[FL-2605] NFC new design (#1364)

* nfc: add new read scene

* lib: refactore nfc library

* mifare desfire: add read card fuction

* lib nfc: add auto read worker

* nfc: add supported cards

* nfc: add mifare classic read success scene

* nfc: add troyka support

* submodule: update protobuf

* nfc: mifare classic keys cache

* nfc: rework mifare classic key cache

* Correct spelling

* nfc: add user dictionary

* nfc: introduce block read map in fff

* nfc: rework dict attack

* nfc: improve dict attack

* nfc: rework mifare classic format

* nfc: rework MFC read with Reader

* nfc: add gui for MFC read success scene

* nfc: fix dict attack view gui

* nfc: add retry and exit confirm scenes

* nfc: add retry and exit scenes navigation

* nfc: check user dictionary

* nfc: remove unused scenes

* nfc: rename functions in nfc worker

* nfc: rename mf_classic_dict_attack -> dict_attack

* nfc: change scenes names
* nfc: remove scene tick events
* nfc: rework dict calls with buffer streams
* nfc: fix notifications
* nfc: fix mf desfire navigation
* nfc: remove notification from mf classic read success
* nfc: fix read sectors calculation
* nfc: add fallback for unknown card
* nfc: show file name while emulating
* nfc: fix build
* nfc: fix memory leak
* nfc: fix desfire read
* nfc: add no dict found navigation
* nfc: add read views
* nfc: update card fix
* nfc: fix access bytes save
* nfc: add exit and retry confirm to mf ultralight read success
* nfc: introduce detect reader
* nfc: change record open arg to macros
* nfc: fix start from archive

Co-authored-by: Astra <astra@astrra.space>
Co-authored-by: あく <alleteam@gmail.com>
This commit is contained in:
gornekich
2022-07-26 18:30:49 +03:00
committed by GitHub
parent ec19c11dbe
commit 9c59bcd776
89 changed files with 2755 additions and 2012 deletions

View File

@@ -0,0 +1,75 @@
#include "crypto1.h"
#include "nfc_util.h"
#include <furi.h>
// Algorithm from https://github.com/RfidResearchGroup/proxmark3.git
#define SWAPENDIAN(x) (x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16)
#define LF_POLY_ODD (0x29CE5C)
#define LF_POLY_EVEN (0x870804)
#define BEBIT(x, n) FURI_BIT(x, (n) ^ 24)
void crypto1_reset(Crypto1* crypto1) {
furi_assert(crypto1);
crypto1->even = 0;
crypto1->odd = 0;
}
void crypto1_init(Crypto1* crypto1, uint64_t key) {
furi_assert(crypto1);
crypto1->even = 0;
crypto1->odd = 0;
for(int8_t i = 47; i > 0; i -= 2) {
crypto1->odd = crypto1->odd << 1 | FURI_BIT(key, (i - 1) ^ 7);
crypto1->even = crypto1->even << 1 | FURI_BIT(key, i ^ 7);
}
}
uint32_t crypto1_filter(uint32_t in) {
uint32_t out = 0;
out = 0xf22c0 >> (in & 0xf) & 16;
out |= 0x6c9c0 >> (in >> 4 & 0xf) & 8;
out |= 0x3c8b0 >> (in >> 8 & 0xf) & 4;
out |= 0x1e458 >> (in >> 12 & 0xf) & 2;
out |= 0x0d938 >> (in >> 16 & 0xf) & 1;
return FURI_BIT(0xEC57E80A, out);
}
uint8_t crypto1_bit(Crypto1* crypto1, uint8_t in, int is_encrypted) {
furi_assert(crypto1);
uint8_t out = crypto1_filter(crypto1->odd);
uint32_t feed = out & (!!is_encrypted);
feed ^= !!in;
feed ^= LF_POLY_ODD & crypto1->odd;
feed ^= LF_POLY_EVEN & crypto1->even;
crypto1->even = crypto1->even << 1 | (nfc_util_even_parity32(feed));
FURI_SWAP(crypto1->odd, crypto1->even);
return out;
}
uint8_t crypto1_byte(Crypto1* crypto1, uint8_t in, int is_encrypted) {
furi_assert(crypto1);
uint8_t out = 0;
for(uint8_t i = 0; i < 8; i++) {
out |= crypto1_bit(crypto1, FURI_BIT(in, i), is_encrypted) << i;
}
return out;
}
uint32_t crypto1_word(Crypto1* crypto1, uint32_t in, int is_encrypted) {
furi_assert(crypto1);
uint32_t out = 0;
for(uint8_t i = 0; i < 32; i++) {
out |= crypto1_bit(crypto1, BEBIT(in, i), is_encrypted) << (24 ^ i);
}
return out;
}
uint32_t prng_successor(uint32_t x, uint32_t n) {
SWAPENDIAN(x);
while(n--) x = x >> 1 | (x >> 16 ^ x >> 18 ^ x >> 19 ^ x >> 21) << 31;
return SWAPENDIAN(x);
}

View File

@@ -0,0 +1,23 @@
#pragma once
#include <stdint.h>
#include <stdbool.h>
typedef struct {
uint32_t odd;
uint32_t even;
} Crypto1;
void crypto1_reset(Crypto1* crypto1);
void crypto1_init(Crypto1* crypto1, uint64_t key);
uint8_t crypto1_bit(Crypto1* crypto1, uint8_t in, int is_encrypted);
uint8_t crypto1_byte(Crypto1* crypto1, uint8_t in, int is_encrypted);
uint32_t crypto1_word(Crypto1* crypto1, uint32_t in, int is_encrypted);
uint32_t crypto1_filter(uint32_t in);
uint32_t prng_successor(uint32_t x, uint32_t n);

