[FL-1958] U2F prototype (#879)
* U2F implementation prototype * U2F data encryption and store, user confirmation request * remove debug prints * fix notification bug in chrome * split u2f_alloc into u2f_init and u2f_alloc * typo fix, furi-hal-trng -> furi-hal-random * rand/srand redefinition * SubGhz: a little bit of Dante. * u2f_data naming fix Co-authored-by: Aleksandr Kutuzov <alleteam@gmail.com>
This commit is contained in:
@@ -124,3 +124,7 @@ C_SOURCES += $(wildcard $(LIB_DIR)/heatshrink/*.c)
|
||||
# Toolbox
|
||||
CFLAGS += -I$(LIB_DIR)/flipper_file
|
||||
C_SOURCES += $(wildcard $(LIB_DIR)/flipper_file/*.c)
|
||||
|
||||
# Micro-ECC
|
||||
CFLAGS += -I$(LIB_DIR)/micro-ecc
|
||||
C_SOURCES += $(wildcard $(LIB_DIR)/micro-ecc/*.c)
|
||||
|
21
lib/micro-ecc/LICENSE.txt
Normal file
21
lib/micro-ecc/LICENSE.txt
Normal file
@@ -0,0 +1,21 @@
|
||||
Copyright (c) 2014, Kenneth MacKay
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without modification,
|
||||
are permitted provided that the following conditions are met:
|
||||
* Redistributions of source code must retain the above copyright notice, this
|
||||
list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above copyright notice,
|
||||
this list of conditions and the following disclaimer in the documentation
|
||||
and/or other materials provided with the distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||||
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
|
||||
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||||
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
||||
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
41
lib/micro-ecc/README.md
Normal file
41
lib/micro-ecc/README.md
Normal file
@@ -0,0 +1,41 @@
|
||||
micro-ecc
|
||||
==========
|
||||
|
||||
A small and fast ECDH and ECDSA implementation for 8-bit, 32-bit, and 64-bit processors.
|
||||
|
||||
The static version of micro-ecc (ie, where the curve was selected at compile-time) can be found in the "static" branch.
|
||||
|
||||
Features
|
||||
--------
|
||||
|
||||
* Resistant to known side-channel attacks.
|
||||
* Written in C, with optional GCC inline assembly for AVR, ARM and Thumb platforms.
|
||||
* Supports 8, 32, and 64-bit architectures.
|
||||
* Small code size.
|
||||
* No dynamic memory allocation.
|
||||
* Support for 5 standard curves: secp160r1, secp192r1, secp224r1, secp256r1, and secp256k1.
|
||||
* BSD 2-clause license.
|
||||
|
||||
Usage Notes
|
||||
-----------
|
||||
### Point Representation ###
|
||||
Compressed points are represented in the standard format as defined in http://www.secg.org/sec1-v2.pdf; uncompressed points are represented in standard format, but without the `0x04` prefix. All functions except `uECC_decompress()` only accept uncompressed points; use `uECC_compress()` and `uECC_decompress()` to convert between compressed and uncompressed point representations.
|
||||
|
||||
Private keys are represented in the standard format.
|
||||
|
||||
### Using the Code ###
|
||||
|
||||
I recommend just copying (or symlink) the uECC files into your project. Then just `#include "uECC.h"` to use the micro-ecc functions.
|
||||
|
||||
For use with Arduino, you can use the Library Manager to download micro-ecc (**Sketch**=>**Include Library**=>**Manage Libraries**). You can then use uECC just like any other Arduino library (uECC should show up in the **Sketch**=>**Import Library** submenu).
|
||||
|
||||
See uECC.h for documentation for each function.
|
||||
|
||||
### Compilation Notes ###
|
||||
|
||||
* Should compile with any C/C++ compiler that supports stdint.h (this includes Visual Studio 2013).
|
||||
* If you want to change the defaults for any of the uECC compile-time options (such as `uECC_OPTIMIZATION_LEVEL`), you must change them in your Makefile or similar so that uECC.c is compiled with the desired values (ie, compile uECC.c with `-DuECC_OPTIMIZATION_LEVEL=3` or whatever).
|
||||
* When compiling for a Thumb-1 platform, you must use the `-fomit-frame-pointer` GCC option (this is enabled by default when compiling with `-O1` or higher).
|
||||
* When compiling for an ARM/Thumb-2 platform with `uECC_OPTIMIZATION_LEVEL` >= 3, you must use the `-fomit-frame-pointer` GCC option (this is enabled by default when compiling with `-O1` or higher).
|
||||
* When compiling for AVR, you must have optimizations enabled (compile with `-O1` or higher).
|
||||
* When building for Windows, you will need to link in the `advapi32.lib` system library.
|
820
lib/micro-ecc/asm_arm.inc
Normal file
820
lib/micro-ecc/asm_arm.inc
Normal file
@@ -0,0 +1,820 @@
|
||||
/* Copyright 2015, Kenneth MacKay. Licensed under the BSD 2-clause license. */
|
||||
|
||||
#ifndef _UECC_ASM_ARM_H_
|
||||
#define _UECC_ASM_ARM_H_
|
||||
|
||||
#if (uECC_SUPPORTS_secp256r1 || uECC_SUPPORTS_secp256k1)
|
||||
#define uECC_MIN_WORDS 8
|
||||
#endif
|
||||
#if uECC_SUPPORTS_secp224r1
|
||||
#undef uECC_MIN_WORDS
|
||||
#define uECC_MIN_WORDS 7
|
||||
#endif
|
||||
#if uECC_SUPPORTS_secp192r1
|
||||
#undef uECC_MIN_WORDS
|
||||
#define uECC_MIN_WORDS 6
|
||||
#endif
|
||||
#if uECC_SUPPORTS_secp160r1
|
||||
#undef uECC_MIN_WORDS
|
||||
#define uECC_MIN_WORDS 5
|
||||
#endif
|
||||
|
||||
#if (uECC_PLATFORM == uECC_arm_thumb)
|
||||
#define REG_RW "+l"
|
||||
#define REG_WRITE "=l"
|
||||
#else
|
||||
#define REG_RW "+r"
|
||||
#define REG_WRITE "=r"
|
||||
#endif
|
||||
|
||||
#if (uECC_PLATFORM == uECC_arm_thumb || uECC_PLATFORM == uECC_arm_thumb2)
|
||||
#define REG_RW_LO "+l"
|
||||
#define REG_WRITE_LO "=l"
|
||||
#else
|
||||
#define REG_RW_LO "+r"
|
||||
#define REG_WRITE_LO "=r"
|
||||
#endif
|
||||
|
||||
#if (uECC_PLATFORM == uECC_arm_thumb2)
|
||||
#define RESUME_SYNTAX
|
||||
#else
|
||||
#define RESUME_SYNTAX ".syntax divided \n\t"
|
||||
#endif
|
||||
|
||||
#if (uECC_OPTIMIZATION_LEVEL >= 2)
|
||||
|
||||
uECC_VLI_API uECC_word_t uECC_vli_add(uECC_word_t *result,
|
||||
const uECC_word_t *left,
|
