test_furi_concurrent_access) {
mu_assert_int_eq(test_furi_concurrent_access(), true);
}
MU_TEST(mu_test_furi_nonexistent_data) {
mu_assert_int_eq(test_furi_nonexistent_data(), true);
}
/*
MU_TEST(mu_test_furi_mute_algorithm) {
mu_assert_int_eq(test_furi_mute_algorithm(test_log), true);
}
*/
MU_TEST_SUITE(test_suite) {
MU_SUITE_CONFIGURE(&test_setup, &test_teardown);
MU_RUN_TEST(test_check);
MU_RUN_TEST(mu_test_furi_ac_create_kill);
MU_RUN_TEST(mu_test_furi_ac_switch_exit);
MU_RUN_TEST(mu_test_furi_pipe_record);
MU_RUN_TEST(mu_test_furi_holding_data);
MU_RUN_TEST(mu_test_furi_concurrent_access);
MU_RUN_TEST(mu_test_furi_nonexistent_data);
// MU_RUN_TEST(mu_test_furi_mute_algorithm);
}
int run_minunit() {
MU_RUN_SUITE(test_suite);
MU_REPORT();
return MU_EXIT_CODE;
}

View File

@ -0,0 +1,15 @@
#pragma once
#include "minunit.h"
/* Misc. counters */
int minunit_run = 0;
int minunit_assert = 0;
int minunit_fail = 0;
int minunit_status = 0;
/* Timers */
double minunit_real_timer = 0;
double minunit_proc_timer = 0;
/* Last message */
char minunit_last_message[MINUNIT_MESSAGE_LEN];

View File

@ -0,0 +1,15 @@
#pragma once
#include "minunit.h"
/* Misc. counters */
extern int minunit_run;
extern int minunit_assert;
extern int minunit_fail;
extern int minunit_status;
/* Timers */
extern double minunit_real_timer;
extern double minunit_proc_timer;
/* Last message */
extern char minunit_last_message[MINUNIT_MESSAGE_LEN];

View File

@ -4,70 +4,38 @@
// #include "flipper-core.h" TODO: Rust build disabled
bool test_furi_ac_create_kill(FuriRecordSubscriber* log);
bool test_furi_ac_switch_exit(FuriRecordSubscriber* log);
bool test_furi_pipe_record(FuriRecordSubscriber* log);
bool test_furi_holding_data(FuriRecordSubscriber* log);
bool test_furi_concurrent_access(FuriRecordSubscriber* log);
bool test_furi_nonexistent_data(FuriRecordSubscriber* log);
bool test_furi_mute_algorithm(FuriRecordSubscriber* log);
int run_minunit();
void flipper_test_app(void* p) {
FuriRecordSubscriber* log = get_default_log();
// create pins
GpioPin red = {.pin = LED_RED_Pin, .port = LED_RED_GPIO_Port};
GpioPin green = {.pin = LED_GREEN_Pin, .port = LED_GREEN_GPIO_Port};
GpioPin blue = {.pin = LED_BLUE_Pin, .port = LED_BLUE_GPIO_Port};
if(test_furi_ac_create_kill(log)) {
fuprintf(log, "[TEST] test_furi_ac_create_kill PASSED\n");
// configure pins
pinMode(red, GpioModeOpenDrain);
pinMode(green, GpioModeOpenDrain);
pinMode(blue, GpioModeOpenDrain);
digitalWrite(red, HIGH);
digitalWrite(green, HIGH);
digitalWrite(blue, LOW);
uint32_t exitcode = run_minunit();
if(exitcode == 0) {
// test passed
digitalWrite(red, HIGH);
digitalWrite(green, LOW);
digitalWrite(blue, HIGH);
} else {
fuprintf(log, "[TEST] test_furi_ac_create_kill FAILED\n");
// test failed
digitalWrite(red, LOW);
digitalWrite(green, HIGH);
digitalWrite(blue, HIGH);
}
if(test_furi_ac_switch_exit(log)) {
fuprintf(log, "[TEST] test_furi_ac_switch_exit PASSED\n");
} else {
fuprintf(log, "[TEST] test_furi_ac_switch_exit FAILED\n");
}
if(test_furi_pipe_record(log)) {
fuprintf(log, "[TEST] test_furi_pipe_record PASSED\n");
} else {
fuprintf(log, "[TEST] test_furi_pipe_record FAILED\n");
}
if(test_furi_holding_data(log)) {
fuprintf(log, "[TEST] test_furi_holding_data PASSED\n");
} else {
fuprintf(log, "[TEST] test_furi_holding_data FAILED\n");
}
if(test_furi_concurrent_access(log)) {
fuprintf(log, "[TEST] test_furi_concurrent_access PASSED\n");
} else {
fuprintf(log, "[TEST] test_furi_concurrent_access FAILED\n");
}
if(test_furi_nonexistent_data(log)) {
fuprintf(log, "[TEST] test_furi_nonexistent_data PASSED\n");
} else {
fuprintf(log, "[TEST] test_furi_nonexistent_data FAILED\n");
}
if(test_furi_mute_algorithm(log)) {
fuprintf(log, "[TEST] test_furi_mute_algorithm PASSED\n");
} else {
fuprintf(log, "[TEST] test_furi_mute_algorithm FAILED\n");
}
/*
TODO: Rust build disabled
if(add(1, 2) == 3) {
fuprintf(log, "[TEST] Rust add PASSED\n");
} else {
fuprintf(log, "[TEST] Rust add FAILED\n");
}
rust_uart_write();
*/
set_exitcode(exitcode);
furiac_exit(NULL);
}