429
lib/nfc/protocols/emv.c Normal file
View File

@@ -0,0 +1,429 @@
#include "emv.h"
#include <core/common_defines.h>
#define TAG "Emv"
const PDOLValue pdol_term_info = {0x9F59, {0xC8, 0x80, 0x00}}; // Terminal transaction information
const PDOLValue pdol_term_type = {0x9F5A, {0x00}}; // Terminal transaction type
const PDOLValue pdol_merchant_type = {0x9F58, {0x01}}; // Merchant type indicator
const PDOLValue pdol_term_trans_qualifies = {
0x9F66,
{0x79, 0x00, 0x40, 0x80}}; // Terminal transaction qualifiers
const PDOLValue pdol_addtnl_term_qualifies = {
0x9F40,
{0x79, 0x00, 0x40, 0x80}}; // Terminal transaction qualifiers
const PDOLValue pdol_amount_authorise = {
0x9F02,
{0x00, 0x00, 0x00, 0x10, 0x00, 0x00}}; // Amount, authorised
const PDOLValue pdol_amount = {0x9F03, {0x00, 0x00, 0x00, 0x00, 0x00, 0x00}}; // Amount
const PDOLValue pdol_country_code = {0x9F1A, {0x01, 0x24}}; // Terminal country code
const PDOLValue pdol_currency_code = {0x5F2A, {0x01, 0x24}}; // Transaction currency code
const PDOLValue pdol_term_verification = {
0x95,
{0x00, 0x00, 0x00, 0x00, 0x00}}; // Terminal verification results
const PDOLValue pdol_transaction_date = {0x9A, {0x19, 0x01, 0x01}}; // Transaction date
const PDOLValue pdol_transaction_type = {0x9C, {0x00}}; // Transaction type
const PDOLValue pdol_transaction_cert = {0x98, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}; // Transaction cert
const PDOLValue pdol_unpredict_number = {0x9F37, {0x82, 0x3D, 0xDE, 0x7A}}; // Unpredictable number
const PDOLValue* const pdol_values[] = {
&pdol_term_info,
&pdol_term_type,
&pdol_merchant_type,
&pdol_term_trans_qualifies,
&pdol_addtnl_term_qualifies,
&pdol_amount_authorise,
&pdol_amount,
&pdol_country_code,
&pdol_currency_code,
&pdol_term_verification,
&pdol_transaction_date,
&pdol_transaction_type,
&pdol_transaction_cert,
&pdol_unpredict_number,
};
static const uint8_t select_ppse_ans[] = {0x6F, 0x29, 0x84, 0x0E, 0x32, 0x50, 0x41, 0x59, 0x2E,
0x53, 0x59, 0x53, 0x2E, 0x44, 0x44, 0x46, 0x30, 0x31,
0xA5, 0x17, 0xBF, 0x0C, 0x14, 0x61, 0x12, 0x4F, 0x07,
0xA0, 0x00, 0x00, 0x00, 0x03, 0x10, 0x10, 0x50, 0x04,
0x56, 0x49, 0x53, 0x41, 0x87, 0x01, 0x01, 0x90, 0x00};
static const uint8_t select_app_ans[] = {0x6F, 0x20, 0x84, 0x07, 0xA0, 0x00, 0x00, 0x00, 0x03,
0x10, 0x10, 0xA5, 0x15, 0x50, 0x04, 0x56, 0x49, 0x53,
0x41, 0x9F, 0x38, 0x0C, 0x9F, 0x66, 0x04, 0x9F, 0x02,
0x06, 0x9F, 0x37, 0x04, 0x5F, 0x2A, 0x02, 0x90, 0x00};
static const uint8_t pdol_ans[] = {0x77, 0x40, 0x82, 0x02, 0x20, 0x00, 0x57, 0x13, 0x55, 0x70,
0x73, 0x83, 0x85, 0x87, 0x73, 0x31, 0xD1, 0x80, 0x22, 0x01,
0x38, 0x84, 0x77, 0x94, 0x00, 0x00, 0x1F, 0x5F, 0x34, 0x01,
0x00, 0x9F, 0x10, 0x07, 0x06, 0x01, 0x11, 0x03, 0x80, 0x00,
0x00, 0x9F, 0x26, 0x08, 0x7A, 0x65, 0x7F, 0xD3, 0x52, 0x96,
0xC9, 0x85, 0x9F, 0x27, 0x01, 0x00, 0x9F, 0x36, 0x02, 0x06,
0x0C, 0x9F, 0x6C, 0x02, 0x10, 0x00, 0x90, 0x00};
static void emv_trace(FuriHalNfcTxRxContext* tx_rx, const char* message) {
if(furi_log_get_level() == FuriLogLevelTrace) {
FURI_LOG_T(TAG, "%s", message);
printf("TX: ");
for(size_t i = 0; i < tx_rx->tx_bits / 8; i++) {
printf("%02X ", tx_rx->tx_data[i]);
}
printf("\r\nRX: ");
for(size_t i = 0; i < tx_rx->rx_bits / 8; i++) {
printf("%02X ", tx_rx->rx_data[i]);
}
printf("\r\n");
}
}
static bool emv_decode_response(uint8_t* buff, uint16_t len, EmvApplication* app) {
uint16_t i = 0;
uint16_t tag = 0, first_byte = 0;
uint16_t tlen = 0;
bool success = false;
while(i < len) {
first_byte = buff[i];
if((first_byte & 31) == 31) { // 2-byte tag
tag = buff[i] << 8 | buff[i + 1];
i++;
FURI_LOG_T(TAG, " 2-byte TLV EMV tag: %x", tag);
} else {
tag = buff[i];
FURI_LOG_T(TAG, " 1-byte TLV EMV tag: %x", tag);
}
i++;
tlen = buff[i];
if((tlen & 128) == 128) { // long length value
i++;
tlen = buff[i];
FURI_LOG_T(TAG, " 2-byte TLV length: %d", tlen);
} else {
FURI_LOG_T(TAG, " 1-byte TLV length: %d", tlen);
}
i++;
if((first_byte & 32) == 32) { // "Constructed" -- contains more TLV data to parse
FURI_LOG_T(TAG, "Constructed TLV %x", tag);
if(!emv_decode_response(&buff[i], tlen, app)) {
FURI_LOG_T(TAG, "Failed to decode response for %x", tag);
// return false;
} else {
success = true;
}
} else {
switch(tag) {
case EMV_TAG_AID:
app->aid_len = tlen;
memcpy(app->aid, &buff[i], tlen);
success = true;
FURI_LOG_T(TAG, "found EMV_TAG_AID %x", tag);
break;
case EMV_TAG_PRIORITY:
memcpy(&app->priority, &buff[i], tlen);
success = true;
break;
case EMV_TAG_CARD_NAME:
memcpy(app->name, &buff[i], tlen);
app->name[tlen] = '\0';
app->name_found = true;
success = true;
FURI_LOG_T(TAG, "found EMV_TAG_CARD_NAME %x : %s", tag, app->name);
break;
case EMV_TAG_PDOL:
memcpy(app->pdol.data, &buff[i], tlen);
app->pdol.size = tlen;
success = true;
FURI_LOG_T(TAG, "found EMV_TAG_PDOL %x (len=%d)", tag, tlen);
break;
case EMV_TAG_AFL:
memcpy(app->afl.data, &buff[i], tlen);
app->afl.size = tlen;
success = true;
FURI_LOG_T(TAG, "found EMV_TAG_AFL %x (len=%d)", tag, tlen);
break;
case EMV_TAG_CARD_NUM: // Track 2 Equivalent Data. 0xD0 delimits PAN from expiry (YYMM)
for(int x = 1; x < tlen; x++) {
if(buff[i + x + 1] > 0xD0) {
memcpy(app->card_number, &buff[i], x + 1);
app->card_number_len = x + 1;
break;
}
}
success = true;
FURI_LOG_T(
TAG,
"found EMV_TAG_CARD_NUM %x (len=%d)",
EMV_TAG_CARD_NUM,
app->card_number_len);
break;
case EMV_TAG_PAN:
memcpy(app->card_number, &buff[i], tlen);
app->card_number_len = tlen;
success = true;
break;
case EMV_TAG_EXP_DATE:
app->exp_year = buff[i];
app->exp_month = buff[i + 1];
success = true;
break;
case EMV_TAG_CURRENCY_CODE:
app->currency_code = (buff[i] << 8 | buff[i + 1]);
success = true;
break;
case EMV_TAG_COUNTRY_CODE:
app->country_code = (buff[i] << 8 | buff[i + 1]);
success = true;
break;
}
}
i += tlen;
}
return success;
}
bool emv_select_ppse(FuriHalNfcTxRxContext* tx_rx, EmvApplication* app) {
bool app_aid_found = false;
const uint8_t emv_select_ppse_cmd[] = {
0x00, 0xA4, // SELECT ppse
0x04, 0x00, // P1:By name, P2: empty
0x0e, // Lc: Data length
0x32, 0x50, 0x41, 0x59, 0x2e, 0x53, 0x59, // Data string:
0x53, 0x2e, 0x44, 0x44, 0x46, 0x30, 0x31, // 2PAY.SYS.DDF01 (PPSE)
0x00 // Le
};
memcpy(tx_rx->tx_data, emv_select_ppse_cmd, sizeof(emv_select_ppse_cmd));
tx_rx->tx_bits = sizeof(emv_select_ppse_cmd) * 8;
tx_rx->tx_rx_type = FuriHalNfcTxRxTypeDefault;
FURI_LOG_D(TAG, "Send select PPSE");
if(furi_hal_nfc_tx_rx(tx_rx, 300)) {
emv_trace(tx_rx, "Select PPSE answer:");
if(emv_decode_response(tx_rx->rx_data, tx_rx->rx_bits / 8, app)) {
app_aid_found = true;
} else {
FURI_LOG_E(TAG, "Failed to parse application");
}
} else {
FURI_LOG_E(TAG, "Failed select PPSE");
}
return app_aid_found;
}
bool emv_select_app(FuriHalNfcTxRxContext* tx_rx, EmvApplication* app) {
bool select_app_success = false;
const uint8_t emv_select_header[] = {
0x00,
0xA4, // SELECT application
0x04,
0x00 // P1:By name, P2:First or only occurence
};
uint16_t size = sizeof(emv_select_header);
// Copy header
memcpy(tx_rx->tx_data, emv_select_header, size);
// Copy AID
tx_rx->tx_data[size++] = app->aid_len;
memcpy(&tx_rx->tx_data[size], app->aid, app->aid_len);
size += app->aid_len;
tx_rx->tx_data[size++] = 0x00;
tx_rx->tx_bits = size * 8;
tx_rx->tx_rx_type = FuriHalNfcTxRxTypeDefault;
FURI_LOG_D(TAG, "Start application");
if(furi_hal_nfc_tx_rx(tx_rx, 300)) {
emv_trace(tx_rx, "Start application answer:");
if(emv_decode_response(tx_rx->rx_data, tx_rx->rx_bits / 8, app)) {
select_app_success = true;
} else {
FURI_LOG_E(TAG, "Failed to read PAN or PDOL");
}
} else {
FURI_LOG_E(TAG, "Failed to start application");
}
return select_app_success;
}
static uint16_t emv_prepare_pdol(APDU* dest, APDU* src) {
bool tag_found;
for(uint16_t i = 0; i < src->size; i++) {
tag_found = false;
for(uint8_t j = 0; j < sizeof(pdol_values) / sizeof(PDOLValue*); j++) {
if(src->data[i] == pdol_values[j]->tag) {
// Found tag with 1 byte length
uint8_t len = src->data[++i];
memcpy(dest->data + dest->size, pdol_values[j]->data, len);
dest->size += len;
tag_found = true;
break;
} else if(((src->data[i] << 8) | src->data[i + 1]) == pdol_values[j]->tag) {
// Found tag with 2 byte length
i += 2;
uint8_t len = src->data[i];
memcpy(dest->data + dest->size, pdol_values[j]->data, len);
dest->size += len;
tag_found = true;
break;
}
}
if(!tag_found) {
// Unknown tag, fill zeros
i += 2;
uint8_t len = src->data[i];
memset(dest->data + dest->size, 0, len);
dest->size += len;
}
}
return dest->size;
}
static bool emv_get_processing_options(FuriHalNfcTxRxContext* tx_rx, EmvApplication* app) {
bool card_num_read = false;
const uint8_t emv_gpo_header[] = {0x80, 0xA8, 0x00, 0x00};
uint16_t size = sizeof(emv_gpo_header);
// Copy header
memcpy(tx_rx->tx_data, emv_gpo_header, size);
APDU pdol_data = {0, {0}};
// Prepare and copy pdol parameters
emv_prepare_pdol(&pdol_data, &app->pdol);
tx_rx->tx_data[size++] = 0x02 + pdol_data.size;
tx_rx->tx_data[size++] = 0x83;
tx_rx->tx_data[size++] = pdol_data.size;
memcpy(tx_rx->tx_data + size, pdol_data.data, pdol_data.size);
size += pdol_data.size;
tx_rx->tx_data[size++] = 0;
tx_rx->tx_bits = size * 8;
tx_rx->tx_rx_type = FuriHalNfcTxRxTypeDefault;
FURI_LOG_D(TAG, "Get proccessing options");
if(furi_hal_nfc_tx_rx(tx_rx, 300)) {
emv_trace(tx_rx, "Get processing options answer:");
if(emv_decode_response(tx_rx->rx_data, tx_rx->rx_bits / 8, app)) {
if(app->card_number_len > 0) {
card_num_read = true;
}
}
} else {
FURI_LOG_E(TAG, "Failed to get processing options");
}
return card_num_read;
}
static bool emv_read_sfi_record(
FuriHalNfcTxRxContext* tx_rx,
EmvApplication* app,
uint8_t sfi,
uint8_t record_num) {
bool card_num_read = false;
uint8_t sfi_param = (sfi << 3) | (1 << 2);
uint8_t emv_sfi_header[] = {
0x00,
0xB2, // READ RECORD
record_num, // P1:record_number
sfi_param, // P2:SFI
0x00 // Le
};
memcpy(tx_rx->tx_data, emv_sfi_header, sizeof(emv_sfi_header));
tx_rx->tx_bits = sizeof(emv_sfi_header) * 8;
tx_rx->tx_rx_type = FuriHalNfcTxRxTypeDefault;
if(furi_hal_nfc_tx_rx(tx_rx, 300)) {
emv_trace(tx_rx, "SFI record:");
if(emv_decode_response(tx_rx->rx_data, tx_rx->rx_bits / 8, app)) {
card_num_read = true;
}
} else {
FURI_LOG_E(TAG, "Failed to read SFI record %d", record_num);
}
return card_num_read;
}
static bool emv_read_files(FuriHalNfcTxRxContext* tx_rx, EmvApplication* app) {
bool card_num_read = false;
if(app->afl.size == 0) {
return false;
}
FURI_LOG_D(TAG, "Search PAN in SFI");
// Iterate through all files
for(size_t i = 0; i < app->afl.size; i += 4) {
uint8_t sfi = app->afl.data[i] >> 3;
uint8_t record_start = app->afl.data[i + 1];
uint8_t record_end = app->afl.data[i + 2];
// Iterate through all records in file
for(uint8_t record = record_start; record <= record_end; ++record) {
card_num_read |= emv_read_sfi_record(tx_rx, app, sfi, record);
}
}
return card_num_read;
}
bool emv_search_application(FuriHalNfcTxRxContext* tx_rx, EmvApplication* emv_app) {
furi_assert(tx_rx);
furi_assert(emv_app);
memset(emv_app, 0, sizeof(EmvApplication));
return emv_select_ppse(tx_rx, emv_app);
}
bool emv_read_bank_card(FuriHalNfcTxRxContext* tx_rx, EmvApplication* emv_app) {
furi_assert(tx_rx);
furi_assert(emv_app);
bool card_num_read = false;
memset(emv_app, 0, sizeof(EmvApplication));
do {
if(!emv_select_ppse(tx_rx, emv_app)) break;
if(!emv_select_app(tx_rx, emv_app)) break;
if(emv_get_processing_options(tx_rx, emv_app)) {
card_num_read = true;
} else {
card_num_read = emv_read_files(tx_rx, emv_app);
}
} while(false);
return card_num_read;
}
bool emv_card_emulation(FuriHalNfcTxRxContext* tx_rx) {
furi_assert(tx_rx);
bool emulation_complete = false;
tx_rx->tx_bits = 0;
tx_rx->tx_rx_type = FuriHalNfcTxRxTypeDefault;
do {
FURI_LOG_D(TAG, "Read select PPSE command");
if(!furi_hal_nfc_tx_rx(tx_rx, 300)) break;
memcpy(tx_rx->tx_data, select_ppse_ans, sizeof(select_ppse_ans));
tx_rx->tx_bits = sizeof(select_ppse_ans) * 8;
tx_rx->tx_rx_type = FuriHalNfcTxRxTypeDefault;
FURI_LOG_D(TAG, "Send select PPSE answer and read select App command");
if(!furi_hal_nfc_tx_rx(tx_rx, 300)) break;
memcpy(tx_rx->tx_data, select_app_ans, sizeof(select_app_ans));
tx_rx->tx_bits = sizeof(select_app_ans) * 8;
tx_rx->tx_rx_type = FuriHalNfcTxRxTypeDefault;
FURI_LOG_D(TAG, "Send select App answer and read get PDOL command");
if(!furi_hal_nfc_tx_rx(tx_rx, 300)) break;
memcpy(tx_rx->tx_data, pdol_ans, sizeof(pdol_ans));
tx_rx->tx_bits = sizeof(pdol_ans) * 8;
tx_rx->tx_rx_type = FuriHalNfcTxRxTypeDefault;
FURI_LOG_D(TAG, "Send get PDOL answer");
if(!furi_hal_nfc_tx_rx(tx_rx, 300)) break;
emulation_complete = true;
} while(false);
return emulation_complete;
}

87
lib/nfc/protocols/emv.h Executable file
View File

@@ -0,0 +1,87 @@
#pragma once
#include <furi_hal_nfc.h>
#define MAX_APDU_LEN 255
#define EMV_TAG_APP_TEMPLATE 0x61
#define EMV_TAG_AID 0x4F
#define EMV_TAG_PRIORITY 0x87
#define EMV_TAG_PDOL 0x9F38
#define EMV_TAG_CARD_NAME 0x50
#define EMV_TAG_FCI 0xBF0C
#define EMV_TAG_LOG_CTRL 0x9F4D
#define EMV_TAG_CARD_NUM 0x57
#define EMV_TAG_PAN 0x5A
#define EMV_TAG_AFL 0x94
#define EMV_TAG_EXP_DATE 0x5F24
#define EMV_TAG_COUNTRY_CODE 0x5F28
#define EMV_TAG_CURRENCY_CODE 0x9F42
#define EMV_TAG_CARDHOLDER_NAME 0x5F20
typedef struct {
char name[32];
uint8_t aid[16];
uint16_t aid_len;
uint8_t number[10];
uint8_t number_len;
uint8_t exp_mon;
uint8_t exp_year;
uint16_t country_code;
uint16_t currency_code;
} EmvData;
typedef struct {
uint16_t tag;
uint8_t data[];
} PDOLValue;
typedef struct {
uint8_t size;
uint8_t data[MAX_APDU_LEN];
} APDU;
typedef struct {
uint8_t priority;
uint8_t aid[16];
uint8_t aid_len;
char name[32];
bool name_found;
uint8_t card_number[10];
uint8_t card_number_len;
uint8_t exp_month;
uint8_t exp_year;
uint16_t country_code;
uint16_t currency_code;
APDU pdol;
APDU afl;
} EmvApplication;
/** Read bank card data
* @note Search EMV Application, start it, try to read AID, PAN, card name,
* expiration date, currency and country codes
*
* @param tx_rx FuriHalNfcTxRxContext instance
* @param emv_app EmvApplication instance
*
* @return true on success
*/
bool emv_read_bank_card(FuriHalNfcTxRxContext* tx_rx, EmvApplication* emv_app);
/** Search for EMV Application
*
* @param tx_rx FuriHalNfcTxRxContext instance
* @param emv_app EmvApplication instance
*
* @return true on success
*/
bool emv_search_application(FuriHalNfcTxRxContext* tx_rx, EmvApplication* emv_app);
/** Emulate bank card
* @note Answer to application selection and PDOL
*
* @param tx_rx FuriHalNfcTxRxContext instance
*
* @return true on success
*/
bool emv_card_emulation(FuriHalNfcTxRxContext* tx_rx);