||||
const uECC_word_t *right,
|
||||
wordcount_t num_words) {
|
||||
#if (uECC_MAX_WORDS != uECC_MIN_WORDS)
|
||||
#if (uECC_PLATFORM == uECC_arm_thumb) || (uECC_PLATFORM == uECC_arm_thumb2)
|
||||
uint32_t jump = (uECC_MAX_WORDS - num_words) * 4 * 2 + 1;
|
||||
#else /* ARM */
|
||||
uint32_t jump = (uECC_MAX_WORDS - num_words) * 4 * 4;
|
||||
#endif
|
||||
#endif
|
||||
uint32_t carry;
|
||||
uint32_t left_word;
|
||||
uint32_t right_word;
|
||||
|
||||
__asm__ volatile (
|
||||
".syntax unified \n\t"
|
||||
"movs %[carry], #0 \n\t"
|
||||
#if (uECC_MAX_WORDS != uECC_MIN_WORDS)
|
||||
"adr %[left], 1f \n\t"
|
||||
".align 4 \n\t"
|
||||
"adds %[jump], %[left] \n\t"
|
||||
#endif
|
||||
|
||||
"ldmia %[lptr]!, {%[left]} \n\t"
|
||||
"ldmia %[rptr]!, {%[right]} \n\t"
|
||||
"adds %[left], %[right] \n\t"
|
||||
"stmia %[dptr]!, {%[left]} \n\t"
|
||||
|
||||
#if (uECC_MAX_WORDS != uECC_MIN_WORDS)
|
||||
"bx %[jump] \n\t"
|
||||
#endif
|
||||
"1: \n\t"
|
||||
REPEAT(DEC(uECC_MAX_WORDS),
|
||||
"ldmia %[lptr]!, {%[left]} \n\t"
|
||||
"ldmia %[rptr]!, {%[right]} \n\t"
|
||||
"adcs %[left], %[right] \n\t"
|
||||
"stmia %[dptr]!, {%[left]} \n\t")
|
||||
|
||||
"adcs %[carry], %[carry] \n\t"
|
||||
RESUME_SYNTAX
|
||||
: [dptr] REG_RW_LO (result), [lptr] REG_RW_LO (left), [rptr] REG_RW_LO (right),
|
||||
#if (uECC_MAX_WORDS != uECC_MIN_WORDS)
|
||||
[jump] REG_RW_LO (jump),
|
||||
#endif
|
||||
[carry] REG_WRITE_LO (carry), [left] REG_WRITE_LO (left_word),
|
||||
[right] REG_WRITE_LO (right_word)
|
||||
:
|
||||
: "cc", "memory"
|
||||
);
|
||||
return carry;
|
||||
}
|
||||
#define asm_add 1
|
||||
|
||||
uECC_VLI_API uECC_word_t uECC_vli_sub(uECC_word_t *result,
|
||||
const uECC_word_t *left,
|
||||
const uECC_word_t *right,
|
||||
wordcount_t num_words) {
|
||||
#if (uECC_MAX_WORDS != uECC_MIN_WORDS)
|
||||
#if (uECC_PLATFORM == uECC_arm_thumb) || (uECC_PLATFORM == uECC_arm_thumb2)
|
||||
uint32_t jump = (uECC_MAX_WORDS - num_words) * 4 * 2 + 1;
|
||||
#else /* ARM */
|
||||
uint32_t jump = (uECC_MAX_WORDS - num_words) * 4 * 4;
|
||||
#endif
|
||||
#endif
|
||||
uint32_t carry;
|
||||
uint32_t left_word;
|
||||
uint32_t right_word;
|
||||
|
||||
__asm__ volatile (
|
||||
".syntax unified \n\t"
|
||||
"movs %[carry], #0 \n\t"
|
||||
#if (uECC_MAX_WORDS != uECC_MIN_WORDS)
|
||||
"adr %[left], 1f \n\t"
|
||||
".align 4 \n\t"
|
||||
"adds %[jump], %[left] \n\t"
|
||||
#endif
|
||||
|
||||
"ldmia %[lptr]!, {%[left]} \n\t"
|
||||
"ldmia %[rptr]!, {%[right]} \n\t"
|
||||
"subs %[left], %[right] \n\t"
|
||||
"stmia %[dptr]!, {%[left]} \n\t"
|
||||
|
||||
#if (uECC_MAX_WORDS != uECC_MIN_WORDS)
|
||||
"bx %[jump] \n\t"
|
||||
#endif
|
||||
"1: \n\t"
|
||||
REPEAT(DEC(uECC_MAX_WORDS),
|
||||
"ldmia %[lptr]!, {%[left]} \n\t"
|
||||
"ldmia %[rptr]!, {%[right]} \n\t"
|
||||
"sbcs %[left], %[right] \n\t"
|
||||
"stmia %[dptr]!, {%[left]} \n\t")
|
||||
|
||||
"adcs %[carry], %[carry] \n\t"
|
||||
RESUME_SYNTAX
|
||||
: [dptr] REG_RW_LO (result), [lptr] REG_RW_LO (left), [rptr] REG_RW_LO (right),
|
||||
#if (uECC_MAX_WORDS != uECC_MIN_WORDS)
|
||||
[jump] REG_RW_LO (jump),
|
||||
#endif
|
||||
[carry] REG_WRITE_LO (carry), [left] REG_WRITE_LO (left_word),
|
||||
[right] REG_WRITE_LO (right_word)
|
||||
:
|
||||
: "cc", "memory"
|
||||
);
|
||||
return !carry; /* Note that on ARM, carry flag set means "no borrow" when subtracting
|
||||
(for some reason...) */
|
||||
}
|
||||
#define asm_sub 1
|
||||
|
||||
#endif /* (uECC_OPTIMIZATION_LEVEL >= 2) */
|
||||
|
||||
#if (uECC_OPTIMIZATION_LEVEL >= 3)
|
||||
|
||||
#if (uECC_PLATFORM != uECC_arm_thumb)
|
||||
|
||||
#if uECC_ARM_USE_UMAAL
|
||||
#include "asm_arm_mult_square_umaal.inc"
|
||||
#else
|
||||
#include "asm_arm_mult_square.inc"
|
||||
#endif
|
||||
|
||||
#if (uECC_OPTIMIZATION_LEVEL == 3)
|
||||
|
||||
uECC_VLI_API void uECC_vli_mult(uint32_t *result,
|
||||
const uint32_t *left,
|
||||
const uint32_t *right,
|
||||
wordcount_t num_words) {
|
||||
register uint32_t *r0 __asm__("r0") = result;
|
||||
register const uint32_t *r1 __asm__("r1") = left;
|
||||
register const uint32_t *r2 __asm__("r2") = right;
|
||||
register uint32_t r3 __asm__("r3") = num_words;
|
||||
|
||||
__asm__ volatile (
|
||||
".syntax unified \n\t"
|
||||
#if (uECC_MIN_WORDS == 5)
|
||||
FAST_MULT_ASM_5
|
||||
#if (uECC_MAX_WORDS > 5)
|
||||
FAST_MULT_ASM_5_TO_6
|
||||
#endif
|
||||
#if (uECC_MAX_WORDS > 6)
|
||||
FAST_MULT_ASM_6_TO_7
|
||||
#endif
|
||||
#if (uECC_MAX_WORDS > 7)
|
||||
FAST_MULT_ASM_7_TO_8
|
||||
#endif
|
||||
#elif (uECC_MIN_WORDS == 6)
|
||||
FAST_MULT_ASM_6
|
||||
#if (uECC_MAX_WORDS > 6)
|
||||
FAST_MULT_ASM_6_TO_7
|
||||
#endif
|
||||
#if (uECC_MAX_WORDS > 7)
|
||||
FAST_MULT_ASM_7_TO_8
|
||||
#endif
|
||||
#elif (uECC_MIN_WORDS == 7)
|
||||
FAST_MULT_ASM_7
|
||||
#if (uECC_MAX_WORDS > 7)
|
||||
FAST_MULT_ASM_7_TO_8
|
||||
#endif
|
||||
#elif (uECC_MIN_WORDS == 8)
|
||||
FAST_MULT_ASM_8
|
||||
#endif
|
||||
"1: \n\t"
|
||||
RESUME_SYNTAX
|
||||
: "+r" (r0), "+r" (r1), "+r" (r2)
|
||||
: "r" (r3)
|
||||
: "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory"
|
||||
);
|
||||
}
|
||||
#define asm_mult 1
|
||||
|
||||
#if uECC_SQUARE_FUNC
|
||||
uECC_VLI_API void uECC_vli_square(uECC_word_t *result,
|
||||
const uECC_word_t *left,
|
||||
wordcount_t num_words) {
|
||||
register uint32_t *r0 __asm__("r0") = result;
|
||||
register const uint32_t *r1 __asm__("r1") = left;
|
||||
register uint32_t r2 __asm__("r2") = num_words;
|
||||
|
||||
__asm__ volatile (
|
||||
".syntax unified \n\t"
|
||||
#if (uECC_MIN_WORDS == 5)
|
||||
FAST_SQUARE_ASM_5
|
||||
#if (uECC_MAX_WORDS > 5)
|
||||
FAST_SQUARE_ASM_5_TO_6
|
||||
#endif
|
||||
#if (uECC_MAX_WORDS > 6)
|
||||
FAST_SQUARE_ASM_6_TO_7
|
||||
#endif
|
||||
#if (uECC_MAX_WORDS > 7)
|
||||
FAST_SQUARE_ASM_7_TO_8
|
||||
#endif
|
||||
#elif (uECC_MIN_WORDS == 6)
|
||||
FAST_SQUARE_ASM_6
|
||||
#if (uECC_MAX_WORDS > 6)
|
||||
FAST_SQUARE_ASM_6_TO_7
|
||||
#endif
|
||||
#if (uECC_MAX_WORDS > 7)
