HAL to LL migration: GPIO, HSEM, AES (#1069)

* gpio, hsem, crypto: switch from HAL to LL/registers
* Moved GPIO initialization to furi_hal
* More HAL removed
* All HAL modules disabled
* HAL is finally removed
* hal_gpio -> furi_hal_gpio, main.h removed
* Bootloader build fix
* RTOS config moved to freertos-glue
* delay -> furi_hal_delay

Co-authored-by: あく <alleteam@gmail.com>
This commit is contained in:
Nikolay Minaylov
2022-03-30 18:23:40 +03:00
committed by GitHub
parent 648d8aaa54
commit 2f3ea9494e
93 changed files with 921 additions and 1270 deletions

View File

@@ -1,16 +1,27 @@
#include <furi_hal_crypto.h>
#include <furi_hal_bt.h>
#include <furi_hal_random.h>
#include <stm32wbxx_ll_cortex.h>
#include <furi.h>
#include <shci.h>
#define TAG "FuriHalCrypto"
CRYP_HandleTypeDef crypt;
#define ENCLAVE_FACTORY_KEY_SLOTS 10
#define ENCLAVE_SIGNATURE_SIZE 16
#define CRYPTO_BLK_LEN (4 * sizeof(uint32_t))
#define CRYPTO_TIMEOUT (1000)
#define CRYPTO_MODE_ENCRYPT 0U
#define CRYPTO_MODE_DECRYPT (AES_CR_MODE_1)
#define CRYPTO_MODE_DECRYPT_INIT (AES_CR_MODE_0 | AES_CR_MODE_1)
#define CRYPTO_DATATYPE_32B 0U
#define CRYPTO_KEYSIZE_256B (AES_CR_KEYSIZE)
#define CRYPTO_AES_CBC (AES_CR_CHMOD_0)
static osMutexId_t furi_hal_crypto_mutex = NULL;
static const uint8_t enclave_signature_iv[ENCLAVE_FACTORY_KEY_SLOTS][16] = {
{0xac, 0x5d, 0x68, 0xb8, 0x79, 0x74, 0xfc, 0x7f, 0x45, 0x02, 0x82, 0xf1, 0x48, 0x7e, 0x75, 0x8a},
{0x38, 0xe6, 0x6a, 0x90, 0x5e, 0x5b, 0x8a, 0xa6, 0x70, 0x30, 0x04, 0x72, 0xc2, 0x42, 0xea, 0xaf},
@@ -51,6 +62,7 @@ static const uint8_t enclave_signature_expected[ENCLAVE_FACTORY_KEY_SLOTS][ENCLA
};
void furi_hal_crypto_init() {
furi_hal_crypto_mutex = osMutexNew(NULL);
FURI_LOG_I(TAG, "Init OK");
}
@@ -127,6 +139,8 @@ bool furi_hal_crypto_store_add_key(FuriHalCryptoKey* key, uint8_t* slot) {
furi_assert(key);
furi_assert(slot);
furi_check(osMutexAcquire(furi_hal_crypto_mutex, osWaitForever) == osOK);
if(!furi_hal_bt_is_alive()) {
return false;
}
@@ -157,30 +171,91 @@ bool furi_hal_crypto_store_add_key(FuriHalCryptoKey* key, uint8_t* slot) {
memcpy(pParam.KeyData, key->data, key_data_size);
return SHCI_C2_FUS_StoreUsrKey(&pParam, slot) == SHCI_Success;
SHCI_CmdStatus_t shci_state = SHCI_C2_FUS_StoreUsrKey(&pParam, slot);
furi_check(osMutexRelease(furi_hal_crypto_mutex) == osOK);
return (shci_state == SHCI_Success);
}
static void crypto_enable() {
SET_BIT(AES1->CR, AES_CR_EN);
}
static void crypto_disable() {
CLEAR_BIT(AES1->CR, AES_CR_EN);
}
static void crypto_key_init(uint32_t* key, uint32_t* iv) {
crypto_disable();
MODIFY_REG(
AES1->CR,
AES_CR_DATATYPE | AES_CR_KEYSIZE | AES_CR_CHMOD,
CRYPTO_DATATYPE_32B | CRYPTO_KEYSIZE_256B | CRYPTO_AES_CBC);
if(key != NULL) {
AES1->KEYR7 = key[0];
AES1->KEYR6 = key[1];
AES1->KEYR5 = key[2];
AES1->KEYR4 = key[3];
AES1->KEYR3 = key[4];
AES1->KEYR2 = key[5];
AES1->KEYR1 = key[6];
AES1->KEYR0 = key[7];
}
AES1->IVR3 = iv[0];
AES1->IVR2 = iv[1];