View File

@@ -0,0 +1,989 @@
#include "mifare_classic.h"
#include "nfca.h"
#include "nfc_util.h"
#include <furi_hal_rtc.h>
// Algorithm from https://github.com/RfidResearchGroup/proxmark3.git
#define TAG "MfClassic"
#define MF_CLASSIC_AUTH_KEY_A_CMD (0x60U)
#define MF_CLASSIC_AUTH_KEY_B_CMD (0x61U)
#define MF_CLASSIC_READ_SECT_CMD (0x30)
typedef enum {
MfClassicActionDataRead,
MfClassicActionDataWrite,
MfClassicActionDataInc,
MfClassicActionDataDec,
MfClassicActionKeyARead,
MfClassicActionKeyAWrite,
MfClassicActionKeyBRead,
MfClassicActionKeyBWrite,
MfClassicActionACRead,
MfClassicActionACWrite,
} MfClassicAction;
const char* mf_classic_get_type_str(MfClassicType type) {
if(type == MfClassicType1k) {
return "MIFARE Classic 1K";
} else if(type == MfClassicType4k) {
return "MIFARE Classic 4K";
} else {
return "Unknown";
}
}
static uint8_t mf_classic_get_first_block_num_of_sector(uint8_t sector) {
furi_assert(sector < 40);
if(sector < 32) {
return sector * 4;
} else {
return 32 * 4 + (sector - 32) * 16;
}
}
uint8_t mf_classic_get_sector_trailer_block_num_by_sector(uint8_t sector) {
furi_assert(sector < 40);
if(sector < 32) {
return sector * 4 + 3;
} else {
return 32 * 4 + (sector - 32) * 16 + 15;
}
}
uint8_t mf_classic_get_sector_by_block(uint8_t block) {
if(block < 128) {
return (block | 0x03) / 4;
} else {
return 32 + ((block | 0xf) - 32 * 4) / 16;
}
}
static uint8_t mf_classic_get_blocks_num_in_sector(uint8_t sector) {
furi_assert(sector < 40);
return sector < 32 ? 4 : 16;
}
uint8_t mf_classic_get_sector_trailer_num_by_block(uint8_t block) {
if(block < 128) {
return block | 0x03;
} else {
return block | 0x0f;
}
}
bool mf_classic_is_sector_trailer(uint8_t block) {
return block == mf_classic_get_sector_trailer_num_by_block(block);
}
MfClassicSectorTrailer*
mf_classic_get_sector_trailer_by_sector(MfClassicData* data, uint8_t sector) {
furi_assert(data);
uint8_t sec_tr_block_num = mf_classic_get_sector_trailer_block_num_by_sector(sector);
return (MfClassicSectorTrailer*)data->block[sec_tr_block_num].value;
}
uint8_t mf_classic_get_total_sectors_num(MfClassicType type) {
if(type == MfClassicType1k) {
return MF_CLASSIC_1K_TOTAL_SECTORS_NUM;
} else if(type == MfClassicType4k) {
return MF_CLASSIC_4K_TOTAL_SECTORS_NUM;
} else {
return 0;
}
}
static uint16_t mf_classic_get_total_block_num(MfClassicType type) {
if(type == MfClassicType1k) {
return 64;
} else if(type == MfClassicType4k) {
return 256;
} else {
return 0;
}
}
bool mf_classic_is_block_read(MfClassicData* data, uint8_t block_num) {
furi_assert(data);
return (FURI_BIT(data->block_read_mask[block_num / 32], block_num % 32) == 1);
}
void mf_classic_set_block_read(MfClassicData* data, uint8_t block_num, MfClassicBlock* block_data) {
furi_assert(data);
if(mf_classic_is_sector_trailer(block_num)) {
memcpy(&data->block[block_num].value[6], &block_data->value[6], 4);
} else {
memcpy(data->block[block_num].value, block_data->value, MF_CLASSIC_BLOCK_SIZE);
}
FURI_BIT_SET(data->block_read_mask[block_num / 32], block_num % 32);
}
bool mf_classic_is_key_found(MfClassicData* data, uint8_t sector_num, MfClassicKey key_type) {
furi_assert(data);
bool key_found = false;
if(key_type == MfClassicKeyA) {
key_found = (FURI_BIT(data->key_a_mask, sector_num) == 1);
} else if(key_type == MfClassicKeyB) {
key_found = (FURI_BIT(data->key_b_mask, sector_num) == 1);
}
return key_found;
}
void mf_classic_set_key_found(
MfClassicData* data,
uint8_t sector_num,
MfClassicKey key_type,
uint64_t key) {
furi_assert(data);
uint8_t key_arr[6] = {};
MfClassicSectorTrailer* sec_trailer =
mf_classic_get_sector_trailer_by_sector(data, sector_num);
nfc_util_num2bytes(key, 6, key_arr);
if(key_type == MfClassicKeyA) {
memcpy(sec_trailer->key_a, key_arr, sizeof(sec_trailer->key_a));
FURI_BIT_SET(data->key_a_mask, sector_num);
} else if(key_type == MfClassicKeyB) {
memcpy(sec_trailer->key_b, key_arr, sizeof(sec_trailer->key_b));
FURI_BIT_SET(data->key_b_mask, sector_num);
}
}
bool mf_classic_is_sector_read(MfClassicData* data, uint8_t sector_num) {
furi_assert(data);
bool sector_read = false;
do {
if(!mf_classic_is_key_found(data, sector_num, MfClassicKeyA)) break;
if(!mf_classic_is_key_found(data, sector_num, MfClassicKeyB)) break;
uint8_t start_block = mf_classic_get_first_block_num_of_sector(sector_num);
uint8_t total_blocks = mf_classic_get_blocks_num_in_sector(sector_num);
uint8_t block_read = true;
for(size_t i = start_block; i < start_block + total_blocks; i++) {
block_read = mf_classic_is_block_read(data, i);
if(!block_read) break;
}
sector_read = block_read;
} while(false);
return sector_read;
}
void mf_classic_get_read_sectors_and_keys(
MfClassicData* data,
uint8_t* sectors_read,
uint8_t* keys_found) {
furi_assert(data);
*sectors_read = 0;
*keys_found = 0;
uint8_t sectors_total = mf_classic_get_total_sectors_num(data->type);
for(size_t i = 0; i < sectors_total; i++) {
if(mf_classic_is_key_found(data, i, MfClassicKeyA)) {
*keys_found += 1;
}
if(mf_classic_is_key_found(data, i, MfClassicKeyB)) {
*keys_found += 1;
}
uint8_t first_block = mf_classic_get_first_block_num_of_sector(i);
uint8_t total_blocks_in_sec = mf_classic_get_blocks_num_in_sector(i);
bool blocks_read = true;
for(size_t i = first_block; i < first_block + total_blocks_in_sec; i++) {
blocks_read = mf_classic_is_block_read(data, i);
if(!blocks_read) break;
}
if(blocks_read) {
*sectors_read += 1;
}
}
}
static bool mf_classic_is_allowed_access_sector_trailer(
MfClassicEmulator* emulator,
uint8_t block_num,
MfClassicKey key,
MfClassicAction action) {
uint8_t* sector_trailer = emulator->data.block[block_num].value;
uint8_t AC = ((sector_trailer[7] >> 5) & 0x04) | ((sector_trailer[8] >> 2) & 0x02) |
((sector_trailer[8] >> 7) & 0x01);
switch(action) {
case MfClassicActionKeyARead: {
return false;
}
case MfClassicActionKeyAWrite: {
return (
(key == MfClassicKeyA && (AC == 0x00 || AC == 0x01)) ||
(key == MfClassicKeyB && (AC == 0x04 || AC == 0x03)));
}
case MfClassicActionKeyBRead: {
return (key == MfClassicKeyA && (AC == 0x00 || AC == 0x02 || AC == 0x01));
}
case MfClassicActionKeyBWrite: {
return (
(key == MfClassicKeyA && (AC == 0x00 || AC == 0x01)) ||
(key == MfClassicKeyB && (AC == 0x04 || AC == 0x03)));
}
case MfClassicActionACRead: {
return (
(key == MfClassicKeyA) ||
(key == MfClassicKeyB && !(AC == 0x00 || AC == 0x02 || AC == 0x01)));
}
case MfClassicActionACWrite: {
return (
(key == MfClassicKeyA && (AC == 0x01)) ||
(key == MfClassicKeyB && (AC == 0x03 || AC == 0x05)));
}
default:
return false;
}
return true;
}
static bool mf_classic_is_allowed_access_data_block(
MfClassicEmulator* emulator,
uint8_t block_num,
MfClassicKey key,
MfClassicAction action) {
uint8_t* sector_trailer =
emulator->data.block[mf_classic_get_sector_trailer_num_by_block(block_num)].value;
uint8_t sector_block;
if(block_num <= 128) {
sector_block = block_num & 0x03;
} else {
sector_block = (block_num & 0x0f) / 5;
}
uint8_t AC;
switch(sector_block) {
case 0x00: {
AC = ((sector_trailer[7] >> 2) & 0x04) | ((sector_trailer[8] << 1) & 0x02) |
((sector_trailer[8] >> 4) & 0x01);
break;
}
case 0x01: {
AC = ((sector_trailer[7] >> 3) & 0x04) | ((sector_trailer[8] >> 0) & 0x02) |
((sector_trailer[8] >> 5) & 0x01);
break;
}
case 0x02: {
AC = ((sector_trailer[7] >> 4) & 0x04) | ((sector_trailer[8] >> 1) & 0x02) |
((sector_trailer[8] >> 6) & 0x01);
break;
}
default:
return false;
}
switch(action) {
case MfClassicActionDataRead: {
return (
(key == MfClassicKeyA && !(AC == 0x03 || AC == 0x05 || AC == 0x07)) ||
(key == MfClassicKeyB && !(AC == 0x07)));
}
case MfClassicActionDataWrite: {
return (
(key == MfClassicKeyA && (AC == 0x00)) ||
(key == MfClassicKeyB && (AC == 0x00 || AC == 0x04 || AC == 0x06 || AC == 0x03)));
}
case MfClassicActionDataInc: {
return (
(key == MfClassicKeyA && (AC == 0x00)) ||
(key == MfClassicKeyB && (AC == 0x00 || AC == 0x06)));
}
case MfClassicActionDataDec: {
return (
(key == MfClassicKeyA && (AC == 0x00 || AC == 0x06 || AC == 0x01)) ||
(key == MfClassicKeyB && (AC == 0x00 || AC == 0x06 || AC == 0x01)));
}
default:
return false;
}
return false;
}
static bool mf_classic_is_allowed_access(
MfClassicEmulator* emulator,
uint8_t block_num,
MfClassicKey key,
MfClassicAction action) {
if(mf_classic_is_sector_trailer(block_num)) {
return mf_classic_is_allowed_access_sector_trailer(emulator, block_num, key, action);
} else {
return mf_classic_is_allowed_access_data_block(emulator, block_num, key, action);
}
}
bool mf_classic_check_card_type(uint8_t ATQA0, uint8_t ATQA1, uint8_t SAK) {
UNUSED(ATQA1);
if((ATQA0 == 0x44 || ATQA0 == 0x04) && (SAK == 0x08 || SAK == 0x88 || SAK == 0x09)) {
return true;
} else if((ATQA0 == 0x42 || ATQA0 == 0x02) && (SAK == 0x18)) {
return true;
} else {
return false;
}
}
MfClassicType mf_classic_get_classic_type(int8_t ATQA0, uint8_t ATQA1, uint8_t SAK) {
UNUSED(ATQA1);
if((ATQA0 == 0x44 || ATQA0 == 0x04) && (SAK == 0x08 || SAK == 0x88 || SAK == 0x09)) {
return MfClassicType1k;
} else if((ATQA0 == 0x42 || ATQA0 == 0x02) && (SAK == 0x18)) {
return MfClassicType4k;
}
return MfClassicType1k;
}
bool mf_classic_get_type(uint8_t ATQA0, uint8_t ATQA1, uint8_t SAK, MfClassicReader* reader) {
UNUSED(ATQA1);
furi_assert(reader);
memset(reader, 0, sizeof(MfClassicReader));
if((ATQA0 == 0x44 || ATQA0 == 0x04) && (SAK == 0x08 || SAK == 0x88 || SAK == 0x09)) {
reader->type = MfClassicType1k;
} else if((ATQA0 == 0x42 || ATQA0 == 0x02) && (SAK == 0x18)) {
reader->type = MfClassicType4k;
} else {
return false;
}
return true;
}
void mf_classic_reader_add_sector(
MfClassicReader* reader,
uint8_t sector,
uint64_t key_a,
uint64_t key_b) {
furi_assert(reader);
furi_assert(sector < MF_CLASSIC_SECTORS_MAX);
furi_assert((key_a != MF_CLASSIC_NO_KEY) || (key_b != MF_CLASSIC_NO_KEY));
if(reader->sectors_to_read < MF_CLASSIC_SECTORS_MAX) {
reader->sector_reader[reader->sectors_to_read].key_a = key_a;
reader->sector_reader[reader->sectors_to_read].key_b = key_b;
reader->sector_reader[reader->sectors_to_read].sector_num = sector;
reader->sectors_to_read++;
}
}
void mf_classic_auth_init_context(MfClassicAuthContext* auth_ctx, uint8_t sector) {
furi_assert(auth_ctx);
auth_ctx->sector = sector;
auth_ctx->key_a = MF_CLASSIC_NO_KEY;
auth_ctx->key_b = MF_CLASSIC_NO_KEY;
}
static bool mf_classic_auth(
FuriHalNfcTxRxContext* tx_rx,
uint32_t block,
uint64_t key,
MfClassicKey key_type,
Crypto1* crypto) {
bool auth_success = false;
uint32_t cuid = 0;
memset(tx_rx->tx_data, 0, sizeof(tx_rx->tx_data));
memset(tx_rx->tx_parity, 0, sizeof(tx_rx->tx_parity));
tx_rx->tx_rx_type = FuriHalNfcTxRxTypeDefault;
do {
if(!furi_hal_nfc_activate_nfca(200, &cuid)) break;
if(key_type == MfClassicKeyA) {
tx_rx->tx_data[0] = MF_CLASSIC_AUTH_KEY_A_CMD;
} else {
tx_rx->tx_data[0] = MF_CLASSIC_AUTH_KEY_B_CMD;
}
tx_rx->tx_data[1] = block;
tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRxNoCrc;
tx_rx->tx_bits = 2 * 8;
if(!furi_hal_nfc_tx_rx(tx_rx, 6)) break;
uint32_t nt = (uint32_t)nfc_util_bytes2num(tx_rx->rx_data, 4);
crypto1_init(crypto, key);
crypto1_word(crypto, nt ^ cuid, 0);
uint8_t nr[4] = {};
nfc_util_num2bytes(prng_successor(DWT->CYCCNT, 32), 4, nr);
for(uint8_t i = 0; i < 4; i++) {
tx_rx->tx_data[i] = crypto1_byte(crypto, nr[i], 0) ^ nr[i];
tx_rx->tx_parity[0] |=
(((crypto1_filter(crypto->odd) ^ nfc_util_odd_parity8(nr[i])) & 0x01) << (7 - i));
}
nt = prng_successor(nt, 32);
for(uint8_t i = 4; i < 8; i++) {
nt = prng_successor(nt, 8);
tx_rx->tx_data[i] = crypto1_byte(crypto, 0x00, 0) ^ (nt & 0xff);
tx_rx->tx_parity[0] |=
(((crypto1_filter(crypto->odd) ^ nfc_util_odd_parity8(nt & 0xff)) & 0x01)
<< (7 - i));
}
tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRaw;
tx_rx->tx_bits = 8 * 8;
if(!furi_hal_nfc_tx_rx(tx_rx, 6)) break;
if(tx_rx->rx_bits == 32) {
crypto1_word(crypto, 0, 0);
auth_success = true;
}
} while(false);
return auth_success;
}
bool mf_classic_authenticate(
FuriHalNfcTxRxContext* tx_rx,
uint8_t block_num,
uint64_t key,
MfClassicKey key_type) {
furi_assert(tx_rx);
Crypto1 crypto = {};
bool key_found = mf_classic_auth(tx_rx, block_num, key, key_type, &crypto);
furi_hal_nfc_sleep();
return key_found;
}
bool mf_classic_auth_attempt(
FuriHalNfcTxRxContext* tx_rx,
MfClassicAuthContext* auth_ctx,
uint64_t key) {
furi_assert(tx_rx);
furi_assert(auth_ctx);
bool found_key = false;
bool need_halt = (auth_ctx->key_a == MF_CLASSIC_NO_KEY) &&
(auth_ctx->key_b == MF_CLASSIC_NO_KEY);
Crypto1 crypto;
if(auth_ctx->key_a == MF_CLASSIC_NO_KEY) {
// Try AUTH with key A
if(mf_classic_auth(
tx_rx,
mf_classic_get_first_block_num_of_sector(auth_ctx->sector),
key,
MfClassicKeyA,
&crypto)) {
auth_ctx->key_a = key;
found_key = true;
}
}
if(need_halt) {
furi_hal_nfc_sleep();
}
if(auth_ctx->key_b == MF_CLASSIC_NO_KEY) {
// Try AUTH with key B
if(mf_classic_auth(
tx_rx,
mf_classic_get_first_block_num_of_sector(auth_ctx->sector),
key,
MfClassicKeyB,
&crypto)) {
auth_ctx->key_b = key;
found_key = true;
}
}
return found_key;
}
bool mf_classic_read_block(
FuriHalNfcTxRxContext* tx_rx,
Crypto1* crypto,
uint8_t block_num,
MfClassicBlock* block) {
furi_assert(tx_rx);
furi_assert(crypto);
furi_assert(block);
bool read_block_success = false;
uint8_t plain_cmd[4] = {MF_CLASSIC_READ_SECT_CMD, block_num, 0x00, 0x00};
nfca_append_crc16(plain_cmd, 2);
memset(tx_rx->tx_data, 0, sizeof(tx_rx->tx_data));
memset(tx_rx->tx_parity, 0, sizeof(tx_rx->tx_parity));
for(uint8_t i = 0; i < 4; i++) {
tx_rx->tx_data[i] = crypto1_byte(crypto, 0x00, 0) ^ plain_cmd[i];
tx_rx->tx_parity[0] |=
((crypto1_filter(crypto->odd) ^ nfc_util_odd_parity8(plain_cmd[i])) & 0x01) << (7 - i);
}
tx_rx->tx_bits = 4 * 9;
tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRaw;
if(furi_hal_nfc_tx_rx(tx_rx, 50)) {
if(tx_rx->rx_bits == 8 * (MF_CLASSIC_BLOCK_SIZE + 2)) {