|
||||
FAST_SQUARE_ASM_7_TO_8
|
||||
#endif
|
||||
#elif (uECC_MIN_WORDS == 7)
|
||||
FAST_SQUARE_ASM_7
|
||||
#if (uECC_MAX_WORDS > 7)
|
||||
FAST_SQUARE_ASM_7_TO_8
|
||||
#endif
|
||||
#elif (uECC_MIN_WORDS == 8)
|
||||
FAST_SQUARE_ASM_8
|
||||
#endif
|
||||
|
||||
"1: \n\t"
|
||||
RESUME_SYNTAX
|
||||
: "+r" (r0), "+r" (r1)
|
||||
: "r" (r2)
|
||||
: "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory"
|
||||
);
|
||||
}
|
||||
#define asm_square 1
|
||||
#endif /* uECC_SQUARE_FUNC */
|
||||
|
||||
#else /* (uECC_OPTIMIZATION_LEVEL > 3) */
|
||||
|
||||
uECC_VLI_API void uECC_vli_mult(uint32_t *result,
|
||||
const uint32_t *left,
|
||||
const uint32_t *right,
|
||||
wordcount_t num_words) {
|
||||
register uint32_t *r0 __asm__("r0") = result;
|
||||
register const uint32_t *r1 __asm__("r1") = left;
|
||||
register const uint32_t *r2 __asm__("r2") = right;
|
||||
register uint32_t r3 __asm__("r3") = num_words;
|
||||
|
||||
#if uECC_SUPPORTS_secp160r1
|
||||
if (num_words == 5) {
|
||||
__asm__ volatile (
|
||||
".syntax unified \n\t"
|
||||
FAST_MULT_ASM_5
|
||||
RESUME_SYNTAX
|
||||
: "+r" (r0), "+r" (r1), "+r" (r2)
|
||||
: "r" (r3)
|
||||
: "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory"
|
||||
);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
#if uECC_SUPPORTS_secp192r1
|
||||
if (num_words == 6) {
|
||||
__asm__ volatile (
|
||||
".syntax unified \n\t"
|
||||
FAST_MULT_ASM_6
|
||||
RESUME_SYNTAX
|
||||
: "+r" (r0), "+r" (r1), "+r" (r2)
|
||||
: "r" (r3)
|
||||
: "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory"
|
||||
);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
#if uECC_SUPPORTS_secp224r1
|
||||
if (num_words == 7) {
|
||||
__asm__ volatile (
|
||||
".syntax unified \n\t"
|
||||
FAST_MULT_ASM_7
|
||||
RESUME_SYNTAX
|
||||
: "+r" (r0), "+r" (r1), "+r" (r2)
|
||||
: "r" (r3)
|
||||
: "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory"
|
||||
);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
#if (uECC_SUPPORTS_secp256r1 || uECC_SUPPORTS_secp256k1)
|
||||
if (num_words == 8) {
|
||||
__asm__ volatile (
|
||||
".syntax unified \n\t"
|
||||
FAST_MULT_ASM_8
|
||||
RESUME_SYNTAX
|
||||
: "+r" (r0), "+r" (r1), "+r" (r2)
|
||||
: "r" (r3)
|
||||
: "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory"
|
||||
);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
#define asm_mult 1
|
||||
|
||||
#if uECC_SQUARE_FUNC
|
||||
uECC_VLI_API void uECC_vli_square(uECC_word_t *result,
|
||||
const uECC_word_t *left,
|
||||
wordcount_t num_words) {
|
||||
register uint32_t *r0 __asm__("r0") = result;
|
||||
register const uint32_t *r1 __asm__("r1") = left;
|
||||
register uint32_t r2 __asm__("r2") = num_words;
|
||||
|
||||
#if uECC_SUPPORTS_secp160r1
|
||||
if (num_words == 5) {
|
||||
__asm__ volatile (
|
||||
".syntax unified \n\t"
|
||||
FAST_SQUARE_ASM_5
|
||||
RESUME_SYNTAX
|
||||
: "+r" (r0), "+r" (r1)
|
||||
: "r" (r2)
|
||||
: "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory"
|
||||
);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
#if uECC_SUPPORTS_secp192r1
|
||||
if (num_words == 6) {
|
||||
__asm__ volatile (
|
||||
".syntax unified \n\t"
|
||||
FAST_SQUARE_ASM_6
|
||||
RESUME_SYNTAX
|
||||
: "+r" (r0), "+r" (r1)
|
||||
: "r" (r2)
|
||||
: "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory"
|
||||
);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
#if uECC_SUPPORTS_secp224r1
|
||||
if (num_words == 7) {
|
||||
__asm__ volatile (
|
||||
".syntax unified \n\t"
|
||||
FAST_SQUARE_ASM_7
|
||||
RESUME_SYNTAX
|
||||
: "+r" (r0), "+r" (r1)
|
||||
: "r" (r2)
|
||||
: "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory"
|
||||
);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
#if (uECC_SUPPORTS_secp256r1 || uECC_SUPPORTS_secp256k1)
|
||||
if (num_words == 8) {
|
||||
__asm__ volatile (
|
||||
".syntax unified \n\t"
|
||||
FAST_SQUARE_ASM_8
|
||||
RESUME_SYNTAX
|
||||
: "+r" (r0), "+r" (r1)
|
||||
: "r" (r2)
|
||||
: "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory"
|
||||
);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
#define asm_square 1
|
||||
#endif /* uECC_SQUARE_FUNC */
|
||||
|
||||
#endif /* (uECC_OPTIMIZATION_LEVEL > 3) */
|
||||
|
||||
#endif /* uECC_PLATFORM != uECC_arm_thumb */
|
||||
|
||||
#endif /* (uECC_OPTIMIZATION_LEVEL >= 3) */
|
||||
|
||||
/* ---- "Small" implementations ---- */
|
||||
|
||||
#if !asm_add
|
||||
uECC_VLI_API uECC_word_t uECC_vli_add(uECC_word_t *result,
|
||||
const uECC_word_t *left,
|
||||
const uECC_word_t *right,
|
||||
wordcount_t num_words) {
|
||||
uint32_t carry = 0;
|
||||
uint32_t left_word;
|
||||
uint32_t right_word;
|
||||
|
||||
__asm__ volatile (
|
||||
".syntax unified \n\t"
|
||||
"1: \n\t"
|
||||
"ldmia %[lptr]!, {%[left]} \n\t" /* Load left word. */
|
||||
"ldmia %[rptr]!, {%[right]} \n\t" /* Load right word. */
|
||||
"lsrs %[carry], #1 \n\t" /* Set up carry flag (carry = 0 after this). */
|
||||
"adcs %[left], %[left], %[right] \n\t" /* Add with carry. */
|
||||
"adcs %[carry], %[carry], %[carry] \n\t" /* Store carry bit. */
|
||||
"stmia %[dptr]!, {%[left]} \n\t" /* Store result word. */
|
||||
"subs %[ctr], #1 \n\t" /* Decrement counter. */
|
||||
"bne 1b \n\t" /* Loop until counter == 0. */
|
||||
RESUME_SYNTAX
|
||||
: [dptr] REG_RW (result), [lptr] REG_RW (left), [rptr] REG_RW (right),
|
||||
[ctr] REG_RW (num_words), [carry] REG_RW (carry),
|
||||
[left] REG_WRITE (left_word), [right] REG_WRITE (right_word)
|
||||
:
|
||||
: "cc", "memory"
|
||||
);
|
||||
return carry;
|
||||
}
|
||||
#define asm_add 1
|
||||
#endif
|
||||
|
||||
#if !asm_sub
|
||||
uECC_VLI_API uECC_word_t uECC_vli_sub(uECC_word_t *result,
|
||||
const uECC_word_t *left,
|
||||
const uECC_word_t *right,
|
||||
wordcount_t num_words) {
|
||||
uint32_t carry = 1; /* carry = 1 initially (means don't borrow) */
|
||||
uint32_t left_word;
|
||||
uint32_t right_word;
|
||||
|
||||
__asm__ volatile (
|
||||
