[FL-1800] IRDA: enc/decoder refactoring, Add NEC42 (#705)

* WIP: IRDA: multilen protocol refactoring, NEC42
* IRDA: Refactoring encoder/decoder

Co-authored-by: あく <alleteam@gmail.com>
This commit is contained in:
Albert Kharisov
2021-09-15 20:22:58 +03:00
committed by GitHub
parent 4768177cf5
commit 4f233ff0a3
21 changed files with 551 additions and 437 deletions

View File

@@ -1,4 +1,5 @@
#include "furi/check.h"
#include "furi/common_defines.h"
#include "irda.h"
#include "irda_common_i.h"
#include <stdbool.h>
@@ -39,11 +40,12 @@ static bool irda_check_preamble(IrdaCommonDecoder* decoder) {
bool result = false;
bool start_level = (decoder->level + decoder->timings_cnt + 1) % 2;
if (decoder->timings_cnt == 0)
return false;
// align to start at Mark timing
if (!start_level) {
if (decoder->timings_cnt > 0) {
decoder->timings_cnt = consume_samples(decoder->timings, decoder->timings_cnt, 1);
}
decoder->timings_cnt = consume_samples(decoder->timings, decoder->timings_cnt, 1);
}
if (decoder->protocol->timings.preamble_mark == 0) {
@@ -66,45 +68,75 @@ static bool irda_check_preamble(IrdaCommonDecoder* decoder) {
return result;
}
/* Pulse Distance Modulation */
IrdaStatus irda_common_decode_pdm(IrdaCommonDecoder* decoder) {
/**
* decoder->protocol->databit_len[0] contains biggest amount of bits, for this protocol.
* decoder->protocol->databit_len[1...] contains lesser values, but which can be decoded
* for some protocol modifications.
*/
static IrdaStatus irda_common_decode_bits(IrdaCommonDecoder* decoder) {
furi_assert(decoder);
uint32_t* timings = decoder->timings;
IrdaStatus status = IrdaStatusError;
IrdaStatus status = IrdaStatusOk;
const IrdaTimings* timings = &decoder->protocol->timings;
while (decoder->timings_cnt && (status == IrdaStatusOk)) {
bool level = (decoder->level + decoder->timings_cnt + 1) % 2;
uint32_t timing = decoder->timings[0];
/* check if short protocol version can be decoded */
if (timings->min_split_time && !level && (timing > timings->min_split_time)) {
for (int i = 1; decoder->protocol->databit_len[i] && (i < COUNT_OF(decoder->protocol->databit_len)); ++i) {
if (decoder->protocol->databit_len[i] == decoder->databit_cnt) {
return IrdaStatusReady;
}
}
}
status = decoder->protocol->decode(decoder, level, timing);
furi_assert(status == IrdaStatusError || status == IrdaStatusOk);
if (status == IrdaStatusError) {
break;
}
decoder->timings_cnt = consume_samples(decoder->timings, decoder->timings_cnt, 1);
/* check if largest protocol version can be decoded */
if (level && (decoder->protocol->databit_len[0] == decoder->databit_cnt)) {
status = IrdaStatusReady;
break;
}
}
return status;
}
/* Pulse Distance-Width Modulation */
IrdaStatus irda_common_decode_pdwm(IrdaCommonDecoder* decoder, bool level, uint32_t timing) {
furi_assert(decoder);
IrdaStatus status = IrdaStatusOk;
uint32_t bit_tolerance = decoder->protocol->timings.bit_tolerance;
uint16_t bit1_mark = decoder->protocol->timings.bit1_mark;
uint16_t bit1_space = decoder->protocol->timings.bit1_space;
uint16_t bit0_mark = decoder->protocol->timings.bit0_mark;
uint16_t bit0_space = decoder->protocol->timings.bit0_space;
while (1) {
// Stop bit
if ((decoder->databit_cnt == decoder->protocol->databit_len) && (decoder->timings_cnt == 1)) {
if (MATCH_TIMING(timings[0], bit1_mark, bit_tolerance)) {
decoder->timings_cnt = 0;
status = IrdaStatusReady;
} else {
status = IrdaStatusError;
}
break;
}
bool analyze_timing = level ^ (bit1_mark == bit0_mark);
uint16_t bit1 = level ? bit1_mark : bit1_space;
uint16_t bit0 = level ? bit0_mark : bit0_space;