uint8_t block_received[MF_CLASSIC_BLOCK_SIZE + 2];
for(uint8_t i = 0; i < MF_CLASSIC_BLOCK_SIZE + 2; i++) {
block_received[i] = crypto1_byte(crypto, 0, 0) ^ tx_rx->rx_data[i];
}
uint16_t crc_calc = nfca_get_crc16(block_received, MF_CLASSIC_BLOCK_SIZE);
uint16_t crc_received = (block_received[MF_CLASSIC_BLOCK_SIZE + 1] << 8) |
block_received[MF_CLASSIC_BLOCK_SIZE];
if(crc_received != crc_calc) {
FURI_LOG_E(
TAG,
"Incorrect CRC while reading block %d. Expected %04X, Received %04X",
block_num,
crc_received,
crc_calc);
} else {
memcpy(block->value, block_received, MF_CLASSIC_BLOCK_SIZE);
read_block_success = true;
}
}
}
return read_block_success;
}
void mf_classic_read_sector(FuriHalNfcTxRxContext* tx_rx, MfClassicData* data, uint8_t sec_num) {
furi_assert(tx_rx);
furi_assert(data);
furi_hal_nfc_sleep();
bool key_a_found = mf_classic_is_key_found(data, sec_num, MfClassicKeyA);
bool key_b_found = mf_classic_is_key_found(data, sec_num, MfClassicKeyB);
uint8_t start_block = mf_classic_get_first_block_num_of_sector(sec_num);
uint8_t total_blocks = mf_classic_get_blocks_num_in_sector(sec_num);
MfClassicBlock block_tmp = {};
uint64_t key = 0;
MfClassicSectorTrailer* sec_tr = mf_classic_get_sector_trailer_by_sector(data, sec_num);
Crypto1 crypto = {};
uint8_t blocks_read = 0;
do {
if(!key_a_found) break;
FURI_LOG_D(TAG, "Try to read blocks with key A");
key = nfc_util_bytes2num(sec_tr->key_a, sizeof(sec_tr->key_a));
if(!mf_classic_auth(tx_rx, start_block, key, MfClassicKeyA, &crypto)) break;
for(size_t i = start_block; i < start_block + total_blocks; i++) {
if(!mf_classic_is_block_read(data, i)) {
if(mf_classic_read_block(tx_rx, &crypto, i, &block_tmp)) {
mf_classic_set_block_read(data, i, &block_tmp);
blocks_read++;
}
} else {
blocks_read++;
}
}
FURI_LOG_D(TAG, "Read %d blocks out of %d", blocks_read, total_blocks);
} while(false);
do {
if(blocks_read == total_blocks) break;
if(!key_b_found) break;
FURI_LOG_D(TAG, "Try to read blocks with key B");
key = nfc_util_bytes2num(sec_tr->key_b, sizeof(sec_tr->key_b));
furi_hal_nfc_sleep();
if(!mf_classic_auth(tx_rx, start_block, key, MfClassicKeyB, &crypto)) break;
for(size_t i = start_block; i < start_block + total_blocks; i++) {
if(!mf_classic_is_block_read(data, i)) {
if(mf_classic_read_block(tx_rx, &crypto, i, &block_tmp)) {
mf_classic_set_block_read(data, i, &block_tmp);
blocks_read++;
}
} else {
blocks_read++;
}
}
FURI_LOG_D(TAG, "Read %d blocks out of %d", blocks_read, total_blocks);
} while(false);
}
static bool mf_classic_read_sector_with_reader(
FuriHalNfcTxRxContext* tx_rx,
Crypto1* crypto,
MfClassicSectorReader* sector_reader,
MfClassicSector* sector) {
furi_assert(tx_rx);
furi_assert(sector_reader);
furi_assert(sector);
uint64_t key;
MfClassicKey key_type;
uint8_t first_block;
bool sector_read = false;
furi_hal_nfc_sleep();
do {
// Activate card
first_block = mf_classic_get_first_block_num_of_sector(sector_reader->sector_num);
if(sector_reader->key_a != MF_CLASSIC_NO_KEY) {
key = sector_reader->key_a;
key_type = MfClassicKeyA;
} else if(sector_reader->key_b != MF_CLASSIC_NO_KEY) {
key = sector_reader->key_b;
key_type = MfClassicKeyB;
} else {
break;
}
// Auth to first block in sector
if(!mf_classic_auth(tx_rx, first_block, key, key_type, crypto)) break;
sector->total_blocks = mf_classic_get_blocks_num_in_sector(sector_reader->sector_num);
// Read blocks
for(uint8_t i = 0; i < sector->total_blocks; i++) {
mf_classic_read_block(tx_rx, crypto, first_block + i, &sector->block[i]);
}
// Save sector keys in last block
if(sector_reader->key_a != MF_CLASSIC_NO_KEY) {
nfc_util_num2bytes(
sector_reader->key_a, 6, &sector->block[sector->total_blocks - 1].value[0]);
}
if(sector_reader->key_b != MF_CLASSIC_NO_KEY) {
nfc_util_num2bytes(
sector_reader->key_b, 6, &sector->block[sector->total_blocks - 1].value[10]);
}
sector_read = true;
} while(false);
return sector_read;
}
uint8_t mf_classic_read_card(
FuriHalNfcTxRxContext* tx_rx,
MfClassicReader* reader,
MfClassicData* data) {
furi_assert(tx_rx);
furi_assert(reader);
furi_assert(data);
uint8_t sectors_read = 0;
data->type = reader->type;
data->key_a_mask = 0;
data->key_b_mask = 0;
MfClassicSector temp_sector = {};
for(uint8_t i = 0; i < reader->sectors_to_read; i++) {
if(mf_classic_read_sector_with_reader(
tx_rx, &reader->crypto, &reader->sector_reader[i], &temp_sector)) {
uint8_t first_block =
mf_classic_get_first_block_num_of_sector(reader->sector_reader[i].sector_num);
for(uint8_t j = 0; j < temp_sector.total_blocks; j++) {
mf_classic_set_block_read(data, first_block + j, &temp_sector.block[j]);
}
if(reader->sector_reader[i].key_a != MF_CLASSIC_NO_KEY) {
mf_classic_set_key_found(
data,
reader->sector_reader[i].sector_num,
MfClassicKeyA,
reader->sector_reader[i].key_a);
}
if(reader->sector_reader[i].key_b != MF_CLASSIC_NO_KEY) {
mf_classic_set_key_found(
data,
reader->sector_reader[i].sector_num,
MfClassicKeyB,
reader->sector_reader[i].key_b);
}
sectors_read++;
}
}
return sectors_read;
}
uint8_t mf_classic_update_card(FuriHalNfcTxRxContext* tx_rx, MfClassicData* data) {
furi_assert(tx_rx);
furi_assert(data);
uint8_t sectors_read = 0;
Crypto1 crypto = {};
uint8_t total_sectors = mf_classic_get_total_sectors_num(data->type);
uint64_t key_a = 0;
uint64_t key_b = 0;
MfClassicSectorReader sec_reader = {};
MfClassicSector temp_sector = {};
for(size_t i = 0; i < total_sectors; i++) {
MfClassicSectorTrailer* sec_tr = mf_classic_get_sector_trailer_by_sector(data, i);
// Load key A
if(mf_classic_is_key_found(data, i, MfClassicKeyA)) {
sec_reader.key_a = nfc_util_bytes2num(sec_tr->key_a, 6);
} else {
sec_reader.key_a = MF_CLASSIC_NO_KEY;
}
// Load key B
if(mf_classic_is_key_found(data, i, MfClassicKeyB)) {
sec_reader.key_b = nfc_util_bytes2num(sec_tr->key_b, 6);
} else {
sec_reader.key_b = MF_CLASSIC_NO_KEY;
}
if((key_a != MF_CLASSIC_NO_KEY) || (key_b != MF_CLASSIC_NO_KEY)) {
sec_reader.sector_num = i;
if(mf_classic_read_sector_with_reader(tx_rx, &crypto, &sec_reader, &temp_sector)) {
uint8_t first_block = mf_classic_get_first_block_num_of_sector(i);
for(uint8_t j = 0; j < temp_sector.total_blocks; j++) {
mf_classic_set_block_read(data, first_block + j, &temp_sector.block[j]);
}
sectors_read++;
}
}
}
return sectors_read;
}
void mf_crypto1_decrypt(
Crypto1* crypto,
uint8_t* encrypted_data,
uint16_t encrypted_data_bits,
uint8_t* decrypted_data) {
if(encrypted_data_bits < 8) {
uint8_t decrypted_byte = 0;
decrypted_byte |= (crypto1_bit(crypto, 0, 0) ^ FURI_BIT(encrypted_data[0], 0)) << 0;
decrypted_byte |= (crypto1_bit(crypto, 0, 0) ^ FURI_BIT(encrypted_data[0], 1)) << 1;
decrypted_byte |= (crypto1_bit(crypto, 0, 0) ^ FURI_BIT(encrypted_data[0], 2)) << 2;
decrypted_byte |= (crypto1_bit(crypto, 0, 0) ^ FURI_BIT(encrypted_data[0], 3)) << 3;
decrypted_data[0] = decrypted_byte;
} else {
for(size_t i = 0; i < encrypted_data_bits / 8; i++) {
decrypted_data[i] = crypto1_byte(crypto, 0, 0) ^ encrypted_data[i];
}
}
}
void mf_crypto1_encrypt(
Crypto1* crypto,
uint8_t* keystream,
uint8_t* plain_data,
uint16_t plain_data_bits,
uint8_t* encrypted_data,
uint8_t* encrypted_parity) {
if(plain_data_bits < 8) {
encrypted_data[0] = 0;
for(size_t i = 0; i < plain_data_bits; i++) {
encrypted_data[0] |= (crypto1_bit(crypto, 0, 0) ^ FURI_BIT(plain_data[0], i)) << i;
}
} else {
memset(encrypted_parity, 0, plain_data_bits / 8 + 1);
for(uint8_t i = 0; i < plain_data_bits / 8; i++) {
encrypted_data[i] = crypto1_byte(crypto, keystream ? keystream[i] : 0, 0) ^
plain_data[i];
encrypted_parity[i / 8] |=
(((crypto1_filter(crypto->odd) ^ nfc_util_odd_parity8(plain_data[i])) & 0x01)
<< (7 - (i & 0x0007)));
}
}
}
bool mf_classic_emulator(MfClassicEmulator* emulator, FuriHalNfcTxRxContext* tx_rx) {
furi_assert(emulator);
furi_assert(tx_rx);
bool command_processed = false;
bool is_encrypted = false;
uint8_t plain_data[MF_CLASSIC_MAX_DATA_SIZE];
MfClassicKey access_key = MfClassicKeyA;
// Read command
while(!command_processed) {
if(!is_encrypted) {
memcpy(plain_data, tx_rx->rx_data, tx_rx->rx_bits / 8);
} else {
if(!furi_hal_nfc_tx_rx(tx_rx, 300)) {
FURI_LOG_D(
TAG,
"Error in tx rx. Tx :%d bits, Rx: %d bits",
tx_rx->tx_bits,
tx_rx->rx_bits);
break;
}
mf_crypto1_decrypt(&emulator->crypto, tx_rx->rx_data, tx_rx->rx_bits, plain_data);
}
if(plain_data[0] == 0x50 && plain_data[1] == 0x00) {
FURI_LOG_T(TAG, "Halt received");
furi_hal_nfc_listen_sleep();
command_processed = true;
break;
} else if(plain_data[0] == 0x60 || plain_data[0] == 0x61) {
uint8_t block = plain_data[1];
uint64_t key = 0;
uint8_t sector_trailer_block = mf_classic_get_sector_trailer_num_by_block(block);
MfClassicSectorTrailer* sector_trailer =
(MfClassicSectorTrailer*)emulator->data.block[sector_trailer_block].value;
if(plain_data[0] == 0x60) {
key = nfc_util_bytes2num(sector_trailer->key_a, 6);
access_key = MfClassicKeyA;
} else {
key = nfc_util_bytes2num(sector_trailer->key_b, 6);
access_key = MfClassicKeyB;
}
uint32_t nonce = prng_successor(DWT->CYCCNT, 32);
uint8_t nt[4];
uint8_t nt_keystream[4];
nfc_util_num2bytes(nonce, 4, nt);
nfc_util_num2bytes(nonce ^ emulator->cuid, 4, nt_keystream);
crypto1_init(&emulator->crypto, key);
if(!is_encrypted) {
crypto1_word(&emulator->crypto, emulator->cuid ^ nonce, 0);
memcpy(tx_rx->tx_data, nt, sizeof(nt));
tx_rx->tx_parity[0] = 0;
for(size_t i = 0; i < sizeof(nt); i++) {
tx_rx->tx_parity[0] |= nfc_util_odd_parity8(nt[i]) << (7 - i);
}
tx_rx->tx_bits = sizeof(nt) * 8;
tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
} else {
mf_crypto1_encrypt(
&emulator->crypto,
nt_keystream,
nt,
sizeof(nt) * 8,
tx_rx->tx_data,
tx_rx->tx_parity);
tx_rx->tx_bits = sizeof(nt) * 8;
tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
}
if(!furi_hal_nfc_tx_rx(tx_rx, 500)) {
FURI_LOG_E(TAG, "Error in NT exchange");
command_processed = true;
break;
}
if(tx_rx->rx_bits != 64) {
FURI_LOG_W(TAG, "Incorrect nr + ar");
command_processed = true;
break;
}
uint32_t nr = nfc_util_bytes2num(tx_rx->rx_data, 4);
uint32_t ar = nfc_util_bytes2num(&tx_rx->rx_data[4], 4);
FURI_LOG_D(
TAG,
"%08x key%c block %d nt/nr/ar: %08x %08x %08x",
emulator->cuid,
access_key == MfClassicKeyA ? 'A' : 'B',
sector_trailer_block,
nonce,
nr,
ar);
crypto1_word(&emulator->crypto, nr, 1);
uint32_t cardRr = ar ^ crypto1_word(&emulator->crypto, 0, 0);
if(cardRr != prng_successor(nonce, 64)) {
FURI_LOG_T(TAG, "Wrong AUTH! %08X != %08X", cardRr, prng_successor(nonce, 64));
// Don't send NACK, as tag don't send it
command_processed = true;
break;
}
uint32_t ans = prng_successor(nonce, 96);
uint8_t responce[4] = {};
nfc_util_num2bytes(ans, 4, responce);
mf_crypto1_encrypt(
&emulator->crypto,
NULL,
responce,
sizeof(responce) * 8,
tx_rx->tx_data,
tx_rx->tx_parity);
tx_rx->tx_bits = sizeof(responce) * 8;
tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
is_encrypted = true;
} else if(is_encrypted && plain_data[0] == 0x30) {
uint8_t block = plain_data[1];
uint8_t block_data[18] = {};
memcpy(block_data, emulator->data.block[block].value, MF_CLASSIC_BLOCK_SIZE);
if(mf_classic_is_sector_trailer(block)) {
if(!mf_classic_is_allowed_access(
emulator, block, access_key, MfClassicActionKeyARead)) {
memset(block_data, 0, 6);
}
if(!mf_classic_is_allowed_access(
emulator, block, access_key, MfClassicActionKeyBRead)) {
memset(&block_data[10], 0, 6);
}
if(!mf_classic_is_allowed_access(
emulator, block, access_key, MfClassicActionACRead)) {
memset(&block_data[6], 0, 4);
}
} else {
if(!mf_classic_is_allowed_access(
emulator, block, access_key, MfClassicActionDataRead)) {
memset(block_data, 0, 16);
}
}
nfca_append_crc16(block_data, 16);
mf_crypto1_encrypt(
&emulator->crypto,
NULL,
block_data,
sizeof(block_data) * 8,
tx_rx->tx_data,
tx_rx->tx_parity);
tx_rx->tx_bits = 18 * 8;
tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
} else if(is_encrypted && plain_data[0] == 0xA0) {
uint8_t block = plain_data[1];
if(block > mf_classic_get_total_block_num(emulator->data.type)) {
break;
}
// Send ACK
uint8_t ack = 0x0A;
mf_crypto1_encrypt(&emulator->crypto, NULL, &ack, 4, tx_rx->tx_data, tx_rx->tx_parity);
tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
tx_rx->tx_bits = 4;
if(!furi_hal_nfc_tx_rx(tx_rx, 300)) break;
if(tx_rx->rx_bits != 18 * 8) break;
mf_crypto1_decrypt(&emulator->crypto, tx_rx->rx_data, tx_rx->rx_bits, plain_data);
uint8_t block_data[16] = {};
memcpy(block_data, emulator->data.block[block].value, MF_CLASSIC_BLOCK_SIZE);
if(mf_classic_is_sector_trailer(block)) {
if(mf_classic_is_allowed_access(
emulator, block, access_key, MfClassicActionKeyAWrite)) {
memcpy(block_data, plain_data, 6);
}
if(mf_classic_is_allowed_access(
emulator, block, access_key, MfClassicActionKeyBWrite)) {
memcpy(&block_data[10], &plain_data[10], 6);
}
if(mf_classic_is_allowed_access(
emulator, block, access_key, MfClassicActionACWrite)) {
memcpy(&block_data[6], &plain_data[6], 4);
}
} else {
if(mf_classic_is_allowed_access(
emulator, block, access_key, MfClassicActionDataWrite)) {
memcpy(block_data, plain_data, MF_CLASSIC_BLOCK_SIZE);
}
}
if(memcmp(block_data, emulator->data.block[block].value, MF_CLASSIC_BLOCK_SIZE)) {
memcpy(emulator->data.block[block].value, block_data, MF_CLASSIC_BLOCK_SIZE);
emulator->data_changed = true;
}
// Send ACK
ack = 0x0A;
mf_crypto1_encrypt(&emulator->crypto, NULL, &ack, 4, tx_rx->tx_data, tx_rx->tx_parity);
tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
tx_rx->tx_bits = 4;
} else {
// Unknown command
break;
}
}
if(!command_processed) {
// Send NACK
uint8_t nack = 0x04;
if(is_encrypted) {
mf_crypto1_encrypt(
&emulator->crypto, NULL, &nack, 4, tx_rx->tx_data, tx_rx->tx_parity);
} else {
tx_rx->tx_data[0] = nack;
}
tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
tx_rx->tx_bits = 4;
furi_hal_nfc_tx_rx(tx_rx, 300);
}
return true;
}