".syntax unified \n\t"
|
||||
"1: \n\t"
|
||||
"ldmia %[lptr]!, {%[left]} \n\t" /* Load left word. */
|
||||
"ldmia %[rptr]!, {%[right]} \n\t" /* Load right word. */
|
||||
"lsrs %[carry], #1 \n\t" /* Set up carry flag (carry = 0 after this). */
|
||||
"sbcs %[left], %[left], %[right] \n\t" /* Subtract with borrow. */
|
||||
"adcs %[carry], %[carry], %[carry] \n\t" /* Store carry bit. */
|
||||
"stmia %[dptr]!, {%[left]} \n\t" /* Store result word. */
|
||||
"subs %[ctr], #1 \n\t" /* Decrement counter. */
|
||||
"bne 1b \n\t" /* Loop until counter == 0. */
|
||||
RESUME_SYNTAX
|
||||
: [dptr] REG_RW (result), [lptr] REG_RW (left), [rptr] REG_RW (right),
|
||||
[ctr] REG_RW (num_words), [carry] REG_RW (carry),
|
||||
[left] REG_WRITE (left_word), [right] REG_WRITE (right_word)
|
||||
:
|
||||
: "cc", "memory"
|
||||
);
|
||||
return !carry;
|
||||
}
|
||||
#define asm_sub 1
|
||||
#endif
|
||||
|
||||
#if !asm_mult
|
||||
uECC_VLI_API void uECC_vli_mult(uECC_word_t *result,
|
||||
const uECC_word_t *left,
|
||||
const uECC_word_t *right,
|
||||
wordcount_t num_words) {
|
||||
#if (uECC_PLATFORM != uECC_arm_thumb)
|
||||
uint32_t c0 = 0;
|
||||
uint32_t c1 = 0;
|
||||
uint32_t c2 = 0;
|
||||
uint32_t k = 0;
|
||||
uint32_t i;
|
||||
uint32_t t0, t1;
|
||||
|
||||
__asm__ volatile (
|
||||
".syntax unified \n\t"
|
||||
|
||||
"1: \n\t" /* outer loop (k < num_words) */
|
||||
"movs %[i], #0 \n\t" /* i = 0 */
|
||||
"b 3f \n\t"
|
||||
|
||||
"2: \n\t" /* outer loop (k >= num_words) */
|
||||
"movs %[i], %[k] \n\t" /* i = k */
|
||||
"subs %[i], %[last_word] \n\t" /* i = k - (num_words - 1) (times 4) */
|
||||
|
||||
"3: \n\t" /* inner loop */
|
||||
"subs %[t0], %[k], %[i] \n\t" /* t0 = k-i */
|
||||
|
||||
"ldr %[t1], [%[right], %[t0]] \n\t" /* t1 = right[k - i] */
|
||||
"ldr %[t0], [%[left], %[i]] \n\t" /* t0 = left[i] */
|
||||
|
||||
"umull %[t0], %[t1], %[t0], %[t1] \n\t" /* (t0, t1) = left[i] * right[k - i] */
|
||||
|
||||
"adds %[c0], %[c0], %[t0] \n\t" /* add low word to c0 */
|
||||
"adcs %[c1], %[c1], %[t1] \n\t" /* add high word to c1, including carry */
|
||||
"adcs %[c2], %[c2], #0 \n\t" /* add carry to c2 */
|
||||
|
||||
"adds %[i], #4 \n\t" /* i += 4 */
|
||||
"cmp %[i], %[last_word] \n\t" /* i > (num_words - 1) (times 4)? */
|
||||
"bgt 4f \n\t" /* if so, exit the loop */
|
||||
"cmp %[i], %[k] \n\t" /* i <= k? */
|
||||
"ble 3b \n\t" /* if so, continue looping */
|
||||
|
||||
"4: \n\t" /* end inner loop */
|
||||
|
||||
"str %[c0], [%[result], %[k]] \n\t" /* result[k] = c0 */
|
||||
"mov %[c0], %[c1] \n\t" /* c0 = c1 */
|
||||
"mov %[c1], %[c2] \n\t" /* c1 = c2 */
|
||||
"movs %[c2], #0 \n\t" /* c2 = 0 */
|
||||
"adds %[k], #4 \n\t" /* k += 4 */
|
||||
"cmp %[k], %[last_word] \n\t" /* k <= (num_words - 1) (times 4) ? */
|
||||
"ble 1b \n\t" /* if so, loop back, start with i = 0 */
|
||||
"cmp %[k], %[last_word], lsl #1 \n\t" /* k <= (num_words * 2 - 2) (times 4) ? */
|
||||
"ble 2b \n\t" /* if so, loop back, start with i = (k + 1) - num_words */
|
||||
/* end outer loop */
|
||||
|
||||
"str %[c0], [%[result], %[k]] \n\t" /* result[num_words * 2 - 1] = c0 */
|
||||
RESUME_SYNTAX
|
||||
: [c0] "+r" (c0), [c1] "+r" (c1), [c2] "+r" (c2),
|
||||
[k] "+r" (k), [i] "=&r" (i), [t0] "=&r" (t0), [t1] "=&r" (t1)
|
||||
: [result] "r" (result), [left] "r" (left), [right] "r" (right),
|
||||
[last_word] "r" ((num_words - 1) * 4)
|
||||
: "cc", "memory"
|
||||
);
|
||||
|
||||
#else /* Thumb-1 */
|
||||
uint32_t r4, r5, r6, r7;
|
||||
|
||||
__asm__ volatile (
|
||||
".syntax unified \n\t"
|
||||
"subs %[r3], #1 \n\t" /* r3 = num_words - 1 */
|
||||
"lsls %[r3], #2 \n\t" /* r3 = (num_words - 1) * 4 */
|
||||
"mov r8, %[r3] \n\t" /* r8 = (num_words - 1) * 4 */
|
||||
"lsls %[r3], #1 \n\t" /* r3 = (num_words - 1) * 8 */
|
||||
"mov r9, %[r3] \n\t" /* r9 = (num_words - 1) * 8 */
|
||||
"movs %[r3], #0 \n\t" /* c0 = 0 */
|
||||
"movs %[r4], #0 \n\t" /* c1 = 0 */
|
||||
"movs %[r5], #0 \n\t" /* c2 = 0 */
|
||||
"movs %[r6], #0 \n\t" /* k = 0 */
|
||||
|
||||
"push {%[r0]} \n\t" /* keep result on the stack */
|
||||
|
||||
"1: \n\t" /* outer loop (k < num_words) */
|
||||
"movs %[r7], #0 \n\t" /* r7 = i = 0 */
|
||||
"b 3f \n\t"
|
||||
|
||||
"2: \n\t" /* outer loop (k >= num_words) */
|
||||
"movs %[r7], %[r6] \n\t" /* r7 = k */
|
||||
"mov %[r0], r8 \n\t" /* r0 = (num_words - 1) * 4 */
|
||||
"subs %[r7], %[r0] \n\t" /* r7 = i = k - (num_words - 1) (times 4) */
|
||||
|
||||
"3: \n\t" /* inner loop */
|
||||
"mov r10, %[r3] \n\t"
|
||||
"mov r11, %[r4] \n\t"
|
||||
"mov r12, %[r5] \n\t"
|
||||
"mov r14, %[r6] \n\t"
|
||||
"subs %[r0], %[r6], %[r7] \n\t" /* r0 = k - i */
|
||||
|
||||
"ldr %[r4], [%[r2], %[r0]] \n\t" /* r4 = right[k - i] */
|
||||
"ldr %[r0], [%[r1], %[r7]] \n\t" /* r0 = left[i] */
|
||||
|
||||
"lsrs %[r3], %[r0], #16 \n\t" /* r3 = a1 */
|
||||
"uxth %[r0], %[r0] \n\t" /* r0 = a0 */
|
||||
|
||||
"lsrs %[r5], %[r4], #16 \n\t" /* r5 = b1 */
|
||||
"uxth %[r4], %[r4] \n\t" /* r4 = b0 */
|
||||
|
||||
"movs %[r6], %[r3] \n\t" /* r6 = a1 */
|
||||
"muls %[r6], %[r5], %[r6] \n\t" /* r6 = a1 * b1 */
|
||||
"muls %[r3], %[r4], %[r3] \n\t" /* r3 = b0 * a1 */
|
||||
"muls %[r5], %[r0], %[r5] \n\t" /* r5 = a0 * b1 */
|
||||
"muls %[r0], %[r4], %[r0] \n\t" /* r0 = a0 * b0 */
|
||||
|
||||
/* Add middle terms */
|
||||
"lsls %[r4], %[r3], #16 \n\t"
|
||||
"lsrs %[r3], %[r3], #16 \n\t"
|
||||
"adds %[r0], %[r4] \n\t"
|
||||
"adcs %[r6], %[r3] \n\t"
|
||||
|
||||
"lsls %[r4], %[r5], #16 \n\t"
|
||||
"lsrs %[r5], %[r5], #16 \n\t"
|
||||
"adds %[r0], %[r4] \n\t"
|
||||
"adcs %[r6], %[r5] \n\t"
|
||||
|
||||
"mov %[r3], r10\n\t"
|
||||
"mov %[r4], r11\n\t"
|
||||
"mov %[r5], r12\n\t"
|
||||
"adds %[r3], %[r0] \n\t" /* add low word to c0 */
|
||||
"adcs %[r4], %[r6] \n\t" /* add high word to c1, including carry */
|
||||
"movs %[r0], #0 \n\t" /* r0 = 0 (does not affect carry bit) */
|
||||
"adcs %[r5], %[r0] \n\t" /* add carry to c2 */
|
||||
|
||||