View File

@ -1,14 +1,20 @@
#include "flipper.h"
#include <stdio.h>
extern "C" {
#include "furi.h"
#include "log.h"
#include "startup.h"
#include "tty_uart.h"
#include "flipper.h"
#include "furi.h"
#include "log.h"
#include "startup.h"
#include "tty_uart.h"
}
extern "C" void app() {
// for testing purpose
uint32_t exitcode = 0;
extern "C" void set_exitcode(uint32_t _exitcode) {
exitcode = _exitcode;
}
extern "C" int app() {
register_tty_uart();
FuriRecordSubscriber* log = get_default_log();
@ -33,8 +39,9 @@ extern "C" void app() {
}
}
delay(500);
// TODO add deferred event queue here
} while(is_alive);
fuprintf(log, "\n=== Bye from Flipper Zero! ===\n\n");
return (int)exitcode;
}

View File

@ -29,3 +29,5 @@ extern "C" {
#define INPUT GpioModeInput
#define LOW false
#define HIGH true
void set_exitcode(uint32_t _exitcode);

View File

@ -10,5 +10,9 @@ HAL_UART_Transmit(UART_HandleTypeDef* handle, uint8_t* bufer, uint16_t size, uin
typedef uint32_t TIM_HandleTypeDef;
#define LED_RED_GPIO_Port 1
#define LED_RED_Pin 1
#define LED_RED_Pin 1
#define LED_RED_GPIO_Port "Red:"
#define LED_GREEN_Pin 1
#define LED_GREEN_GPIO_Port "Green:"
#define LED_BLUE_Pin 1
#define LED_BLUE_GPIO_Port "Blue:"

View File

@ -4,10 +4,8 @@ Flipper devices inc.
Local fw build entry point.
*/
void app();
int app();
int main() {
app();
return 0;
return app();
}