uint16_t no_info_timing = (bit1_mark == bit0_mark) ? bit1_mark : bit1_space;
if (decoder->timings_cnt >= 2) {
if (MATCH_TIMING(timings[0], bit1_mark, bit_tolerance)
&& MATCH_TIMING(timings[1], bit1_space, bit_tolerance)) {
accumulate_lsb(decoder, 1);
} else if (MATCH_TIMING(timings[0], bit0_mark, bit_tolerance)
&& MATCH_TIMING(timings[1], bit0_space, bit_tolerance)) {
accumulate_lsb(decoder, 0);
} else {
status = IrdaStatusError;
break;
}
decoder->timings_cnt = consume_samples(decoder->timings, decoder->timings_cnt, 2);
if (analyze_timing) {
if (MATCH_TIMING(timing, bit1, bit_tolerance)) {
accumulate_lsb(decoder, 1);
} else if (MATCH_TIMING(timing, bit0, bit_tolerance)) {
accumulate_lsb(decoder, 0);
} else {
status = IrdaStatusOk;
break;
status = IrdaStatusError;
}
} else {
if (!MATCH_TIMING(timing, no_info_timing, bit_tolerance)) {
status = IrdaStatusError;
}
}
@@ -112,111 +144,59 @@ IrdaStatus irda_common_decode_pdm(IrdaCommonDecoder* decoder) {
}
/* level switch detection goes in middle of time-quant */
IrdaStatus irda_common_decode_manchester(IrdaCommonDecoder* decoder) {
IrdaStatus irda_common_decode_manchester(IrdaCommonDecoder* decoder, bool level, uint32_t timing) {
furi_assert(decoder);
IrdaStatus status = IrdaStatusOk;
uint16_t bit = decoder->protocol->timings.bit1_mark;
uint16_t tolerance = decoder->protocol->timings.bit_tolerance;
while (decoder->timings_cnt) {
uint32_t timing = decoder->timings[0];
bool* switch_detect = &decoder->switch_detect;
furi_assert((*switch_detect == true) || (*switch_detect == false));
bool* switch_detect = &decoder->switch_detect;
furi_assert((*switch_detect == true) || (*switch_detect == false));
bool single_timing = MATCH_TIMING(timing, bit, tolerance);
bool double_timing = MATCH_TIMING(timing, 2*bit, tolerance);
bool single_timing = MATCH_TIMING(timing, bit, tolerance);
bool double_timing = MATCH_TIMING(timing, 2*bit, tolerance);
if(!single_timing && !double_timing) {
status = IrdaStatusError;
break;
}
if ((decoder->protocol->manchester_start_from_space) && (decoder->databit_cnt == 0)) {
*switch_detect = 1; /* fake as we were previously in the middle of time-quant */
decoder->data[0] = 0; /* first captured timing should be Mark */
++decoder->databit_cnt;
}
if (*switch_detect == 0) {
if (double_timing) {
status = IrdaStatusError;
break;
}
/* only single timing - level switch required in the middle of time-quant */
*switch_detect = 1;
} else {
/* double timing means we in the middle of time-quant again */
if (single_timing)
*switch_detect = 0;
}
decoder->timings_cnt = consume_samples(decoder->timings, decoder->timings_cnt, 1);
status = IrdaStatusOk;
bool level = (decoder->level + decoder->timings_cnt) % 2;
if (decoder->databit_cnt < decoder->protocol->databit_len) {
if (*switch_detect) {
accumulate_lsb(decoder, level);
}
if (decoder->databit_cnt == decoder->protocol->databit_len) {
if (level) {
status = IrdaStatusReady;
break;
}
}
} else {
furi_assert(level);
/* cover case: sequence should be stopped after last bit was received */
if (single_timing) {
status = IrdaStatusReady;
break;
} else {
status = IrdaStatusError;
}
}
if(!single_timing && !double_timing) {
return IrdaStatusError;
}
return status;
if (decoder->protocol->manchester_start_from_space && (decoder->databit_cnt == 0)) {
*switch_detect = 1; /* fake as we were previously in the middle of time-quant */
accumulate_lsb(decoder, 0);
}
if (*switch_detect == 0) {
if (double_timing) {
return IrdaStatusError;
}
/* only single timing - level switch required in the middle of time-quant */