"mov %[r6], r14\n\t" /* r6 = k */
|
||||
|
||||
"adds %[r7], #4 \n\t" /* i += 4 */
|
||||
"cmp %[r7], r8 \n\t" /* i > (num_words - 1) (times 4)? */
|
||||
"bgt 4f \n\t" /* if so, exit the loop */
|
||||
"cmp %[r7], %[r6] \n\t" /* i <= k? */
|
||||
"ble 3b \n\t" /* if so, continue looping */
|
||||
|
||||
"4: \n\t" /* end inner loop */
|
||||
|
||||
"ldr %[r0], [sp, #0] \n\t" /* r0 = result */
|
||||
|
||||
"str %[r3], [%[r0], %[r6]] \n\t" /* result[k] = c0 */
|
||||
"mov %[r3], %[r4] \n\t" /* c0 = c1 */
|
||||
"mov %[r4], %[r5] \n\t" /* c1 = c2 */
|
||||
"movs %[r5], #0 \n\t" /* c2 = 0 */
|
||||
"adds %[r6], #4 \n\t" /* k += 4 */
|
||||
"cmp %[r6], r8 \n\t" /* k <= (num_words - 1) (times 4) ? */
|
||||
"ble 1b \n\t" /* if so, loop back, start with i = 0 */
|
||||
"cmp %[r6], r9 \n\t" /* k <= (num_words * 2 - 2) (times 4) ? */
|
||||
"ble 2b \n\t" /* if so, loop back, with i = (k + 1) - num_words */
|
||||
/* end outer loop */
|
||||
|
||||
"str %[r3], [%[r0], %[r6]] \n\t" /* result[num_words * 2 - 1] = c0 */
|
||||
"pop {%[r0]} \n\t" /* pop result off the stack */
|
||||
|
||||
".syntax divided \n\t"
|
||||
: [r3] "+l" (num_words), [r4] "=&l" (r4),
|
||||
[r5] "=&l" (r5), [r6] "=&l" (r6), [r7] "=&l" (r7)
|
||||
: [r0] "l" (result), [r1] "l" (left), [r2] "l" (right)
|
||||
: "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory"
|
||||
);
|
||||
#endif
|
||||
}
|
||||
#define asm_mult 1
|
||||
#endif
|
||||
|
||||
#if uECC_SQUARE_FUNC
|
||||
#if !asm_square
|
||||
uECC_VLI_API void uECC_vli_square(uECC_word_t *result,
|
||||
const uECC_word_t *left,
|
||||
wordcount_t num_words) {
|
||||
#if (uECC_PLATFORM != uECC_arm_thumb)
|
||||
uint32_t c0 = 0;
|
||||
uint32_t c1 = 0;
|
||||
uint32_t c2 = 0;
|
||||
uint32_t k = 0;
|
||||
uint32_t i, tt;
|
||||
uint32_t t0, t1;
|
||||
|
||||
__asm__ volatile (
|
||||
".syntax unified \n\t"
|
||||
|
||||
"1: \n\t" /* outer loop (k < num_words) */
|
||||
"movs %[i], #0 \n\t" /* i = 0 */
|
||||
"b 3f \n\t"
|
||||
|
||||
"2: \n\t" /* outer loop (k >= num_words) */
|
||||
"movs %[i], %[k] \n\t" /* i = k */
|
||||
"subs %[i], %[last_word] \n\t" /* i = k - (num_words - 1) (times 4) */
|
||||
|
||||
"3: \n\t" /* inner loop */
|
||||
"subs %[tt], %[k], %[i] \n\t" /* tt = k-i */
|
||||
|
||||
"ldr %[t1], [%[left], %[tt]] \n\t" /* t1 = left[k - i] */
|
||||
"ldr %[t0], [%[left], %[i]] \n\t" /* t0 = left[i] */
|
||||
|
||||
"umull %[t0], %[t1], %[t0], %[t1] \n\t" /* (t0, t1) = left[i] * right[k - i] */
|
||||
|
||||
"cmp %[i], %[tt] \n\t" /* (i < k - i) ? */
|
||||
"bge 4f \n\t" /* if i >= k - i, skip */
|
||||
"adds %[c0], %[c0], %[t0] \n\t" /* add low word to c0 */
|
||||
"adcs %[c1], %[c1], %[t1] \n\t" /* add high word to c1, including carry */
|
||||
"adcs %[c2], %[c2], #0 \n\t" /* add carry to c2 */
|
||||
|
||||
"4: \n\t"
|
||||
"adds %[c0], %[c0], %[t0] \n\t" /* add low word to c0 */
|
||||
"adcs %[c1], %[c1], %[t1] \n\t" /* add high word to c1, including carry */
|
||||
"adcs %[c2], %[c2], #0 \n\t" /* add carry to c2 */
|
||||
|
||||
"adds %[i], #4 \n\t" /* i += 4 */
|
||||
"cmp %[i], %[k] \n\t" /* i >= k? */
|
||||
"bge 5f \n\t" /* if so, exit the loop */
|
||||
"subs %[tt], %[k], %[i] \n\t" /* tt = k - i */
|
||||
"cmp %[i], %[tt] \n\t" /* i <= k - i? */
|
||||
"ble 3b \n\t" /* if so, continue looping */
|
||||
|
||||
"5: \n\t" /* end inner loop */
|
||||
|
||||
"str %[c0], [%[result], %[k]] \n\t" /* result[k] = c0 */
|
||||
"mov %[c0], %[c1] \n\t" /* c0 = c1 */
|
||||
"mov %[c1], %[c2] \n\t" /* c1 = c2 */
|
||||
"movs %[c2], #0 \n\t" /* c2 = 0 */
|
||||
"adds %[k], #4 \n\t" /* k += 4 */
|
||||
"cmp %[k], %[last_word] \n\t" /* k <= (num_words - 1) (times 4) ? */
|
||||
"ble 1b \n\t" /* if so, loop back, start with i = 0 */
|
||||
"cmp %[k], %[last_word], lsl #1 \n\t" /* k <= (num_words * 2 - 2) (times 4) ? */
|
||||
"ble 2b \n\t" /* if so, loop back, start with i = (k + 1) - num_words */
|
||||
/* end outer loop */
|
||||
|
||||
"str %[c0], [%[result], %[k]] \n\t" /* result[num_words * 2 - 1] = c0 */
|
||||
RESUME_SYNTAX
|
||||
: [c0] "+r" (c0), [c1] "+r" (c1), [c2] "+r" (c2),
|
||||
[k] "+r" (k), [i] "=&r" (i), [tt] "=&r" (tt), [t0] "=&r" (t0), [t1] "=&r" (t1)
|
||||
: [result] "r" (result), [left] "r" (left), [last_word] "r" ((num_words - 1) * 4)
|
||||
: "cc", "memory"
|
||||
);
|
||||
|
||||
#else
|
||||
uint32_t r3, r4, r5, r6, r7;
|
||||
|
||||
__asm__ volatile (
|
||||
".syntax unified \n\t"
|
||||
"subs %[r2], #1 \n\t" /* r2 = num_words - 1 */
|
||||
"lsls %[r2], #2 \n\t" /* r2 = (num_words - 1) * 4 */
|
||||
"mov r8, %[r2] \n\t" /* r8 = (num_words - 1) * 4 */
|
||||
"lsls %[r2], #1 \n\t" /* r2 = (num_words - 1) * 8 */
|
||||
"mov r9, %[r2] \n\t" /* r9 = (num_words - 1) * 8 */
|
||||
"movs %[r2], #0 \n\t" /* c0 = 0 */
|
||||
"movs %[r3], #0 \n\t" /* c1 = 0 */
|
||||
"movs %[r4], #0 \n\t" /* c2 = 0 */
|
||||
"movs %[r5], #0 \n\t" /* k = 0 */
|
||||
|
||||
"push {%[r0]} \n\t" /* keep result on the stack */
|
||||
|
||||
"1: \n\t" /* outer loop (k < num_words) */
|
||||
"movs %[r6], #0 \n\t" /* r6 = i = 0 */
|
||||
"b 3f \n\t"
|
||||
|
||||
"2: \n\t" /* outer loop (k >= num_words) */
|
||||
"movs %[r6], %[r5] \n\t" /* r6 = k */
|
||||
"mov %[r0], r8 \n\t" /* r0 = (num_words - 1) * 4 */
|
||||
"subs %[r6], %[r0] \n\t" /* r6 = i = k - (num_words - 1) (times 4) */
|
||||
|
||||
"3: \n\t" /* inner loop */
|
||||
"mov r10, %[r2] \n\t"
|
||||
"mov r11, %[r3] \n\t"
|
||||
"mov r12, %[r4] \n\t"
|
||||
"mov r14, %[r5] \n\t"
|
||||
"subs %[r7], %[r5], %[r6] \n\t" /* r7 = k - i */
|
||||
|
||||
"ldr %[r3], [%[r1], %[r7]] \n\t" /* r3 = left[k - i] */
|
||||
"ldr %[r0], [%[r1], %[r6]] \n\t" /* r0 = left[i] */
|
||||
|
||||
"lsrs %[r2], %[r0], #16 \n\t" /* r2 = a1 */
|
||||
"uxth %[r0], %[r0] \n\t" /* r0 = a0 */
|
||||
|
||||
"lsrs %[r4], %[r3], #16 \n\t" /* r4 = b1 */
|
||||
"uxth %[r3], %[r3] \n\t" /* r3 = b0 */
|
||||
|
||||
"movs %[r5], %[r2] \n\t" /* r5 = a1 */
|
||||
"muls %[r5], %[r4], %[r5] \n\t" /* r5 = a1 * b1 */
|
||||