View File

@ -1,121 +1,11 @@
# Bootloader testcase
# Integration testing
1. `# Clean flash`
2. `make -C bootloader flash` `# Load bootloader`
3. `# reboot device`
* Press right
* Press left
* Wait 0.1 s
* Release left
* Release right
4. Wait 0.5 s
5. `# Expect no FW`
* Expect: no uart welcome message
* Expect: red led on
* Expect: no USB
6. `# reboot device and go to DFU`
* Press left
* Press right
* Wait 0.1 s
* Release left
* Wait 0.5 s
* Release right
7. Wait 0.5 s
8. `# Expect DFU`
* Expect: blue led on
* Expect: USB: DFU
9. `target_f2/deploy-dfu.sh` `# load FW`
10. `# reboot device`
* Press right
* Press left
* Wait 0.1 s
* Release left
* Release right
11. Wait 0.5 s
12. `# Expect FW`
* Expect: uart welcome message
* Expect: USB Flipper CDC
* **[Bootloader testcase](Bootloader-test)**
* **[Input testcase](Input-test)**
* **[General testcase](General-building-test)**
# Input testcase
# Unit testing
1. `docker-compose exec dev make -C target_f2 example_input_dump`
2. Flash
3. For x in ```
[
(Up, "00"),
(Down, "01"),
(Right, "02"),
(Left, "03"),
(Ok, "04"),
(Back, "05"),
]
```
* Press ${x[0]}
* wait 0.05
* Expect: Uart: "event: ${x[1]} pressed"
* wait 0.05
* Release ${x[0]}
* wait 0.05
* Expect: Uart: "event: ${x[1]} released"
* wait 0.05
TODO: add debouncing check (multiple press and check there is no multiple events)
# General building testcase
Local target:
* `docker-compose exec dev make -C firmware TARGET=local APP_TEST=1 clean`
* `docker-compose exec dev make -C firmware TARGET=local APP_TEST=1 run`
* check tests pass/fail
* `docker-compose exec dev make -C firmware TARGET=local APP_EXAMPLE_BLINK=1 run`
* GPIO on and off
* `docker-compose exec dev make -C firmware TARGET=local APP_EXAMPLE_UART_WRITE=1 run`
* GPIO on/off and `counter: %` writes
* `docker-compose exec dev make -C firmware TARGET=local APP_EXAMPLE_IPC=1 run`
* ASCII display draw
* `docker-compose exec dev make -C firmware TARGET=local APP_EXAMPLE_INPUT_DUMP=1 run` not implemented
* `docker-compose exec dev make -C firmware TARGET=local APP_EXAMPLE_QRCODE=1 run`
* Some writes to display
* `docker-compose exec dev make -C firmware TARGET=local APP_EXAMPLE_DISPLAY=1 run`
* Some writes to display
* `docker-compose exec dev make -C firmware TARGET=local APP_EXAMPLE_FATFS=1 flash`
* TODO: FatFs emulation and test not implemented
F2 target:
* `docker-compose exec dev make -C firmware TARGET=f2 APP_TEST=1 clean`
* `docker-compose exec dev make -C firmware TARGET=f2 APP_TEST=1 flash`
* check UART for test pass/fail
* `docker-compose exec dev make -C firmware TARGET=f2 APP_EXAMPLE_BLINK=1 flash`
* Red LED blink (1s period)
* `docker-compose exec dev make -C firmware TARGET=f2 APP_EXAMPLE_UART_WRITE=1 flash`
* Red LED shortly blinking, `counter: %` writes to UART
* `docker-compose exec dev make -C firmware TARGET=f2 APP_EXAMPLE_IPC=1 flash`
* ASCII display draw in UART
* `docker-compose exec dev make -C firmware TARGET=f2 APP_EXAMPLE_INPUT_DUMP=1 flash`
* Press all buttons, `state` and `event` writes to UART
* `docker-compose exec dev make -C firmware TARGET=f2 APP_EXAMPLE_QRCODE=1 flash`
* QR code show on the screen
* `docker-compose exec dev make -C firmware TARGET=f2 APP_EXAMPLE_DISPLAY=1 flash`
* `Hello world` show on the screen
* `docker-compose exec dev make -C firmware TARGET=f2 APP_EXAMPLE_FATFS=1 flash`
* `Init sd card error` on the screen
* Insert SD-card
* Reboot
* Show file list on the screen
* Scroll by pressing up and down
1. We use [minunit]() as testing framework
2. Tests root placed in `applications/tests/minuint_test.c`
3. There is `Run local tests` job in `CI` pipeline (`.github/workflows/ci.yml`)

View File

@ -35,7 +35,7 @@ For more HW- and RTOS- specific checks we run real FW in [Renode](https://interr
Eventually we run real FW on remote debug/test bench (#26): flipper board + RPi + some stuff to control and check real hardware.