AES1->IVR1 = iv[2];
AES1->IVR0 = iv[3];
}
static bool crypto_process_block(uint32_t* in, uint32_t* out, uint8_t blk_len) {
furi_check((blk_len <= 4) && (blk_len > 0));
for(uint8_t i = 0; i < 4; i++) {
if(i < blk_len) {
AES1->DINR = in[i];
} else {
AES1->DINR = 0;
}
}
uint32_t countdown = CRYPTO_TIMEOUT;
while(!READ_BIT(AES1->SR, AES_SR_CCF)) {
if(LL_SYSTICK_IsActiveCounterFlag()) {
countdown--;
}
if(countdown == 0) {
return false;
}
}
SET_BIT(AES1->CR, AES_CR_CCFC);
uint32_t out_temp[4];
for(uint8_t i = 0; i < 4; i++) {
out_temp[i] = AES1->DOUTR;
}
memcpy(out, out_temp, blk_len * sizeof(uint32_t));
return true;
}
bool furi_hal_crypto_store_load_key(uint8_t slot, const uint8_t* iv) {
furi_assert(slot > 0 && slot <= 100);
furi_assert(furi_hal_crypto_mutex);
furi_check(osMutexAcquire(furi_hal_crypto_mutex, osWaitForever) == osOK);
if(!furi_hal_bt_is_alive()) {
return false;
}
crypt.Instance = AES1;
crypt.Init.DataType = CRYP_DATATYPE_32B;
crypt.Init.KeySize = CRYP_KEYSIZE_256B;
crypt.Init.Algorithm = CRYP_AES_CBC;
crypt.Init.pInitVect = (uint32_t*)iv;
crypt.Init.KeyIVConfigSkip = CRYP_KEYIVCONFIG_ONCE;
crypt.Init.pKey = NULL;
furi_check(HAL_CRYP_Init(&crypt) == HAL_OK);
crypto_key_init(NULL, (uint32_t*)iv);
if(SHCI_C2_FUS_LoadUsrKey(slot) == SHCI_Success) {
return true;
} else {
furi_check(HAL_CRYP_DeInit(&crypt) == HAL_OK);
crypto_disable();
furi_check(osMutexRelease(furi_hal_crypto_mutex) == osOK);
return false;
}
}
@@ -190,14 +265,55 @@ bool furi_hal_crypto_store_unload_key(uint8_t slot) {
return false;
}
furi_check(HAL_CRYP_DeInit(&crypt) == HAL_OK);
return SHCI_C2_FUS_UnloadUsrKey(slot) == SHCI_Success;
crypto_disable();
SHCI_CmdStatus_t shci_state = SHCI_C2_FUS_UnloadUsrKey(slot);
furi_check(osMutexRelease(furi_hal_crypto_mutex) == osOK);
return (shci_state == SHCI_Success);
}
bool furi_hal_crypto_encrypt(const uint8_t* input, uint8_t* output, size_t size) {
return HAL_CRYP_Encrypt(&crypt, (uint32_t*)input, size / 4, (uint32_t*)output, 1000) == HAL_OK;
bool state = false;
crypto_enable();
MODIFY_REG(AES1->CR, AES_CR_MODE, CRYPTO_MODE_ENCRYPT);
for(size_t i = 0; i < size; i += CRYPTO_BLK_LEN) {
size_t blk_len = size - i;
if(blk_len > CRYPTO_BLK_LEN) {
blk_len = CRYPTO_BLK_LEN;
}
state = crypto_process_block((uint32_t*)&input[i], (uint32_t*)&output[i], blk_len / 4);
if(state == false) {
break;
}
}
crypto_disable();
return state;
}
bool furi_hal_crypto_decrypt(const uint8_t* input, uint8_t* output, size_t size) {
return HAL_CRYP_Decrypt(&crypt, (uint32_t*)input, size / 4, (uint32_t*)output, 1000) == HAL_OK;
bool state = false;
MODIFY_REG(AES1->CR, AES_CR_MODE, CRYPTO_MODE_DECRYPT_INIT);
crypto_enable();
for(size_t i = 0; i < size; i += CRYPTO_BLK_LEN) {
size_t blk_len = size - i;
if(blk_len > CRYPTO_BLK_LEN) {
blk_len = CRYPTO_BLK_LEN;
}
state = crypto_process_block((uint32_t*)&input[i], (uint32_t*)&output[i], blk_len / 4);
if(state == false) {
break;
}
}
crypto_disable();
return state;
}