"muls %[r2], %[r3], %[r2] \n\t" /* r2 = b0 * a1 */
|
||||
"muls %[r4], %[r0], %[r4] \n\t" /* r4 = a0 * b1 */
|
||||
"muls %[r0], %[r3], %[r0] \n\t" /* r0 = a0 * b0 */
|
||||
|
||||
/* Add middle terms */
|
||||
"lsls %[r3], %[r2], #16 \n\t"
|
||||
"lsrs %[r2], %[r2], #16 \n\t"
|
||||
"adds %[r0], %[r3] \n\t"
|
||||
"adcs %[r5], %[r2] \n\t"
|
||||
|
||||
"lsls %[r3], %[r4], #16 \n\t"
|
||||
"lsrs %[r4], %[r4], #16 \n\t"
|
||||
"adds %[r0], %[r3] \n\t"
|
||||
"adcs %[r5], %[r4] \n\t"
|
||||
|
||||
/* Add to acc, doubling if necessary */
|
||||
"mov %[r2], r10\n\t"
|
||||
"mov %[r3], r11\n\t"
|
||||
"mov %[r4], r12\n\t"
|
||||
|
||||
"cmp %[r6], %[r7] \n\t" /* (i < k - i) ? */
|
||||
"bge 4f \n\t" /* if i >= k - i, skip */
|
||||
"movs %[r7], #0 \n\t" /* r7 = 0 */
|
||||
"adds %[r2], %[r0] \n\t" /* add low word to c0 */
|
||||
"adcs %[r3], %[r5] \n\t" /* add high word to c1, including carry */
|
||||
"adcs %[r4], %[r7] \n\t" /* add carry to c2 */
|
||||
"4: \n\t"
|
||||
"movs %[r7], #0 \n\t" /* r7 = 0 */
|
||||
"adds %[r2], %[r0] \n\t" /* add low word to c0 */
|
||||
"adcs %[r3], %[r5] \n\t" /* add high word to c1, including carry */
|
||||
"adcs %[r4], %[r7] \n\t" /* add carry to c2 */
|
||||
|
||||
"mov %[r5], r14\n\t" /* r5 = k */
|
||||
|
||||
"adds %[r6], #4 \n\t" /* i += 4 */
|
||||
"cmp %[r6], %[r5] \n\t" /* i >= k? */
|
||||
"bge 5f \n\t" /* if so, exit the loop */
|
||||
"subs %[r7], %[r5], %[r6] \n\t" /* r7 = k - i */
|
||||
"cmp %[r6], %[r7] \n\t" /* i <= k - i? */
|
||||
"ble 3b \n\t" /* if so, continue looping */
|
||||
|
||||
"5: \n\t" /* end inner loop */
|
||||
|
||||
"ldr %[r0], [sp, #0] \n\t" /* r0 = result */
|
||||
|
||||
"str %[r2], [%[r0], %[r5]] \n\t" /* result[k] = c0 */
|
||||
"mov %[r2], %[r3] \n\t" /* c0 = c1 */
|
||||
"mov %[r3], %[r4] \n\t" /* c1 = c2 */
|
||||
"movs %[r4], #0 \n\t" /* c2 = 0 */
|
||||
"adds %[r5], #4 \n\t" /* k += 4 */
|
||||
"cmp %[r5], r8 \n\t" /* k <= (num_words - 1) (times 4) ? */
|
||||
"ble 1b \n\t" /* if so, loop back, start with i = 0 */
|
||||
"cmp %[r5], r9 \n\t" /* k <= (num_words * 2 - 2) (times 4) ? */
|
||||
"ble 2b \n\t" /* if so, loop back, with i = (k + 1) - num_words */
|
||||
/* end outer loop */
|
||||
|
||||
"str %[r2], [%[r0], %[r5]] \n\t" /* result[num_words * 2 - 1] = c0 */
|
||||
"pop {%[r0]} \n\t" /* pop result off the stack */
|
||||
|
||||
".syntax divided \n\t"
|
||||
: [r2] "+l" (num_words), [r3] "=&l" (r3), [r4] "=&l" (r4),
|
||||
[r5] "=&l" (r5), [r6] "=&l" (r6), [r7] "=&l" (r7)
|
||||
: [r0] "l" (result), [r1] "l" (left)
|
||||
: "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory"
|
||||
);
|
||||
#endif
|
||||
}
|
||||
#define asm_square 1
|
||||
#endif
|
||||
#endif /* uECC_SQUARE_FUNC */
|
||||
|
||||
#endif /* _UECC_ASM_ARM_H_ */
|
2311
lib/micro-ecc/asm_arm_mult_square.inc
Normal file
2311
lib/micro-ecc/asm_arm_mult_square.inc
Normal file
File diff suppressed because it is too large
Load Diff
1202
lib/micro-ecc/asm_arm_mult_square_umaal.inc
Normal file
1202
lib/micro-ecc/asm_arm_mult_square_umaal.inc
Normal file
File diff suppressed because it is too large
Load Diff
1248
lib/micro-ecc/curve-specific.inc
Normal file
1248
lib/micro-ecc/curve-specific.inc
Normal file
File diff suppressed because it is too large
Load Diff
94
lib/micro-ecc/platform-specific.inc
Normal file
94
lib/micro-ecc/platform-specific.inc
Normal file
@@ -0,0 +1,94 @@
|
||||
/* Copyright 2015, Kenneth MacKay. Licensed under the BSD 2-clause license. */
|
||||
|
||||
#ifndef _UECC_PLATFORM_SPECIFIC_H_
|
||||
#define _UECC_PLATFORM_SPECIFIC_H_
|
||||
|
||||
#include "types.h"
|
||||
|
||||
#if (defined(_WIN32) || defined(_WIN64))
|
||||
/* Windows */
|
||||
|
||||
// use pragma syntax to prevent tweaking the linker script for getting CryptXYZ function
|
||||
#pragma comment(lib, "crypt32.lib")
|
||||
#pragma comment(lib, "advapi32.lib")
|
||||
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#include <windows.h>
|
||||
#include <wincrypt.h>
|
||||
|
||||
static int default_RNG(uint8_t *dest, unsigned size) {
|
||||
HCRYPTPROV prov;
|
||||
if (!CryptAcquireContext(&prov, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT)) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
CryptGenRandom(prov, size, (BYTE *)dest);
|
||||
CryptReleaseContext(prov, 0);
|
||||
return 1;
|
||||
}
|
||||
#define default_RNG_defined 1
|
||||
|
||||
#elif defined(unix) || defined(__linux__) || defined(__unix__) || defined(__unix) || \
|
||||
(defined(__APPLE__) && defined(__MACH__)) || defined(uECC_POSIX)
|
||||
|
||||
/* Some POSIX-like system with /dev/urandom or /dev/random. */
|
||||
#include <sys/types.h>
|
||||
#include <fcntl.h>
|
||||
#include <unistd.h>
|
||||
|
||||
#ifndef O_CLOEXEC
|
||||
#define O_CLOEXEC 0
|
||||
#endif
|
||||
|
||||
static int default_RNG(uint8_t *dest, unsigned size) {
|
||||
int fd = open("/dev/urandom", O_RDONLY | O_CLOEXEC);
|
||||
if (fd == -1) {
|
||||
fd = open("/dev/random", O_RDONLY | O_CLOEXEC);
|
||||
if (fd == -1) {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
char *ptr = (char *)dest;
|
||||
size_t left = size;
|
||||
while (left > 0) {
|
||||
ssize_t bytes_read = read(fd, ptr, left);
|
||||
if (bytes_read <= 0) { // read failed
|
||||
close(fd);
|
||||
return 0;
|
||||
}
|
||||
left -= bytes_read;
|
||||
ptr += bytes_read;
|
||||
}
|
||||
|
||||
close(fd);
|
||||
return 1;
|
||||
}
|
||||
#define default_RNG_defined 1
|
||||
|
||||
#elif defined(RIOT_VERSION)
|
||||
|
||||
#include <random.h>
|
||||
|
||||
static int default_RNG(uint8_t *dest, unsigned size) {
|
||||
random_bytes(dest, size);
|
||||
return 1;
|
||||
}
|
||||
#define default_RNG_defined 1
|
||||
|
||||
#elif defined(NRF52_SERIES)
|
||||
|
||||
#include "app_error.h"
|
||||
#include "nrf_crypto_rng.h"
|
||||
|
||||
static int default_RNG(uint8_t *dest, unsigned size)
|
||||
{
|
||||
// make sure to call nrf_crypto_init and nrf_crypto_rng_init first
|
||||
ret_code_t ret_code = nrf_crypto_rng_vector_generate(dest, size);
