rx example

This commit is contained in:
aanper 2020-10-18 07:47:49 +03:00
parent 737ee2b0bf
commit 6b5797bbf4

View File

@ -2,37 +2,11 @@
#include "cc1101-workaround/cc1101.h" #include "cc1101-workaround/cc1101.h"
#define MIN_DBM -120 #define RSSI_DELAY 5000 //rssi delay in micro second
#define STEP_DBM 10
#define RSSI_DELAY 600 //rssi delay in micro second
#define RSSI_THRESHOLD -60
#define START_SUB_BAND 3
#define STOP_SUB_BAND 3
#define NUM_OF_SUB_BANDS 7 #define NUM_OF_SUB_BANDS 7
#define CAL_INT 20 // cal every 10 channels(every 1MHz)
// variables used to calculate rssi
uint8_t rssi_dec;
int16_t rssi_dBm;
uint8_t rssi_offset[NUM_OF_SUB_BANDS] = {74, 74, 74, 74, 74, 74, 74};
#define CHAN_SPA 0.05 // channel spacing #define CHAN_SPA 0.05 // channel spacing
// no change in TEST0 WHERE (>430.5MHz) one should change from TEST0=0x0B to 0x09 int16_t rssi_to_dbm(uint8_t rssi_dec, uint8_t rssiOffset) {
uint16_t limitTest0Reg[NUM_OF_SUB_BANDS] = {256, 256, 256, 103, 0, 0, 0};
/* setting to use 50khz channel spacing whole band*****************************************/
int16_t rssiTable[256];
uint16_t channelNumber[256];
// counter used to keep track on how many CS has been asserted
uint8_t carrierSenseCounter = 0;
int16_t calRSSI(uint8_t rssi_dec, uint8_t rssiOffset) {
int16_t rssi; int16_t rssi;
if(rssi_dec >= 128) { if(rssi_dec >= 128) {
@ -44,131 +18,12 @@ int16_t calRSSI(uint8_t rssi_dec, uint8_t rssiOffset) {
return rssi; return rssi;
} }
/*
void scanFreq(CC1101* cc1101) {
uint8_t calCounter; // to determine when to calibrate
uint8_t subBand;
uint16_t channel;
uint16_t i;
float freq;
cc1101->SpiWriteReg(CC1101_MCSM0, 0x08); // disalbe FS_AUTOCAL
cc1101->SpiWriteReg(CC1101_AGCCTRL2, 0x43 | 0x0C); // MAX_DVGA_GAIN to 11 for fast rssi
cc1101->SpiWriteReg(CC1101_AGCCTRL0, 0xB0); // max AGC WAIT_TIME; 0 filter_length
cc1101->SetMod(GFSK); // set to GFSK for fast rssi measurement | +8 is dcfilter off
// 1) loop through all sub bands
for(subBand = START_SUB_BAND; subBand < STOP_SUB_BAND + 1; subBand++) {
// 1.1) set subBands freq by FREQ2, FREQ1, FREQ0
cc1101->SetFreq(
freqSettings[subBand][0], freqSettings[subBand][1], freqSettings[subBand][2]);
// 1.2) set TEST0--maybe!