# Debug/test bench (not implemented)
# Debug/test bench (in progress)
* 24×7 connected target Flipper device and accessible via Internet. Raspberry PI or some Linux single-board PC can be used as basic high-level control board.
* Tool can push/click each user buttons by hardware by "control board" (low level). Usage of optocouples/reed-switch relays is fine for that.
@ -61,3 +61,7 @@ Eventually we run real FW on remote debug/test bench (#26): flipper board + RPi
2. Run CI tests:
* For test automation we can use RobotDemo or simple expect tool/python scripts/etc.
* Apply test cases and submit its results.
# Testing
You can read about testing in [Testing](Testing) page.

View File

@ -0,0 +1,35 @@
1. `# Clean flash`
2. `make -C bootloader flash` `# Load bootloader`
3. `# reboot device`
* Press right
* Press left
* Wait 0.1 s
* Release left
* Release right
4. Wait 0.5 s
5. `# Expect no FW`
* Expect: no uart welcome message
* Expect: red led on
* Expect: no USB
6. `# reboot device and go to DFU`
* Press left
* Press right
* Wait 0.1 s
* Release left
* Wait 0.5 s
* Release right
7. Wait 0.5 s
8. `# Expect DFU`
* Expect: blue led on
* Expect: USB: DFU
9. `target_f2/deploy-dfu.sh` `# load FW`
10. `# reboot device`
* Press right
* Press left
* Wait 0.1 s
* Release left
* Release right
11. Wait 0.5 s
12. `# Expect FW`
* Expect: uart welcome message
* Expect: USB Flipper CDC

View File

@ -0,0 +1,59 @@
Local target:
* `docker-compose exec dev make -C firmware TARGET=local APP_TEST=1 clean`
* `docker-compose exec dev make -C firmware TARGET=local APP_TEST=1 run`
* check tests pass/fail (by exitcode == 0)
* `docker-compose exec dev make -C firmware TARGET=local APP_EXAMPLE_BLINK=1 run`
* GPIO on and off
* `docker-compose exec dev make -C firmware TARGET=local APP_EXAMPLE_UART_WRITE=1 run`
* GPIO on/off and `counter: %` writes
* `docker-compose exec dev make -C firmware TARGET=local APP_EXAMPLE_IPC=1 run`
* ASCII display draw
* `docker-compose exec dev make -C firmware TARGET=local APP_EXAMPLE_INPUT_DUMP=1 run` not implemented
* `docker-compose exec dev make -C firmware TARGET=local APP_EXAMPLE_QRCODE=1 run`
* Some writes to display
* `docker-compose exec dev make -C firmware TARGET=local APP_EXAMPLE_DISPLAY=1 run`
* Some writes to display
* `docker-compose exec dev make -C firmware TARGET=local APP_EXAMPLE_FATFS=1 flash`
* TODO: FatFs emulation and test not implemented
F2 target:
* `docker-compose exec dev make -C firmware TARGET=f2 APP_TEST=1 clean`
* `docker-compose exec dev make -C firmware TARGET=f2 APP_TEST=1 flash`
* check UART for test pass/fail
* blue led when test is running
* green led if test is passed
* red led if test is failed
* `docker-compose exec dev make -C firmware TARGET=f2 APP_EXAMPLE_BLINK=1 flash`
* Red LED blink (1s period)
* `docker-compose exec dev make -C firmware TARGET=f2 APP_EXAMPLE_UART_WRITE=1 flash`
* Red LED shortly blinking, `counter: %` writes to UART
* `docker-compose exec dev make -C firmware TARGET=f2 APP_EXAMPLE_IPC=1 flash`
* ASCII display draw in UART
* `docker-compose exec dev make -C firmware TARGET=f2 APP_EXAMPLE_INPUT_DUMP=1 flash`
* Press all buttons, `state` and `event` writes to UART
* `docker-compose exec dev make -C firmware TARGET=f2 APP_EXAMPLE_QRCODE=1 flash`
* QR code show on the screen
* `docker-compose exec dev make -C firmware TARGET=f2 APP_EXAMPLE_DISPLAY=1 flash`
* `Hello world` show on the screen
* `docker-compose exec dev make -C firmware TARGET=f2 APP_EXAMPLE_FATFS=1 flash`
* `Init sd card error` on the screen
* Insert SD-card
* Reboot
* Show file list on the screen
* Scroll by pressing up and down

View File

@ -0,0 +1,22 @@
1. `docker-compose exec dev make -C target_f2 example_input_dump`
2. Flash
3. For x in ```
[
(Up, "00"),
(Down, "01"),
(Right, "02"),
(Left, "03"),
(Ok, "04"),
(Back, "05"),
]
```
* Press ${x[0]}
* wait 0.05
* Expect: Uart: "event: ${x[1]} pressed"
* wait 0.05
* Release ${x[0]}
* wait 0.05
* Expect: Uart: "event: ${x[1]} released"
* wait 0.05
TODO: add debouncing check (multiple press and check there is no multiple events)