View File

@@ -0,0 +1,145 @@
#pragma once
#include <furi_hal_nfc.h>
#include "crypto1.h"
#define MF_CLASSIC_BLOCK_SIZE (16)
#define MF_CLASSIC_TOTAL_BLOCKS_MAX (256)
#define MF_CLASSIC_1K_TOTAL_SECTORS_NUM (16)
#define MF_CLASSIC_4K_TOTAL_SECTORS_NUM (40)
#define MF_CLASSIC_SECTORS_MAX (40)
#define MF_CLASSIC_BLOCKS_IN_SECTOR_MAX (16)
#define MF_CLASSIC_NO_KEY (0xFFFFFFFFFFFFFFFF)
#define MF_CLASSIC_MAX_DATA_SIZE (16)
#define MF_CLASSIC_KEY_SIZE (6)
#define MF_CLASSIC_ACCESS_BYTES_SIZE (4)
typedef enum {
MfClassicType1k,
MfClassicType4k,
} MfClassicType;
typedef enum {
MfClassicKeyA,
MfClassicKeyB,
} MfClassicKey;
typedef struct {
uint8_t value[MF_CLASSIC_BLOCK_SIZE];
} MfClassicBlock;
typedef struct {
uint8_t key_a[MF_CLASSIC_KEY_SIZE];
uint8_t access_bits[MF_CLASSIC_ACCESS_BYTES_SIZE];
uint8_t key_b[MF_CLASSIC_KEY_SIZE];
} MfClassicSectorTrailer;
typedef struct {
uint8_t total_blocks;
MfClassicBlock block[MF_CLASSIC_BLOCKS_IN_SECTOR_MAX];
} MfClassicSector;
typedef struct {
MfClassicType type;
uint32_t block_read_mask[MF_CLASSIC_TOTAL_BLOCKS_MAX / 32];
uint64_t key_a_mask;
uint64_t key_b_mask;
MfClassicBlock block[MF_CLASSIC_TOTAL_BLOCKS_MAX];
} MfClassicData;
typedef struct {
uint8_t sector;
uint64_t key_a;
uint64_t key_b;
} MfClassicAuthContext;
typedef struct {
uint8_t sector_num;
uint64_t key_a;
uint64_t key_b;
} MfClassicSectorReader;
typedef struct {
MfClassicType type;
Crypto1 crypto;
uint8_t sectors_to_read;
MfClassicSectorReader sector_reader[MF_CLASSIC_SECTORS_MAX];
} MfClassicReader;
typedef struct {
uint32_t cuid;
Crypto1 crypto;
MfClassicData data;
bool data_changed;
} MfClassicEmulator;
const char* mf_classic_get_type_str(MfClassicType type);
bool mf_classic_check_card_type(uint8_t ATQA0, uint8_t ATQA1, uint8_t SAK);
MfClassicType mf_classic_get_classic_type(int8_t ATQA0, uint8_t ATQA1, uint8_t SAK);
bool mf_classic_get_type(uint8_t ATQA0, uint8_t ATQA1, uint8_t SAK, MfClassicReader* reader);
uint8_t mf_classic_get_total_sectors_num(MfClassicType type);
uint8_t mf_classic_get_sector_trailer_block_num_by_sector(uint8_t sector);
bool mf_classic_is_sector_trailer(uint8_t block);
uint8_t mf_classic_get_sector_by_block(uint8_t block);
bool mf_classic_is_key_found(MfClassicData* data, uint8_t sector_num, MfClassicKey key_type);
void mf_classic_set_key_found(
MfClassicData* data,
uint8_t sector_num,
MfClassicKey key_type,
uint64_t key);
bool mf_classic_is_block_read(MfClassicData* data, uint8_t block_num);
void mf_classic_set_block_read(MfClassicData* data, uint8_t block_num, MfClassicBlock* block_data);
bool mf_classic_is_sector_read(MfClassicData* data, uint8_t sector_num);
void mf_classic_get_read_sectors_and_keys(
MfClassicData* data,
uint8_t* sectors_read,
uint8_t* keys_found);
MfClassicSectorTrailer*
mf_classic_get_sector_trailer_by_sector(MfClassicData* data, uint8_t sector);
void mf_classic_auth_init_context(MfClassicAuthContext* auth_ctx, uint8_t sector);
bool mf_classic_authenticate(
FuriHalNfcTxRxContext* tx_rx,
uint8_t block_num,
uint64_t key,
MfClassicKey key_type);
bool mf_classic_auth_attempt(
FuriHalNfcTxRxContext* tx_rx,
MfClassicAuthContext* auth_ctx,
uint64_t key);
void mf_classic_reader_add_sector(
MfClassicReader* reader,
uint8_t sector,
uint64_t key_a,
uint64_t key_b);
void mf_classic_read_sector(FuriHalNfcTxRxContext* tx_rx, MfClassicData* data, uint8_t sec_num);
uint8_t mf_classic_read_card(
FuriHalNfcTxRxContext* tx_rx,
MfClassicReader* reader,
MfClassicData* data);
uint8_t mf_classic_update_card(FuriHalNfcTxRxContext* tx_rx, MfClassicData* data);
bool mf_classic_emulator(MfClassicEmulator* emulator, FuriHalNfcTxRxContext* tx_rx);

View File

@@ -0,0 +1,17 @@
#include "mifare_common.h"
MifareType mifare_common_get_type(uint8_t ATQA0, uint8_t ATQA1, uint8_t SAK) {
MifareType type = MifareTypeUnknown;
if((ATQA0 == 0x44) && (ATQA1 == 0x00) && (SAK == 0x00)) {
type = MifareTypeUltralight;
} else if(
((ATQA0 == 0x44 || ATQA0 == 0x04) && (SAK == 0x08 || SAK == 0x88 || SAK == 0x09)) ||
((ATQA0 == 0x42 || ATQA0 == 0x02) && (SAK == 0x18))) {
type = MifareTypeClassic;
} else if(ATQA0 == 0x44 && ATQA1 == 0x03 && SAK == 0x20) {
type = MifareTypeDesfire;
}
return type;
}

View File

@@ -0,0 +1,12 @@
#pragma once
#include <stdint.h>
typedef enum {
MifareTypeUnknown,
MifareTypeUltralight,
MifareTypeClassic,
MifareTypeDesfire,
} MifareType;
MifareType mifare_common_get_type(uint8_t ATQA0, uint8_t ATQA1, uint8_t SAK);