|
||||
return (ret_code == NRF_SUCCESS) ? 1 : 0;
|
||||
}
|
||||
#define default_RNG_defined 1
|
||||
|
||||
#endif /* platform */
|
||||
|
||||
#endif /* _UECC_PLATFORM_SPECIFIC_H_ */
|
108
lib/micro-ecc/types.h
Normal file
108
lib/micro-ecc/types.h
Normal file
@@ -0,0 +1,108 @@
|
||||
/* Copyright 2015, Kenneth MacKay. Licensed under the BSD 2-clause license. */
|
||||
|
||||
#ifndef _UECC_TYPES_H_
|
||||
#define _UECC_TYPES_H_
|
||||
|
||||
#ifndef uECC_PLATFORM
|
||||
#if __AVR__
|
||||
#define uECC_PLATFORM uECC_avr
|
||||
#elif defined(__thumb2__) || defined(_M_ARMT) /* I think MSVC only supports Thumb-2 targets */
|
||||
#define uECC_PLATFORM uECC_arm_thumb2
|
||||
#elif defined(__thumb__)
|
||||
#define uECC_PLATFORM uECC_arm_thumb
|
||||
#elif defined(__arm__) || defined(_M_ARM)
|
||||
#define uECC_PLATFORM uECC_arm
|
||||
#elif defined(__aarch64__)
|
||||
#define uECC_PLATFORM uECC_arm64
|
||||
#elif defined(__i386__) || defined(_M_IX86) || defined(_X86_) || defined(__I86__)
|
||||
#define uECC_PLATFORM uECC_x86
|
||||
#elif defined(__amd64__) || defined(_M_X64)
|
||||
#define uECC_PLATFORM uECC_x86_64
|
||||
#else
|
||||
#define uECC_PLATFORM uECC_arch_other
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef uECC_ARM_USE_UMAAL
|
||||
#if (uECC_PLATFORM == uECC_arm) && (__ARM_ARCH >= 6)
|
||||
#define uECC_ARM_USE_UMAAL 1
|
||||
#elif (uECC_PLATFORM == uECC_arm_thumb2) && (__ARM_ARCH >= 6) && !__ARM_ARCH_7M__
|
||||
#define uECC_ARM_USE_UMAAL 1
|
||||
#else
|
||||
#define uECC_ARM_USE_UMAAL 0
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef uECC_WORD_SIZE
|
||||
#if uECC_PLATFORM == uECC_avr
|
||||
#define uECC_WORD_SIZE 1
|
||||
#elif (uECC_PLATFORM == uECC_x86_64 || uECC_PLATFORM == uECC_arm64)
|
||||
#define uECC_WORD_SIZE 8
|
||||
#else
|
||||
#define uECC_WORD_SIZE 4
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if (uECC_WORD_SIZE != 1) && (uECC_WORD_SIZE != 4) && (uECC_WORD_SIZE != 8)
|
||||
#error "Unsupported value for uECC_WORD_SIZE"
|
||||
#endif
|
||||
|
||||
#if ((uECC_PLATFORM == uECC_avr) && (uECC_WORD_SIZE != 1))
|
||||
#pragma message ("uECC_WORD_SIZE must be 1 for AVR")
|
||||
#undef uECC_WORD_SIZE
|
||||
#define uECC_WORD_SIZE 1
|
||||
#endif
|
||||
|
||||
#if ((uECC_PLATFORM == uECC_arm || uECC_PLATFORM == uECC_arm_thumb || \
|
||||
uECC_PLATFORM == uECC_arm_thumb2) && \
|
||||
(uECC_WORD_SIZE != 4))
|
||||
#pragma message ("uECC_WORD_SIZE must be 4 for ARM")
|
||||
#undef uECC_WORD_SIZE
|
||||
#define uECC_WORD_SIZE 4
|
||||
#endif
|
||||
|
||||
#if defined(__SIZEOF_INT128__) || ((__clang_major__ * 100 + __clang_minor__) >= 302)
|
||||
#define SUPPORTS_INT128 1
|
||||
#else
|
||||
#define SUPPORTS_INT128 0
|
||||
#endif
|
||||
|
||||
typedef int8_t wordcount_t;
|
||||
typedef int16_t bitcount_t;
|
||||
typedef int8_t cmpresult_t;
|
||||
|
||||
#if (uECC_WORD_SIZE == 1)
|
||||
|
||||
typedef uint8_t uECC_word_t;
|
||||
typedef uint16_t uECC_dword_t;
|
||||
|
||||
#define HIGH_BIT_SET 0x80
|
||||
#define uECC_WORD_BITS 8
|
||||
#define uECC_WORD_BITS_SHIFT 3
|
||||
#define uECC_WORD_BITS_MASK 0x07
|
||||
|
||||
#elif (uECC_WORD_SIZE == 4)
|
||||
|
||||
typedef uint32_t uECC_word_t;
|
||||
typedef uint64_t uECC_dword_t;
|
||||
|
||||
#define HIGH_BIT_SET 0x80000000
|
||||
#define uECC_WORD_BITS 32
|
||||
#define uECC_WORD_BITS_SHIFT 5
|
||||
#define uECC_WORD_BITS_MASK 0x01F
|
||||
|
||||
#elif (uECC_WORD_SIZE == 8)
|
||||
|
||||
typedef uint64_t uECC_word_t;
|
||||
#if SUPPORTS_INT128
|
||||
typedef unsigned __int128 uECC_dword_t;
|
||||
#endif
|
||||
|
||||
#define HIGH_BIT_SET 0x8000000000000000ull
|
||||
#define uECC_WORD_BITS 64
|
||||
#define uECC_WORD_BITS_SHIFT 6
|
||||
#define uECC_WORD_BITS_MASK 0x03F
|
||||
|
||||
#endif /* uECC_WORD_SIZE */
|
||||
|
||||
#endif /* _UECC_TYPES_H_ */
|
1669
lib/micro-ecc/uECC.c
Normal file
1669
lib/micro-ecc/uECC.c
Normal file
File diff suppressed because it is too large
Load Diff
367
lib/micro-ecc/uECC.h
Normal file
367
lib/micro-ecc/uECC.h
Normal file
@@ -0,0 +1,367 @@
|
||||
/* Copyright 2014, Kenneth MacKay. Licensed under the BSD 2-clause license. */
|
||||
|
||||
#ifndef _UECC_H_
|
||||
#define _UECC_H_
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
/* Platform selection options.
|
||||
If uECC_PLATFORM is not defined, the code will try to guess it based on compiler macros.
|
||||
Possible values for uECC_PLATFORM are defined below: */
|
||||
#define uECC_arch_other 0
|
||||
#define uECC_x86 1
|
||||
#define uECC_x86_64 2
|
||||
#define uECC_arm 3
|
||||
#define uECC_arm_thumb 4
|
||||
#define uECC_arm_thumb2 5
|
||||
#define uECC_arm64 6
|
||||
#define uECC_avr 7
|
||||
|
||||
/* If desired, you can define uECC_WORD_SIZE as appropriate for your platform (1, 4, or 8 bytes).
|
||||
If uECC_WORD_SIZE is not explicitly defined then it will be automatically set based on your
|
||||
platform. */
|
||||
|
||||
/* Optimization level; trade speed for code size.
|
||||
Larger values produce code that is faster but larger.
|
||||
Currently supported values are 0 - 4; 0 is unusably slow for most applications.
|
||||
Optimization level 4 currently only has an effect ARM platforms where more than one
|
||||
curve is enabled. */
|
||||
#ifndef uECC_OPTIMIZATION_LEVEL
|
||||
#define uECC_OPTIMIZATION_LEVEL 2
|
||||
#endif
|
||||
|
||||
/* uECC_SQUARE_FUNC - If enabled (defined as nonzero), this will cause a specific function to be
|
||||
used for (scalar) squaring instead of the generic multiplication function. This can make things
|
||||
faster somewhat faster, but increases the code size. */
|
||||
#ifndef uECC_SQUARE_FUNC
|
||||
#define uECC_SQUARE_FUNC 0
|
||||
#endif
|
||||
|
||||
/* uECC_VLI_NATIVE_LITTLE_ENDIAN - If enabled (defined as nonzero), this will switch to native
|
||||
little-endian format for *all* arrays passed in and out of the public API. This includes public
|
||||
and private keys, shared secrets, signatures and message hashes.