*switch_detect = 1;
} else {
/* double timing means we're in the middle of time-quant again */
if (single_timing)
*switch_detect = 0;
}
if (*switch_detect) {
accumulate_lsb(decoder, level);
}
return IrdaStatusOk;
}
/* Pulse Width Modulation */
IrdaStatus irda_common_decode_pwm(IrdaCommonDecoder* decoder) {
furi_assert(decoder);
IrdaMessage* irda_common_decoder_check_ready(IrdaCommonDecoder* decoder) {
IrdaMessage* message = NULL;
uint32_t* timings = decoder->timings;
IrdaStatus status = IrdaStatusOk;
uint32_t bit_tolerance = decoder->protocol->timings.bit_tolerance;
uint16_t bit1_mark = decoder->protocol->timings.bit1_mark;
uint16_t bit1_space = decoder->protocol->timings.bit1_space;
uint16_t bit0_mark = decoder->protocol->timings.bit0_mark;
while (decoder->timings_cnt) {
bool level = (decoder->level + decoder->timings_cnt + 1) % 2;
if (level) {
if (MATCH_TIMING(timings[0], bit1_mark, bit_tolerance)) {
accumulate_lsb(decoder, 1);
} else if (MATCH_TIMING(timings[0], bit0_mark, bit_tolerance)) {
accumulate_lsb(decoder, 0);
} else {
status = IrdaStatusError;
break;
}
if (decoder->protocol->interpret(decoder)) {
decoder->databit_cnt = 0;
message = &decoder->message;
if (decoder->protocol->decode_repeat) {
decoder->state = IrdaCommonDecoderStateProcessRepeat;
} else {
if (!MATCH_TIMING(timings[0], bit1_space, bit_tolerance)) {
status = IrdaStatusError;
break;
}
}
decoder->timings_cnt = consume_samples(decoder->timings, decoder->timings_cnt, 1);
if (decoder->databit_cnt == decoder->protocol->databit_len) {
status = IrdaStatusReady;
break;
decoder->state = IrdaCommonDecoderStateWaitPreamble;
}
}
return status;
return message;
}
IrdaMessage* irda_common_decode(IrdaCommonDecoder* decoder, bool level, uint32_t duration) {
@@ -245,12 +225,13 @@ IrdaMessage* irda_common_decode(IrdaCommonDecoder* decoder, bool level, uint32_t
}
break;
case IrdaCommonDecoderStateDecode:
status = decoder->protocol->decode(decoder);
status = irda_common_decode_bits(decoder);
if (status == IrdaStatusReady) {
if (decoder->protocol->interpret(decoder)) {
message = &decoder->message;
decoder->state = IrdaCommonDecoderStateProcessRepeat;
} else {
message = irda_common_decoder_check_ready(decoder);
if (message) {
continue;
} else if (decoder->protocol->databit_len[0] == decoder->databit_cnt) {
/* error: can't decode largest protocol - begin decoding from start */
decoder->state = IrdaCommonDecoderStateWaitPreamble;
}
} else if (status == IrdaStatusError) {
@@ -259,10 +240,6 @@ IrdaMessage* irda_common_decode(IrdaCommonDecoder* decoder, bool level, uint32_t
}
break;
case IrdaCommonDecoderStateProcessRepeat:
if (!decoder->protocol->decode_repeat) {
decoder->state = IrdaCommonDecoderStateWaitPreamble;
continue;
}
status = decoder->protocol->decode_repeat(decoder);
if (status == IrdaStatusError) {
irda_common_decoder_reset_state(decoder);
@@ -282,9 +259,14 @@ IrdaMessage* irda_common_decode(IrdaCommonDecoder* decoder, bool level, uint32_t
void* irda_common_decoder_alloc(const IrdaCommonProtocolSpec* protocol) {
furi_assert(protocol);
/* protocol->databit_len[0] has to contain biggest value of bits that can be decoded */
for (int i = 1; i < COUNT_OF(protocol->databit_len); ++i) {
furi_assert(protocol->databit_len[i] <= protocol->databit_len[0]);
}
uint32_t alloc_size = sizeof(IrdaCommonDecoder)
+ protocol->databit_len / 8
+ !!(protocol->databit_len % 8);
+ protocol->databit_len[0] / 8
+ !!(protocol->databit_len[0] % 8);
IrdaCommonDecoder* decoder = furi_alloc(alloc_size);
memset(decoder, 0, alloc_size);
decoder->protocol = protocol;