View File

@@ -0,0 +1,623 @@
#include "mifare_desfire.h"
#include <furi.h>
#include <furi_hal_nfc.h>
#define TAG "MifareDESFire"
void mf_df_clear(MifareDesfireData* data) {
free(data->free_memory);
if(data->master_key_settings) {
MifareDesfireKeyVersion* key_version = data->master_key_settings->key_version_head;
while(key_version) {
MifareDesfireKeyVersion* next_key_version = key_version->next;
free(key_version);
key_version = next_key_version;
}
}
free(data->master_key_settings);
MifareDesfireApplication* app = data->app_head;
while(app) {
MifareDesfireApplication* next_app = app->next;
if(app->key_settings) {
MifareDesfireKeyVersion* key_version = app->key_settings->key_version_head;
while(key_version) {
MifareDesfireKeyVersion* next_key_version = key_version->next;
free(key_version);
key_version = next_key_version;
}
}
free(app->key_settings);
MifareDesfireFile* file = app->file_head;
while(file) {
MifareDesfireFile* next_file = file->next;
free(file->contents);
free(file);
file = next_file;
}
free(app);
app = next_app;
}
data->free_memory = NULL;
data->master_key_settings = NULL;
data->app_head = NULL;
}
void mf_df_cat_data(MifareDesfireData* data, string_t out) {
mf_df_cat_card_info(data, out);
for(MifareDesfireApplication* app = data->app_head; app; app = app->next) {
mf_df_cat_application(app, out);
}
}
void mf_df_cat_card_info(MifareDesfireData* data, string_t out) {
mf_df_cat_version(&data->version, out);
if(data->free_memory) {
mf_df_cat_free_mem(data->free_memory, out);
}
if(data->master_key_settings) {
mf_df_cat_key_settings(data->master_key_settings, out);
}
}
void mf_df_cat_version(MifareDesfireVersion* version, string_t out) {
string_cat_printf(
out,
"%02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
version->uid[0],
version->uid[1],
version->uid[2],
version->uid[3],
version->uid[4],
version->uid[5],
version->uid[6]);
string_cat_printf(
out,
"hw %02x type %02x sub %02x\n"
" maj %02x min %02x\n"
" size %02x proto %02x\n",
version->hw_vendor,
version->hw_type,
version->hw_subtype,
version->hw_major,
version->hw_minor,
version->hw_storage,
version->hw_proto);
string_cat_printf(
out,
"sw %02x type %02x sub %02x\n"
" maj %02x min %02x\n"
" size %02x proto %02x\n",
version->sw_vendor,
version->sw_type,
version->sw_subtype,
version->sw_major,
version->sw_minor,
version->sw_storage,
version->sw_proto);
string_cat_printf(
out,
"batch %02x:%02x:%02x:%02x:%02x\n"
"week %d year %d\n",
version->batch[0],
version->batch[1],
version->batch[2],
version->batch[3],
version->batch[4],
version->prod_week,
version->prod_year);
}
void mf_df_cat_free_mem(MifareDesfireFreeMemory* free_mem, string_t out) {
string_cat_printf(out, "freeMem %d\n", free_mem->bytes);
}
void mf_df_cat_key_settings(MifareDesfireKeySettings* ks, string_t out) {
string_cat_printf(out, "changeKeyID %d\n", ks->change_key_id);
string_cat_printf(out, "configChangeable %d\n", ks->config_changeable);
string_cat_printf(out, "freeCreateDelete %d\n", ks->free_create_delete);
string_cat_printf(out, "freeDirectoryList %d\n", ks->free_directory_list);
string_cat_printf(out, "masterChangeable %d\n", ks->master_key_changeable);
if(ks->flags) {
string_cat_printf(out, "flags %d\n", ks->flags);
}
string_cat_printf(out, "maxKeys %d\n", ks->max_keys);
for(MifareDesfireKeyVersion* kv = ks->key_version_head; kv; kv = kv->next) {
string_cat_printf(out, "key %d version %d\n", kv->id, kv->version);
}
}
void mf_df_cat_application_info(MifareDesfireApplication* app, string_t out) {
string_cat_printf(out, "Application %02x%02x%02x\n", app->id[0], app->id[1], app->id[2]);
if(app->key_settings) {
mf_df_cat_key_settings(app->key_settings, out);
}
}
void mf_df_cat_application(MifareDesfireApplication* app, string_t out) {
mf_df_cat_application_info(app, out);
for(MifareDesfireFile* file = app->file_head; file; file = file->next) {
mf_df_cat_file(file, out);
}
}
void mf_df_cat_file(MifareDesfireFile* file, string_t out) {
char* type = "unknown";
switch(file->type) {
case MifareDesfireFileTypeStandard:
type = "standard";
break;
case MifareDesfireFileTypeBackup:
type = "backup";
break;
case MifareDesfireFileTypeValue:
type = "value";
break;
case MifareDesfireFileTypeLinearRecord:
type = "linear";
break;
case MifareDesfireFileTypeCyclicRecord:
type = "cyclic";
break;
}
char* comm = "unknown";
switch(file->comm) {
case MifareDesfireFileCommunicationSettingsPlaintext:
comm = "plain";
break;
case MifareDesfireFileCommunicationSettingsAuthenticated:
comm = "auth";
break;
case MifareDesfireFileCommunicationSettingsEnciphered:
comm = "enciphered";
break;
}
string_cat_printf(out, "File %d\n", file->id);
string_cat_printf(out, "%s %s\n", type, comm);
string_cat_printf(
out,
"r %d w %d rw %d c %d\n",
file->access_rights >> 12 & 0xF,
file->access_rights >> 8 & 0xF,
file->access_rights >> 4 & 0xF,
file->access_rights & 0xF);
uint16_t size = 0;
uint16_t num = 1;
switch(file->type) {
case MifareDesfireFileTypeStandard:
case MifareDesfireFileTypeBackup:
size = file->settings.data.size;
string_cat_printf(out, "size %d\n", size);
break;
case MifareDesfireFileTypeValue:
size = 4;
string_cat_printf(
out, "lo %d hi %d\n", file->settings.value.lo_limit, file->settings.value.hi_limit);
string_cat_printf(
out,
"limit %d enabled %d\n",
file->settings.value.limited_credit_value,
file->settings.value.limited_credit_enabled);
break;
case MifareDesfireFileTypeLinearRecord:
case MifareDesfireFileTypeCyclicRecord:
size = file->settings.record.size;
num = file->settings.record.cur;
string_cat_printf(out, "size %d\n", size);
string_cat_printf(out, "num %d max %d\n", num, file->settings.record.max);
break;
}
uint8_t* data = file->contents;
if(data) {
for(int rec = 0; rec < num; rec++) {
for(int ch = 0; ch < size; ch++) {
string_cat_printf(out, "%02x", data[rec * size + ch]);
}
string_cat_printf(out, " \n");
}
}
}
bool mf_df_check_card_type(uint8_t ATQA0, uint8_t ATQA1, uint8_t SAK) {
return ATQA0 == 0x44 && ATQA1 == 0x03 && SAK == 0x20;
}
uint16_t mf_df_prepare_get_version(uint8_t* dest) {
dest[0] = MF_DF_GET_VERSION;
return 1;
}
bool mf_df_parse_get_version_response(uint8_t* buf, uint16_t len, MifareDesfireVersion* out) {
if(len < 1 || *buf) {
return false;
}
len--;
buf++;
if(len < sizeof(MifareDesfireVersion)) {
return false;
}
memcpy(out, buf, sizeof(MifareDesfireVersion));
return true;
}
uint16_t mf_df_prepare_get_free_memory(uint8_t* dest) {
dest[0] = MF_DF_GET_FREE_MEMORY;
return 1;
}
bool mf_df_parse_get_free_memory_response(uint8_t* buf, uint16_t len, MifareDesfireFreeMemory* out) {
if(len < 1 || *buf) {
return false;
}
len--;
buf++;
if(len != 3) {
return false;
}
out->bytes = buf[0] | (buf[1] << 8) | (buf[2] << 16);
return true;
}
uint16_t mf_df_prepare_get_key_settings(uint8_t* dest) {
dest[0] = MF_DF_GET_KEY_SETTINGS;
return 1;
}
bool mf_df_parse_get_key_settings_response(
uint8_t* buf,
uint16_t len,
MifareDesfireKeySettings* out) {
if(len < 1 || *buf) {
return false;
}
len--;
buf++;
if(len < 2) {
return false;
}
out->change_key_id = buf[0] >> 4;
out->config_changeable = (buf[0] & 0x8) != 0;
out->free_create_delete = (buf[0] & 0x4) != 0;
out->free_directory_list = (buf[0] & 0x2) != 0;
out->master_key_changeable = (buf[0] & 0x1) != 0;
out->flags = buf[1] >> 4;
out->max_keys = buf[1] & 0xF;
return true;
}
uint16_t mf_df_prepare_get_key_version(uint8_t* dest, uint8_t key_id) {
dest[0] = MF_DF_GET_KEY_VERSION;
dest[1] = key_id;
return 2;
}
bool mf_df_parse_get_key_version_response(uint8_t* buf, uint16_t len, MifareDesfireKeyVersion* out) {
if(len != 2 || *buf) {
return false;
}
out->version = buf[1];
return true;
}
uint16_t mf_df_prepare_get_application_ids(uint8_t* dest) {
dest[0] = MF_DF_GET_APPLICATION_IDS;
return 1;
}
bool mf_df_parse_get_application_ids_response(
uint8_t* buf,
uint16_t len,
MifareDesfireApplication** app_head) {
if(len < 1 || *buf) {
return false;
}
len--;
buf++;
if(len % 3 != 0) {
return false;
}
while(len) {
MifareDesfireApplication* app = malloc(sizeof(MifareDesfireApplication));
memset(app, 0, sizeof(MifareDesfireApplication));
memcpy(app->id, buf, 3);
len -= 3;
buf += 3;
*app_head = app;
app_head = &app->next;
}
return true;
}
uint16_t mf_df_prepare_select_application(uint8_t* dest, uint8_t id[3]) {
dest[0] = MF_DF_SELECT_APPLICATION;
dest[1] = id[0];
dest[2] = id[1];
dest[3] = id[2];
return 4;
}
bool mf_df_parse_select_application_response(uint8_t* buf, uint16_t len) {
return len == 1 && !*buf;
}
uint16_t mf_df_prepare_get_file_ids(uint8_t* dest) {
dest[0] = MF_DF_GET_FILE_IDS;
return 1;
}
bool mf_df_parse_get_file_ids_response(uint8_t* buf, uint16_t len, MifareDesfireFile** file_head) {
if(len < 1 || *buf) {
return false;
}
len--;
buf++;
while(len) {
MifareDesfireFile* file = malloc(sizeof(MifareDesfireFile));
memset(file, 0, sizeof(MifareDesfireFile));
file->id = *buf;
len--;
buf++;
*file_head = file;
file_head = &file->next;
}
return true;
}
uint16_t mf_df_prepare_get_file_settings(uint8_t* dest, uint8_t file_id) {
dest[0] = MF_DF_GET_FILE_SETTINGS;
dest[1] = file_id;
return 2;
}
bool mf_df_parse_get_file_settings_response(uint8_t* buf, uint16_t len, MifareDesfireFile* out) {
if(len < 5 || *buf) {
return false;
}
len--;
buf++;
out->type = buf[0];
out->comm = buf[1];
out->access_rights = buf[2] | (buf[3] << 8);
switch(out->type) {
case MifareDesfireFileTypeStandard:
case MifareDesfireFileTypeBackup:
if(len != 7) {
return false;
}
out->settings.data.size = buf[4] | (buf[5] << 8) | (buf[6] << 16);
break;
case MifareDesfireFileTypeValue:
if(len != 17) {
return false;
}
out->settings.value.lo_limit = buf[4] | (buf[5] << 8) | (buf[6] << 16) | (buf[7] << 24);
out->settings.value.hi_limit = buf[8] | (buf[9] << 8) | (buf[10] << 16) | (buf[11] << 24);
out->settings.value.limited_credit_value = buf[12] | (buf[13] << 8) | (buf[14] << 16) |
(buf[15] << 24);
out->settings.value.limited_credit_enabled = buf[16];
break;
case MifareDesfireFileTypeLinearRecord:
case MifareDesfireFileTypeCyclicRecord:
if(len != 13) {
return false;
}
out->settings.record.size = buf[4] | (buf[5] << 8) | (buf[6] << 16);
out->settings.record.max = buf[7] | (buf[8] << 8) | (buf[9] << 16);
out->settings.record.cur = buf[10] | (buf[11] << 8) | (buf[12] << 16);
break;
default:
return false;
}
return true;
}
uint16_t mf_df_prepare_read_data(uint8_t* dest, uint8_t file_id, uint32_t offset, uint32_t len) {
dest[0] = MF_DF_READ_DATA;
dest[1] = file_id;
dest[2] = offset;
dest[3] = offset >> 8;
dest[4] = offset >> 16;
dest[5] = len;
dest[6] = len >> 8;
dest[7] = len >> 16;
return 8;
}
uint16_t mf_df_prepare_get_value(uint8_t* dest, uint8_t file_id) {
dest[0] = MF_DF_GET_VALUE;
dest[1] = file_id;
return 2;
}
uint16_t
mf_df_prepare_read_records(uint8_t* dest, uint8_t file_id, uint32_t offset, uint32_t len) {
dest[0] = MF_DF_READ_RECORDS;
dest[1] = file_id;
dest[2] = offset;
dest[3] = offset >> 8;
dest[4] = offset >> 16;
dest[5] = len;
dest[6] = len >> 8;
dest[7] = len >> 16;
return 8;
}
bool mf_df_parse_read_data_response(uint8_t* buf, uint16_t len, MifareDesfireFile* out) {
if(len < 1 || *buf) {
return false;
}
len--;
buf++;
out->contents = malloc(len);
memcpy(out->contents, buf, len);
return true;
}
bool mf_df_read_card(FuriHalNfcTxRxContext* tx_rx, MifareDesfireData* data) {
furi_assert(tx_rx);
furi_assert(data);
bool card_read = false;
do {
// Get version
tx_rx->tx_bits = 8 * mf_df_prepare_get_version(tx_rx->tx_data);
if(!furi_hal_nfc_tx_rx_full(tx_rx)) {
FURI_LOG_W(TAG, "Bad exchange getting version");
break;
}
if(!mf_df_parse_get_version_response(tx_rx->rx_data, tx_rx->rx_bits / 8, &data->version)) {
FURI_LOG_W(TAG, "Bad DESFire GET_VERSION responce");
}
// Get free memory
tx_rx->tx_bits = 8 * mf_df_prepare_get_free_memory(tx_rx->tx_data);
if(furi_hal_nfc_tx_rx_full(tx_rx)) {
data->free_memory = malloc(sizeof(MifareDesfireFreeMemory));
if(!mf_df_parse_get_free_memory_response(
tx_rx->rx_data, tx_rx->rx_bits / 8, data->free_memory)) {
FURI_LOG_D(TAG, "Bad DESFire GET_FREE_MEMORY response (normal for pre-EV1 cards)");
free(data->free_memory);
data->free_memory = NULL;
}
}
// Get key settings
tx_rx->tx_bits = 8 * mf_df_prepare_get_key_settings(tx_rx->tx_data);
if(!furi_hal_nfc_tx_rx_full(tx_rx)) {
FURI_LOG_D(TAG, "Bad exchange getting key settings");
} else {
data->master_key_settings = malloc(sizeof(MifareDesfireKeySettings));
if(!mf_df_parse_get_key_settings_response(
tx_rx->rx_data, tx_rx->rx_bits / 8, data->master_key_settings)) {
FURI_LOG_W(TAG, "Bad DESFire GET_KEY_SETTINGS response");
free(data->master_key_settings);
data->master_key_settings = NULL;
} else {
MifareDesfireKeyVersion** key_version_head =
&data->master_key_settings->key_version_head;
for(uint8_t key_id = 0; key_id < data->master_key_settings->max_keys; key_id++) {
tx_rx->tx_bits = 8 * mf_df_prepare_get_key_version(tx_rx->tx_data, key_id);
if(!furi_hal_nfc_tx_rx_full(tx_rx)) {
FURI_LOG_W(TAG, "Bad exchange getting key version");
continue;
}
MifareDesfireKeyVersion* key_version = malloc(sizeof(MifareDesfireKeyVersion));
memset(key_version, 0, sizeof(MifareDesfireKeyVersion));
key_version->id = key_id;
if(!mf_df_parse_get_key_version_response(
tx_rx->rx_data, tx_rx->rx_bits / 8, key_version)) {
FURI_LOG_W(TAG, "Bad DESFire GET_KEY_VERSION response");
free(key_version);
continue;
}
*key_version_head = key_version;
key_version_head = &key_version->next;
}
}
}
// Get application IDs
tx_rx->tx_bits = 8 * mf_df_prepare_get_application_ids(tx_rx->tx_data);
if(!furi_hal_nfc_tx_rx_full(tx_rx)) {
FURI_LOG_W(TAG, "Bad exchange getting application IDs");
break;
} else {
if(!mf_df_parse_get_application_ids_response(
tx_rx->rx_data, tx_rx->rx_bits / 8, &data->app_head)) {
FURI_LOG_W(TAG, "Bad DESFire GET_APPLICATION_IDS response");
break;
}
}
for(MifareDesfireApplication* app = data->app_head; app; app = app->next) {
tx_rx->tx_bits = 8 * mf_df_prepare_select_application(tx_rx->tx_data, app->id);
if(!furi_hal_nfc_tx_rx_full(tx_rx) ||
!mf_df_parse_select_application_response(tx_rx->rx_data, tx_rx->rx_bits / 8)) {
FURI_LOG_W(TAG, "Bad exchange selecting application");
continue;
}
tx_rx->tx_bits = 8 * mf_df_prepare_get_key_settings(tx_rx->tx_data);
if(!furi_hal_nfc_tx_rx_full(tx_rx)) {
FURI_LOG_W(TAG, "Bad exchange getting key settings");
} else {
app->key_settings = malloc(sizeof(MifareDesfireKeySettings));
memset(app->key_settings, 0, sizeof(MifareDesfireKeySettings));
if(!mf_df_parse_get_key_settings_response(
tx_rx->rx_data, tx_rx->rx_bits / 8, app->key_settings)) {
FURI_LOG_W(TAG, "Bad DESFire GET_KEY_SETTINGS response");
free(app->key_settings);
app->key_settings = NULL;
continue;
}
MifareDesfireKeyVersion** key_version_head = &app->key_settings->key_version_head;
for(uint8_t key_id = 0; key_id < app->key_settings->max_keys; key_id++) {
tx_rx->tx_bits = 8 * mf_df_prepare_get_key_version(tx_rx->tx_data, key_id);
if(!furi_hal_nfc_tx_rx_full(tx_rx)) {
FURI_LOG_W(TAG, "Bad exchange getting key version");
continue;
}
MifareDesfireKeyVersion* key_version = malloc(sizeof(MifareDesfireKeyVersion));
memset(key_version, 0, sizeof(MifareDesfireKeyVersion));
key_version->id = key_id;
if(!mf_df_parse_get_key_version_response(
tx_rx->rx_data, tx_rx->rx_bits / 8, key_version)) {
FURI_LOG_W(TAG, "Bad DESFire GET_KEY_VERSION response");
free(key_version);
continue;
}
*key_version_head = key_version;
key_version_head = &key_version->next;
}
}
tx_rx->tx_bits = 8 * mf_df_prepare_get_file_ids(tx_rx->tx_data);
if(!furi_hal_nfc_tx_rx_full(tx_rx)) {
FURI_LOG_W(TAG, "Bad exchange getting file IDs");
} else {
if(!mf_df_parse_get_file_ids_response(
tx_rx->rx_data, tx_rx->rx_bits / 8, &app->file_head)) {
FURI_LOG_W(TAG, "Bad DESFire GET_FILE_IDS response");
}
}
for(MifareDesfireFile* file = app->file_head; file; file = file->next) {
tx_rx->tx_bits = 8 * mf_df_prepare_get_file_settings(tx_rx->tx_data, file->id);
if(!furi_hal_nfc_tx_rx_full(tx_rx)) {
FURI_LOG_W(TAG, "Bad exchange getting file settings");
continue;
}
if(!mf_df_parse_get_file_settings_response(
tx_rx->rx_data, tx_rx->rx_bits / 8, file)) {
FURI_LOG_W(TAG, "Bad DESFire GET_FILE_SETTINGS response");
continue;
}
switch(file->type) {
case MifareDesfireFileTypeStandard:
case MifareDesfireFileTypeBackup:
tx_rx->tx_bits = 8 * mf_df_prepare_read_data(tx_rx->tx_data, file->id, 0, 0);
break;
case MifareDesfireFileTypeValue:
tx_rx->tx_bits = 8 * mf_df_prepare_get_value(tx_rx->tx_data, file->id);
break;
case MifareDesfireFileTypeLinearRecord:
case MifareDesfireFileTypeCyclicRecord:
tx_rx->tx_bits =
8 * mf_df_prepare_read_records(tx_rx->tx_data, file->id, 0, 0);
break;
}
if(!furi_hal_nfc_tx_rx_full(tx_rx)) {
FURI_LOG_W(TAG, "Bad exchange reading file %d", file->id);
continue;
}
if(!mf_df_parse_read_data_response(tx_rx->rx_data, tx_rx->rx_bits / 8, file)) {
FURI_LOG_W(TAG, "Bad response reading file %d", file->id);
continue;
}
}
}
card_read = true;
} while(false);
return card_read;
}