// 1.3) reset calibration counter
calCounter = 0;
// 1.4) loop throuhg all channels
for(channel = firstChannel[subBand]; channel <= lastChannel[subBand]; channel++) {
uint8_t pktStatus;
// 1.4.1) set channel register
cc1101->SetChannel(channel);
// 1.4.2) set TEST0
if(channel == limitTest0Reg[subBand]) {
//set test0 to 0x09
cc1101->SpiWriteReg(CC1101_TEST0, 0x09);
//set FSCAL2 to 0x2A to force VCO HIGH
cc1101->SpiWriteReg(CC1101_FSCAL2, 0x2A);
//clear calCounter to invoke mannual calibration
calCounter = 0;
}
// 1.4.3) calibrate every 1MHz
if(calCounter++ == 0) {
// perform a manual calibration by issuing SCAL command
cc1101->SpiStrobe(CC1101_SCAL);
}
// 1.4.4) reset calCounter when 1MHz reached
if(calCounter == CAL_INT) {
calCounter = 0;
}
// 1.4.5-6 enter rx mode
cc1101->SetReceive();
// 1.4.7 wait for RSSI to be valid: less than 1.5ms
delayMicroseconds(RSSI_DELAY);
// 1.4.8) read PKTSTATUS register while the radio is in RX state
pktStatus = cc1101->SpiReadStatus(CC1101_PKTSTATUS);
// 1.4.9) enter IDLE state by issuing a SIDLE command
cc1101->SpiStrobe(CC1101_SIDLE);
// 1.4.10) check if CS is assearted
// //read rssi value and converto to dBm form
rssi_dec = (uint8_t)cc1101->SpiReadStatus(CC1101_RSSI);
rssi_dBm = calRSSI(rssi_dec, rssi_offset[subBand]);
// rssiData[subBand][channel]=rssi_dBm;
if(pktStatus & 0x40) { //CS assearted
// store rssi value and corresponding channel number
rssiTable[carrierSenseCounter] = rssi_dBm;
channelNumber[carrierSenseCounter] = channel;
carrierSenseCounter++;
}
#ifdef CC1101_DEBUG
printf("rssi_dBm: %d\n", rssi_dBm);
#endif
} // end channel lop
// 1.5)before moving to next sub band,
// scan through rssiTable to find highest rssi value
for(i = 0; i < carrierSenseCounter; i++) {
if(rssiTable[i] > highRSSI[subBand]) {
highRSSI[subBand] = rssiTable[i];
selectedChannel[subBand] = channelNumber[i];
}
}
// printf("subBand:------------------>");
// Serial.println(subBand);
// Serial.print("selectedChannel:");
// Serial.println(selectedChannel[subBand]);
// Serial.print("highRSSI:");
// Serial.println(highRSSI[subBand]);
// 1.6) reset carrierSenseCounter
carrierSenseCounter = 0;
} // end band loop
// 2) when all sub bands has been scanned , find best subband and channel
int16_t tempRssi = MIN_DBM;
for(subBand = 0; subBand < NUM_OF_SUB_BANDS; subBand++) {
if(highRSSI[subBand] > tempRssi) {
tempRssi = highRSSI[subBand];
activeChannel = selectedChannel[subBand];
activeBand = subBand;
}
}
// printf("activeBand:**********> %d, activeChannel %d,\n", activeBand, activeChannel);
cc1101->SpiWriteReg(CC1101_MCSM0, 0x18); //enable FS_AUTOCAL
cc1101->SpiWriteReg(CC1101_AGCCTRL2, 0x43); //back to recommended config
cc1101->SpiWriteReg(CC1101_AGCCTRL0, 0x91); //back to recommended config
}
void tx(CC1101* cc1101, uint8_t band, uint16_t channel, uint16_t miniSec) {
cc1101->SetFreq(freqSettings[band][0], freqSettings[band][1], freqSettings[band][2]);
cc1101->SetChannel(channel);
// digitalWrite(19,0);
cc1101->SetTransmit();
delay(miniSec);
cc1101->SpiStrobe(CC1101_SIDLE);
}
*/
typedef struct { typedef struct {
float base_freq; float base_freq;