View File

@@ -0,0 +1,169 @@
#pragma once
#include <m-string.h>
#include <stdint.h>
#include <stdbool.h>
#include <furi_hal_nfc.h>
#define MF_DF_GET_VERSION (0x60)
#define MF_DF_GET_FREE_MEMORY (0x6E)
#define MF_DF_GET_KEY_SETTINGS (0x45)
#define MF_DF_GET_KEY_VERSION (0x64)
#define MF_DF_GET_APPLICATION_IDS (0x6A)
#define MF_DF_SELECT_APPLICATION (0x5A)
#define MF_DF_GET_FILE_IDS (0x6F)
#define MF_DF_GET_FILE_SETTINGS (0xF5)
#define MF_DF_READ_DATA (0xBD)
#define MF_DF_GET_VALUE (0x6C)
#define MF_DF_READ_RECORDS (0xBB)
typedef struct {
uint8_t hw_vendor;
uint8_t hw_type;
uint8_t hw_subtype;
uint8_t hw_major;
uint8_t hw_minor;
uint8_t hw_storage;
uint8_t hw_proto;
uint8_t sw_vendor;
uint8_t sw_type;
uint8_t sw_subtype;
uint8_t sw_major;
uint8_t sw_minor;
uint8_t sw_storage;
uint8_t sw_proto;
uint8_t uid[7];
uint8_t batch[5];
uint8_t prod_week;
uint8_t prod_year;
} MifareDesfireVersion;
typedef struct {
uint32_t bytes;
} MifareDesfireFreeMemory; // EV1+ only
typedef struct MifareDesfireKeyVersion {
uint8_t id;
uint8_t version;
struct MifareDesfireKeyVersion* next;
} MifareDesfireKeyVersion;
typedef struct {
uint8_t change_key_id;
bool config_changeable;
bool free_create_delete;
bool free_directory_list;
bool master_key_changeable;
uint8_t flags;
uint8_t max_keys;
MifareDesfireKeyVersion* key_version_head;
} MifareDesfireKeySettings;
typedef enum {
MifareDesfireFileTypeStandard = 0,
MifareDesfireFileTypeBackup = 1,
MifareDesfireFileTypeValue = 2,
MifareDesfireFileTypeLinearRecord = 3,
MifareDesfireFileTypeCyclicRecord = 4,
} MifareDesfireFileType;
typedef enum {
MifareDesfireFileCommunicationSettingsPlaintext = 0,
MifareDesfireFileCommunicationSettingsAuthenticated = 1,
MifareDesfireFileCommunicationSettingsEnciphered = 3,
} MifareDesfireFileCommunicationSettings;
typedef struct MifareDesfireFile {
uint8_t id;
MifareDesfireFileType type;
MifareDesfireFileCommunicationSettings comm;
uint16_t access_rights;
union {
struct {
uint32_t size;
} data;
struct {
uint32_t lo_limit;
uint32_t hi_limit;
uint32_t limited_credit_value;
bool limited_credit_enabled;
} value;
struct {
uint32_t size;
uint32_t max;
uint32_t cur;
} record;
} settings;
uint8_t* contents;
struct MifareDesfireFile* next;
} MifareDesfireFile;
typedef struct MifareDesfireApplication {
uint8_t id[3];
MifareDesfireKeySettings* key_settings;
MifareDesfireFile* file_head;
struct MifareDesfireApplication* next;
} MifareDesfireApplication;
typedef struct {
MifareDesfireVersion version;
MifareDesfireFreeMemory* free_memory;
MifareDesfireKeySettings* master_key_settings;
MifareDesfireApplication* app_head;
} MifareDesfireData;
void mf_df_clear(MifareDesfireData* data);
void mf_df_cat_data(MifareDesfireData* data, string_t out);
void mf_df_cat_card_info(MifareDesfireData* data, string_t out);
void mf_df_cat_version(MifareDesfireVersion* version, string_t out);
void mf_df_cat_free_mem(MifareDesfireFreeMemory* free_mem, string_t out);
void mf_df_cat_key_settings(MifareDesfireKeySettings* ks, string_t out);
void mf_df_cat_application_info(MifareDesfireApplication* app, string_t out);
void mf_df_cat_application(MifareDesfireApplication* app, string_t out);
void mf_df_cat_file(MifareDesfireFile* file, string_t out);
bool mf_df_check_card_type(uint8_t ATQA0, uint8_t ATQA1, uint8_t SAK);
uint16_t mf_df_prepare_get_version(uint8_t* dest);
bool mf_df_parse_get_version_response(uint8_t* buf, uint16_t len, MifareDesfireVersion* out);
uint16_t mf_df_prepare_get_free_memory(uint8_t* dest);
bool mf_df_parse_get_free_memory_response(uint8_t* buf, uint16_t len, MifareDesfireFreeMemory* out);
uint16_t mf_df_prepare_get_key_settings(uint8_t* dest);
bool mf_df_parse_get_key_settings_response(
uint8_t* buf,
uint16_t len,
MifareDesfireKeySettings* out);
uint16_t mf_df_prepare_get_key_version(uint8_t* dest, uint8_t key_id);
bool mf_df_parse_get_key_version_response(uint8_t* buf, uint16_t len, MifareDesfireKeyVersion* out);
uint16_t mf_df_prepare_get_application_ids(uint8_t* dest);
bool mf_df_parse_get_application_ids_response(
uint8_t* buf,
uint16_t len,
MifareDesfireApplication** app_head);
uint16_t mf_df_prepare_select_application(uint8_t* dest, uint8_t id[3]);
bool mf_df_parse_select_application_response(uint8_t* buf, uint16_t len);
uint16_t mf_df_prepare_get_file_ids(uint8_t* dest);
bool mf_df_parse_get_file_ids_response(uint8_t* buf, uint16_t len, MifareDesfireFile** file_head);
uint16_t mf_df_prepare_get_file_settings(uint8_t* dest, uint8_t file_id);
bool mf_df_parse_get_file_settings_response(uint8_t* buf, uint16_t len, MifareDesfireFile* out);
uint16_t mf_df_prepare_read_data(uint8_t* dest, uint8_t file_id, uint32_t offset, uint32_t len);
uint16_t mf_df_prepare_get_value(uint8_t* dest, uint8_t file_id);
uint16_t mf_df_prepare_read_records(uint8_t* dest, uint8_t file_id, uint32_t offset, uint32_t len);
bool mf_df_parse_read_data_response(uint8_t* buf, uint16_t len, MifareDesfireFile* out);
bool mf_df_read_card(FuriHalNfcTxRxContext* tx_rx, MifareDesfireData* data);

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,222 @@
#pragma once
#include <furi_hal_nfc.h>
// Largest tag is NTAG I2C Plus 2K, both data sectors plus SRAM
#define MF_UL_MAX_DUMP_SIZE ((238 + 256 + 16) * 4)
#define MF_UL_TEARING_FLAG_DEFAULT (0xBD)
#define MF_UL_HALT_START (0x50)
#define MF_UL_GET_VERSION_CMD (0x60)
#define MF_UL_READ_CMD (0x30)
#define MF_UL_FAST_READ_CMD (0x3A)
#define MF_UL_WRITE (0xA2)
#define MF_UL_FAST_WRITE (0xA6)
#define MF_UL_COMP_WRITE (0xA0)
#define MF_UL_READ_CNT (0x39)
#define MF_UL_INC_CNT (0xA5)
#define MF_UL_AUTH (0x1B)
#define MF_UL_READ_SIG (0x3C)
#define MF_UL_CHECK_TEARING (0x3E)
#define MF_UL_READ_VCSL (0x4B)
#define MF_UL_SECTOR_SELECT (0xC2)
#define MF_UL_ACK (0xa)
#define MF_UL_NAK_INVALID_ARGUMENT (0x0)
#define MF_UL_NAK_AUTHLIM_REACHED (0x4)
#define MF_UL_NTAG203_COUNTER_PAGE (41)
// Important: order matters; some features are based on positioning in this enum
typedef enum {
MfUltralightTypeUnknown,
MfUltralightTypeNTAG203,
// Below have config pages and GET_VERSION support
MfUltralightTypeUL11,
MfUltralightTypeUL21,
MfUltralightTypeNTAG213,
MfUltralightTypeNTAG215,
MfUltralightTypeNTAG216,
// Below also have sector select
// NTAG I2C's *does not* have regular config pages, so it's a bit of an odd duck
MfUltralightTypeNTAGI2C1K,
MfUltralightTypeNTAGI2C2K,
// NTAG I2C Plus has stucture expected from NTAG21x
MfUltralightTypeNTAGI2CPlus1K,
MfUltralightTypeNTAGI2CPlus2K,
// Keep last for number of types calculation
MfUltralightTypeNum,
} MfUltralightType;
typedef enum {
MfUltralightSupportNone = 0,
MfUltralightSupportFastRead = 1 << 0,
MfUltralightSupportTearingFlags = 1 << 1,
MfUltralightSupportReadCounter = 1 << 2,
MfUltralightSupportIncrCounter = 1 << 3,
MfUltralightSupportSignature = 1 << 4,
MfUltralightSupportFastWrite = 1 << 5,
MfUltralightSupportCompatWrite = 1 << 6,
MfUltralightSupportAuth = 1 << 7,
MfUltralightSupportVcsl = 1 << 8,
MfUltralightSupportSectorSelect = 1 << 9,
// NTAG21x only has counter 2
MfUltralightSupportSingleCounter = 1 << 10,
// ASCII mirror is not a command, but handy to have as a flag
MfUltralightSupportAsciiMirror = 1 << 11,
// NTAG203 counter that's in memory rather than through a command
MfUltralightSupportCounterInMemory = 1 << 12,
} MfUltralightFeatures;
typedef enum {
MfUltralightMirrorNone,
MfUltralightMirrorUid,
MfUltralightMirrorCounter,
MfUltralightMirrorUidCounter,
} MfUltralightMirrorConf;
typedef struct {
uint8_t header;
uint8_t vendor_id;
uint8_t prod_type;
uint8_t prod_subtype;
uint8_t prod_ver_major;
uint8_t prod_ver_minor;
uint8_t storage_size;
uint8_t protocol_type;
} MfUltralightVersion;
typedef struct {
uint8_t sn0[3];
uint8_t btBCC0;
uint8_t sn1[4];
uint8_t btBCC1;
uint8_t internal;
uint8_t lock[2];
uint8_t otp[4];
} MfUltralightManufacturerBlock;
typedef struct {
MfUltralightType type;
MfUltralightVersion version;
uint8_t signature[32];
uint32_t counter[3];
uint8_t tearing[3];
uint16_t curr_authlim;
uint16_t data_size;
uint8_t data[MF_UL_MAX_DUMP_SIZE];
} MfUltralightData;
typedef struct __attribute__((packed)) {
union {
uint8_t raw[4];
uint32_t value;
} pwd;
union {
uint8_t raw[2];
uint16_t value;
} pack;
} MfUltralightAuth;
// Common configuration pages for MFUL EV1, NTAG21x, and NTAG I2C Plus
typedef struct __attribute__((packed)) {
union {
uint8_t value;
struct {
uint8_t rfui1 : 2;
bool strg_mod_en : 1;
bool rfui2 : 1;
uint8_t mirror_byte : 2;
MfUltralightMirrorConf mirror_conf : 2;
};
} mirror;
uint8_t rfui1;
uint8_t mirror_page;
uint8_t auth0;
union {
uint8_t value;
struct {
uint8_t authlim : 3;
bool nfc_cnt_pwd_prot : 1;
bool nfc_cnt_en : 1;
bool nfc_dis_sec1 : 1; // NTAG I2C Plus only
bool cfglck : 1;
bool prot : 1;
};
} access;
uint8_t vctid;
uint8_t rfui2[2];
MfUltralightAuth auth_data;
uint8_t rfui3[2];
} MfUltralightConfigPages;
typedef struct {
uint16_t pages_to_read;
int16_t pages_read;
MfUltralightFeatures supported_features;
} MfUltralightReader;
typedef struct {
MfUltralightData data;
MfUltralightConfigPages* config;
// Most config values don't apply until power cycle, so cache config pages
// for correct behavior
MfUltralightConfigPages config_cache;
MfUltralightFeatures supported_features;
uint16_t page_num;
bool data_changed;
bool comp_write_cmd_started;
uint8_t comp_write_page_addr;
bool auth_success;
uint8_t curr_sector;
bool sector_select_cmd_started;
bool ntag_i2c_plus_sector3_lockout;
bool read_counter_incremented;
} MfUltralightEmulator;
bool mf_ul_check_card_type(uint8_t ATQA0, uint8_t ATQA1, uint8_t SAK);
bool mf_ultralight_read_version(
FuriHalNfcTxRxContext* tx_rx,
MfUltralightReader* reader,
MfUltralightData* data);
bool mf_ultralight_read_pages_direct(
FuriHalNfcTxRxContext* tx_rx,
uint8_t start_index,
uint8_t* data);
bool mf_ultralight_read_pages(
FuriHalNfcTxRxContext* tx_rx,
MfUltralightReader* reader,
MfUltralightData* data);
bool mf_ultralight_fast_read_pages(
FuriHalNfcTxRxContext* tx_rx,
MfUltralightReader* reader,
MfUltralightData* data);
bool mf_ultralight_read_signature(FuriHalNfcTxRxContext* tx_rx, MfUltralightData* data);
bool mf_ultralight_read_counters(FuriHalNfcTxRxContext* tx_rx, MfUltralightData* data);
bool mf_ultralight_read_tearing_flags(FuriHalNfcTxRxContext* tx_rx, MfUltralightData* data);
bool mf_ul_read_card(
FuriHalNfcTxRxContext* tx_rx,
MfUltralightReader* reader,
MfUltralightData* data);
void mf_ul_reset_emulation(MfUltralightEmulator* emulator, bool is_power_cycle);
void mf_ul_prepare_emulation(MfUltralightEmulator* emulator, MfUltralightData* data);
bool mf_ul_prepare_emulation_response(
uint8_t* buff_rx,
uint16_t buff_rx_len,
uint8_t* buff_tx,
uint16_t* buff_tx_len,
uint32_t* data_type,
void* context);

View File

@@ -0,0 +1,47 @@
#include "nfc_util.h"
#include <furi.h>
static const uint8_t nfc_util_odd_byte_parity[256] = {
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0,
1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1,
1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1,
0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1,
0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0,
0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1,
0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1};
void nfc_util_num2bytes(uint64_t src, uint8_t len, uint8_t* dest) {
furi_assert(dest);
furi_assert(len <= 8);
while(len--) {
dest[len] = (uint8_t)src;
src >>= 8;
}
}
uint64_t nfc_util_bytes2num(uint8_t* src, uint8_t len) {
furi_assert(src);
furi_assert(len <= 8);
uint64_t res = 0;
while(len--) {
res = (res << 8) | (*src);
src++;
}
return res;
}
uint8_t nfc_util_even_parity32(uint32_t data) {
// data ^= data >> 16;
// data ^= data >> 8;
// return !nfc_util_odd_byte_parity[data];
return (__builtin_parity(data) & 0xFF);
}
uint8_t nfc_util_odd_parity8(uint8_t data) {
return nfc_util_odd_byte_parity[data];
}

View File

@@ -0,0 +1,11 @@
#pragma once
#include <stdint.h>
void nfc_util_num2bytes(uint64_t src, uint8_t len, uint8_t* dest);
uint64_t nfc_util_bytes2num(uint8_t* src, uint8_t len);
uint8_t nfc_util_even_parity32(uint32_t data);
uint8_t nfc_util_odd_parity8(uint8_t data);

142
lib/nfc/protocols/nfca.c Executable file
View File

@@ -0,0 +1,142 @@
#include "nfca.h"
#include <string.h>
#include <stdio.h>
#include <furi.h>
#define NFCA_CMD_RATS (0xE0U)
#define NFCA_CRC_INIT (0x6363)
#define NFCA_F_SIG (13560000.0)
#define T_SIG 7374 //73.746ns*100
#define T_SIG_x8 58992 //T_SIG*8
#define T_SIG_x8_x8 471936 //T_SIG*8*8
#define T_SIG_x8_x9 530928 //T_SIG*8*9
#define NFCA_SIGNAL_MAX_EDGES (1350)
typedef struct {
uint8_t cmd;
uint8_t param;
} nfca_cmd_rats;
static uint8_t nfca_default_ats[] = {0x05, 0x78, 0x80, 0x80, 0x00};
static uint8_t nfca_sleep_req[] = {0x50, 0x00};
uint16_t nfca_get_crc16(uint8_t* buff, uint16_t len) {
uint16_t crc = NFCA_CRC_INIT;
uint8_t byte = 0;
for(uint8_t i = 0; i < len; i++) {
byte = buff[i];
byte ^= (uint8_t)(crc & 0xff);
byte ^= byte << 4;
crc = (crc >> 8) ^ (((uint16_t)byte) << 8) ^ (((uint16_t)byte) << 3) ^
(((uint16_t)byte) >> 4);
}
return crc;
}
void nfca_append_crc16(uint8_t* buff, uint16_t len) {
uint16_t crc = nfca_get_crc16(buff, len);
buff[len] = (uint8_t)crc;
buff[len + 1] = (uint8_t)(crc >> 8);
}
bool nfca_emulation_handler(
uint8_t* buff_rx,
uint16_t buff_rx_len,
uint8_t* buff_tx,
uint16_t* buff_tx_len) {
bool sleep = false;
uint8_t rx_bytes = buff_rx_len / 8;
if(rx_bytes == sizeof(nfca_sleep_req) && !memcmp(buff_rx, nfca_sleep_req, rx_bytes)) {
sleep = true;
} else if(rx_bytes == sizeof(nfca_cmd_rats) && buff_rx[0] == NFCA_CMD_RATS) {
memcpy(buff_tx, nfca_default_ats, sizeof(nfca_default_ats));
*buff_tx_len = sizeof(nfca_default_ats) * 8;
}
return sleep;
}
static void nfca_add_bit(DigitalSignal* signal, bool bit) {
if(bit) {
signal->start_level = true;
for(size_t i = 0; i < 7; i++) {
signal->edge_timings[i] = T_SIG_x8;
}
signal->edge_timings[7] = T_SIG_x8_x9;
signal->edge_cnt = 8;
} else {
signal->start_level = false;
signal->edge_timings[0] = T_SIG_x8_x8;
for(size_t i = 1; i < 9; i++) {
signal->edge_timings[i] = T_SIG_x8;
}
signal->edge_cnt = 9;
}
}
static void nfca_add_byte(NfcaSignal* nfca_signal, uint8_t byte, bool parity) {
for(uint8_t i = 0; i < 8; i++) {
if(byte & (1 << i)) {
digital_signal_append(nfca_signal->tx_signal, nfca_signal->one);
} else {
digital_signal_append(nfca_signal->tx_signal, nfca_signal->zero);
}
}
if(parity) {
digital_signal_append(nfca_signal->tx_signal, nfca_signal->one);
} else {
digital_signal_append(nfca_signal->tx_signal, nfca_signal->zero);
}
}
NfcaSignal* nfca_signal_alloc() {
NfcaSignal* nfca_signal = malloc(sizeof(NfcaSignal));
nfca_signal->one = digital_signal_alloc(10);
nfca_signal->zero = digital_signal_alloc(10);
nfca_add_bit(nfca_signal->one, true);
nfca_add_bit(nfca_signal->zero, false);
nfca_signal->tx_signal = digital_signal_alloc(NFCA_SIGNAL_MAX_EDGES);
return nfca_signal;
}
void nfca_signal_free(NfcaSignal* nfca_signal) {
furi_assert(nfca_signal);
digital_signal_free(nfca_signal->one);
digital_signal_free(nfca_signal->zero);
digital_signal_free(nfca_signal->tx_signal);
free(nfca_signal);
}
void nfca_signal_encode(NfcaSignal* nfca_signal, uint8_t* data, uint16_t bits, uint8_t* parity) {
furi_assert(nfca_signal);
furi_assert(data);
furi_assert(parity);
nfca_signal->tx_signal->edge_cnt = 0;
nfca_signal->tx_signal->start_level = true;
// Start of frame
digital_signal_append(nfca_signal->tx_signal, nfca_signal->one);
if(bits < 8) {
for(size_t i = 0; i < bits; i++) {
if(FURI_BIT(data[0], i)) {
digital_signal_append(nfca_signal->tx_signal, nfca_signal->one);
} else {
digital_signal_append(nfca_signal->tx_signal, nfca_signal->zero);
}
}
} else {
for(size_t i = 0; i < bits / 8; i++) {
nfca_add_byte(nfca_signal, data[i], parity[i / 8] & (1 << (7 - (i & 0x07))));
}
}
}

28
lib/nfc/protocols/nfca.h Normal file
View File

@@ -0,0 +1,28 @@
#pragma once
#include <stdint.h>
#include <stdbool.h>
#include <lib/digital_signal/digital_signal.h>
typedef struct {
DigitalSignal* one;
DigitalSignal* zero;
DigitalSignal* tx_signal;
} NfcaSignal;
uint16_t nfca_get_crc16(uint8_t* buff, uint16_t len);
void nfca_append_crc16(uint8_t* buff, uint16_t len);
bool nfca_emulation_handler(
uint8_t* buff_rx,
uint16_t buff_rx_len,
uint8_t* buff_tx,
uint16_t* buff_tx_len);
NfcaSignal* nfca_signal_alloc();
void nfca_signal_free(NfcaSignal* nfca_signal);
void nfca_signal_encode(NfcaSignal* nfca_signal, uint8_t* data, uint16_t bits, uint8_t* parity);