uint8_t settings[3]; // FREQ2, FREQ1, FREQ0 uint8_t reg[3]; // FREQ2, FREQ1, FREQ0
uint8_t first_channel; uint8_t first_channel;
uint8_t last_channel; uint8_t last_channel;
uint8_t rssi_offset;
} Band; } Band;
typedef struct { typedef struct {
@ -176,14 +31,65 @@ typedef struct {
uint16_t channel; uint16_t channel;
} FreqConfig; } FreqConfig;
void setup_freq(CC1101* cc1101, FreqConfig* config) {
cc1101->SpiWriteReg(CC1101_MCSM0, 0x08); // disalbe FS_AUTOCAL
cc1101->SpiWriteReg(CC1101_AGCCTRL2, 0x43 | 0x0C); // MAX_DVGA_GAIN to 11 for fast rssi
cc1101->SpiWriteReg(CC1101_AGCCTRL0, 0xB0); // max AGC WAIT_TIME; 0 filter_length
cc1101->SetMod(GFSK); // set to GFSK for fast rssi measurement | +8 is dcfilter off
cc1101->SetFreq(config->band->reg[0], config->band->reg[1], config->band->reg[2]);
cc1101->SetChannel(config->channel);
//set test0 to 0x09
cc1101->SpiWriteReg(CC1101_TEST0, 0x09);
//set FSCAL2 to 0x2A to force VCO HIGH
cc1101->SpiWriteReg(CC1101_FSCAL2, 0x2A);
// perform a manual calibration by issuing SCAL command
cc1101->SpiStrobe(CC1101_SCAL);
/*
// Cleanup:
cc1101->SpiWriteReg(CC1101_MCSM0, 0x18); //enable FS_AUTOCAL
cc1101->SpiWriteReg(CC1101_AGCCTRL2, 0x43); //back to recommended config
cc1101->SpiWriteReg(CC1101_AGCCTRL0, 0x91); //back to recommended config
*/
}
int16_t rx_rssi(CC1101* cc1101, FreqConfig* config) {
cc1101->SetReceive();
delayMicroseconds(RSSI_DELAY);
// 1.4.8) read PKTSTATUS register while the radio is in RX state
uint8_t _pkt_status = cc1101->SpiReadStatus(CC1101_PKTSTATUS);
// 1.4.9) enter IDLE state by issuing a SIDLE command
cc1101->SpiStrobe(CC1101_SIDLE);
// //read rssi value and converto to dBm form
uint8_t rssi_dec = (uint8_t)cc1101->SpiReadStatus(CC1101_RSSI);
int16_t rssi_dBm = rssi_to_dbm(rssi_dec, config->band->rssi_offset);
return rssi_dBm;
}
void tx(CC1101* cc1101) {
cc1101->SetTransmit();
}
void idle(CC1101* cc1101) {
cc1101->SpiStrobe(CC1101_SIDLE);
}
Band bands[NUM_OF_SUB_BANDS] = { Band bands[NUM_OF_SUB_BANDS] = {
{387, {0x0E, 0xE2, 0x76}, 0, 255}, {387, {0x0E, 0xE2, 0x76}, 0, 255, 74},
{399.8, {0x0F, 0x60, 0x76}, 0, 255}, {399.8, {0x0F, 0x60, 0x76}, 0, 255, 74},
{412.6, {0x0F, 0xDE, 0x76}, 0, 255}, {412.6, {0x0F, 0xDE, 0x76}, 0, 255, 74},
{425.4, {0x10, 0x5C, 0x76}, 160, 180}, {425.4, {0x10, 0x5C, 0x76}, 160, 180, 74},
{438.2, {0x10, 0xDA, 0x76}, 0, 255}, {438.2, {0x10, 0xDA, 0x76}, 0, 255, 74},
{451, {0x11, 0x58, 0x8F}, 0, 255}, {451, {0x11, 0x58, 0x8F}, 0, 255, 74},
{463.8, {0x11, 0xD6, 0x8F}, 0, 4}, {463.8, {0x11, 0xD6, 0x8F}, 0, 4, 74},
}; };
FreqConfig FREQ_LIST[] = { FreqConfig FREQ_LIST[] = {
@ -237,6 +143,8 @@ typedef enum {
typedef struct { typedef struct {
Mode mode; Mode mode;
size_t active_freq; size_t active_freq;
int16_t last_rssi;
bool need_cc1101_conf;
} State; } State;
static void render_callback(CanvasApi* canvas, void* ctx) { static void render_callback(CanvasApi* canvas, void* ctx) {
@ -257,6 +165,30 @@ static void render_callback(CanvasApi* canvas, void* ctx) {
canvas->draw_str(canvas, 2, 25, buf); canvas->draw_str(canvas, 2, 25, buf);
} }
{
canvas->set_font(canvas, FontSecondary);
if(state->need_cc1101_conf) {
canvas->draw_str(canvas, 2, 36, "mode: configuring...");
} else if(state->mode == ModeRx) {
canvas->draw_str(canvas, 2, 36, "mode: RX");
} else if(state->mode == ModeTx) {
canvas->draw_str(canvas, 2, 36, "mode: TX");
} else {
canvas->draw_str(canvas, 2, 36, "mode: unknown");
}
}
{
if(!state->need_cc1101_conf && state->mode == ModeRx) {
char buf[24];
sprintf(buf, "RSSI: %d dBm", state->last_rssi);
canvas->set_font(canvas, FontSecondary);
canvas->draw_str(canvas, 2, 48, buf);
}
}
release_mutex((ValueMutex*)ctx, state); release_mutex((ValueMutex*)ctx, state);
} }
@ -277,6 +209,8 @@ extern "C" void cc1101_workaround(void* p) {
State _state; State _state;
_state.mode = ModeRx; _state.mode = ModeRx;
_state.active_freq = 0; _state.active_freq = 0;
_state.need_cc1101_conf = true;
_state.last_rssi = 0;
ValueMutex state_mutex; ValueMutex state_mutex;
if(!init_mutex(&state_mutex, &_state, sizeof(State))) { if(!init_mutex(&state_mutex, &_state, sizeof(State))) {
@ -318,9 +252,17 @@ extern "C" void cc1101_workaround(void* p) {
// 50khz channel spacing // 50khz channel spacing
cc1101.SpiWriteReg(CC1101_MDMCFG0, 0xF8); cc1101.SpiWriteReg(CC1101_MDMCFG0, 0xF8);
// create pin
GpioPin led = {GPIOA, GPIO_PIN_8};
// configure pin
pinMode(led, GpioModeOpenDrain);
const int16_t RSSI_THRESHOLD = -89;
Event event; Event event;
while(1) { while(1) {
if(osMessageQueueGet(event_queue, &event, NULL, osWaitForever) == osOK) { if(osMessageQueueGet(event_queue, &event, NULL, 150) == osOK) {
State* state = (State*)acquire_mutex_block(&state_mutex); State* state = (State*)acquire_mutex_block(&state_mutex);
if(event.type == EventTypeKey) { if(event.type == EventTypeKey) {
@ -334,16 +276,43 @@ extern "C" void cc1101_workaround(void* p) {
if(event.value.input.state && event.value.input.input == InputUp) { if(event.value.input.state && event.value.input.input == InputUp) {
if(state->active_freq > 0) { if(state->active_freq > 0) {
state->active_freq--; state->active_freq--;
state->need_cc1101_conf = true;
} }
} }
if(event.value.input.state && event.value.input.input == InputDown) { if(event.value.input.state && event.value.input.input == InputDown) {
if(state->active_freq < (sizeof(FREQ_LIST)/sizeof(FREQ_LIST[0]) - 1)) { if(state->active_freq < (sizeof(FREQ_LIST)/sizeof(FREQ_LIST[0]) - 1)) {
state->active_freq++; state->active_freq++;
state->need_cc1101_conf = true;
} }
} }
} }
if(state->need_cc1101_conf) {
setup_freq(&cc1101, &FREQ_LIST[state->active_freq]);
if(state->mode == ModeRx) {
state->last_rssi = rx_rssi(&cc1101, &FREQ_LIST[state->active_freq]);
} else if(state->mode == ModeTx) {
tx(&cc1101);
}
state->need_cc1101_conf = false;
}
digitalWrite(led, state->last_rssi > RSSI_THRESHOLD ? LOW : HIGH);
release_mutex(&state_mutex, state);
widget_update(widget);
} else {
State* state = (State*)acquire_mutex_block(&state_mutex);
if(!state->need_cc1101_conf && state->mode == ModeRx) {
state->last_rssi = rx_rssi(&cc1101, &FREQ_LIST[state->active_freq]);
}
digitalWrite(led, state->last_rssi > RSSI_THRESHOLD ? LOW : HIGH);
release_mutex(&state_mutex, state); release_mutex(&state_mutex, state);
widget_update(widget); widget_update(widget);
} }