|
||||
Using this switch reduces the amount of call stack memory used by uECC, since less intermediate
|
||||
translations are required.
|
||||
Note that this will *only* work on native little-endian processors and it will treat the uint8_t
|
||||
arrays passed into the public API as word arrays, therefore requiring the provided byte arrays
|
||||
to be word aligned on architectures that do not support unaligned accesses.
|
||||
IMPORTANT: Keys and signatures generated with uECC_VLI_NATIVE_LITTLE_ENDIAN=1 are incompatible
|
||||
with keys and signatures generated with uECC_VLI_NATIVE_LITTLE_ENDIAN=0; all parties must use
|
||||
the same endianness. */
|
||||
#ifndef uECC_VLI_NATIVE_LITTLE_ENDIAN
|
||||
#define uECC_VLI_NATIVE_LITTLE_ENDIAN 0
|
||||
#endif
|
||||
|
||||
/* Curve support selection. Set to 0 to remove that curve. */
|
||||
#ifndef uECC_SUPPORTS_secp160r1
|
||||
#define uECC_SUPPORTS_secp160r1 1
|
||||
#endif
|
||||
#ifndef uECC_SUPPORTS_secp192r1
|
||||
#define uECC_SUPPORTS_secp192r1 1
|
||||
#endif
|
||||
#ifndef uECC_SUPPORTS_secp224r1
|
||||
#define uECC_SUPPORTS_secp224r1 1
|
||||
#endif
|
||||
#ifndef uECC_SUPPORTS_secp256r1
|
||||
#define uECC_SUPPORTS_secp256r1 1
|
||||
#endif
|
||||
#ifndef uECC_SUPPORTS_secp256k1
|
||||
#define uECC_SUPPORTS_secp256k1 1
|
||||
#endif
|
||||
|
||||
/* Specifies whether compressed point format is supported.
|
||||
Set to 0 to disable point compression/decompression functions. */
|
||||
#ifndef uECC_SUPPORT_COMPRESSED_POINT
|
||||
#define uECC_SUPPORT_COMPRESSED_POINT 1
|
||||
#endif
|
||||
|
||||
struct uECC_Curve_t;
|
||||
typedef const struct uECC_Curve_t * uECC_Curve;
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#if uECC_SUPPORTS_secp160r1
|
||||
uECC_Curve uECC_secp160r1(void);
|
||||
#endif
|
||||
#if uECC_SUPPORTS_secp192r1
|
||||
uECC_Curve uECC_secp192r1(void);
|
||||
#endif
|
||||
#if uECC_SUPPORTS_secp224r1
|
||||
uECC_Curve uECC_secp224r1(void);
|
||||
#endif
|
||||
#if uECC_SUPPORTS_secp256r1
|
||||
uECC_Curve uECC_secp256r1(void);
|
||||
#endif
|
||||
#if uECC_SUPPORTS_secp256k1
|
||||
uECC_Curve uECC_secp256k1(void);
|
||||
#endif
|
||||
|
||||
/* uECC_RNG_Function type
|
||||
The RNG function should fill 'size' random bytes into 'dest'. It should return 1 if
|
||||
'dest' was filled with random data, or 0 if the random data could not be generated.
|
||||
The filled-in values should be either truly random, or from a cryptographically-secure PRNG.
|
||||
|
||||
A correctly functioning RNG function must be set (using uECC_set_rng()) before calling
|
||||
uECC_make_key() or uECC_sign().
|
||||
|
||||
Setting a correctly functioning RNG function improves the resistance to side-channel attacks
|
||||
for uECC_shared_secret() and uECC_sign_deterministic().
|
||||
|
||||
A correct RNG function is set by default when building for Windows, Linux, or OS X.
|
||||
If you are building on another POSIX-compliant system that supports /dev/random or /dev/urandom,
|
||||
you can define uECC_POSIX to use the predefined RNG. For embedded platforms there is no predefined
|
||||
RNG function; you must provide your own.
|
||||
*/
|
||||
typedef int (*uECC_RNG_Function)(uint8_t *dest, unsigned size);
|
||||
|
||||
/* uECC_set_rng() function.
|
||||
Set the function that will be used to generate random bytes. The RNG function should
|
||||
return 1 if the random data was generated, or 0 if the random data could not be generated.
|
||||
|
||||
On platforms where there is no predefined RNG function (eg embedded platforms), this must
|
||||
be called before uECC_make_key() or uECC_sign() are used.
|
||||
|
||||
Inputs:
|
||||
rng_function - The function that will be used to generate random bytes.
|
||||
*/
|
||||
void uECC_set_rng(uECC_RNG_Function rng_function);
|
||||
|
||||
/* uECC_get_rng() function.
|
||||
|
||||
Returns the function that will be used to generate random bytes.
|
||||
*/
|
||||
uECC_RNG_Function uECC_get_rng(void);
|
||||
|
||||
/* uECC_curve_private_key_size() function.
|
||||
|
||||
Returns the size of a private key for the curve in bytes.
|
||||
*/
|
||||
int uECC_curve_private_key_size(uECC_Curve curve);
|
||||
|
||||
/* uECC_curve_public_key_size() function.
|
||||
|
||||
Returns the size of a public key for the curve in bytes.
|
||||
*/
|
||||
int uECC_curve_public_key_size(uECC_Curve curve);
|
||||
|
||||
/* uECC_make_key() function.
|
||||
Create a public/private key pair.
|
||||
|
||||
Outputs:
|
||||
public_key - Will be filled in with the public key. Must be at least 2 * the curve size
|
||||
(in bytes) long. For example, if the curve is secp256r1, public_key must be 64
|
||||
bytes long.
|
||||
private_key - Will be filled in with the private key. Must be as long as the curve order; this
|
||||
is typically the same as the curve size, except for secp160r1. For example, if the
|
||||
curve is secp256r1, private_key must be 32 bytes long.
|
||||
|
||||
For secp160r1, private_key must be 21 bytes long! Note that the first byte will
|
||||
almost always be 0 (there is about a 1 in 2^80 chance of it being non-zero).
|
||||
|
||||
Returns 1 if the key pair was generated successfully, 0 if an error occurred.
|
||||
*/
|
||||
int uECC_make_key(uint8_t *public_key, uint8_t *private_key, uECC_Curve curve);
|
||||
|
||||
/* uECC_shared_secret() function.
|
||||
Compute a shared secret given your secret key and someone else's public key. If the public key
|
||||
is not from a trusted source and has not been previously verified, you should verify it first
|
||||
using uECC_valid_public_key().
|
||||
Note: It is recommended that you hash the result of uECC_shared_secret() before using it for
|
||||
symmetric encryption or HMAC.
|
||||
|
||||
Inputs:
|
||||
public_key - The public key of the remote party.
|
||||
private_key - Your private key.
|
||||
|
||||
Outputs:
|
||||
secret - Will be filled in with the shared secret value. Must be the same size as the
|
||||
curve size; for example, if the curve is secp256r1, secret must be 32 bytes long.
|
||||
|
||||
Returns 1 if the shared secret was generated successfully, 0 if an error occurred.
|
||||
*/
|
||||
int uECC_shared_secret(const uint8_t *public_key,
|
||||
const uint8_t *private_key,
|
||||
uint8_t *secret,
|
||||
uECC_Curve curve);
|
||||
|
||||
#if uECC_SUPPORT_COMPRESSED_POINT
|
||||
/* uECC_compress() function.
|
||||
Compress a public key.
|
||||
|
||||
Inputs:
|
||||
public_key - The public key to compress.
|
||||
|
||||
Outputs:
|
||||
compressed - Will be filled in with the compressed public key. Must be at least
|
||||
(curve size + 1) bytes long; for example, if the curve is secp256r1,
|
||||
compressed must be 33 bytes long.
|
||||
*/
|
||||
void uECC_compress(const uint8_t *public_key, uint8_t *compressed, uECC_Curve curve);
|
||||
|
||||
/* uECC_decompress() function.
|
||||
Decompress a compressed public key.
|
||||
|
||||
Inputs:
|
||||
compressed - The compressed public key.
|
||||
|
||||
Outputs:
|
||||
public_key - Will be filled in with the decompressed public key.
|
||||
*/
|
||||
void uECC_decompress(const uint8_t *compressed, uint8_t *public_key, uECC_Curve curve);
|
||||
#endif /* uECC_SUPPORT_COMPRESSED_POINT */
|
||||
|
||||
/* uECC_valid_public_key() function.
|
||||
Check to see if a public key is valid.
|
||||
|
||||
Note that you are not required to check for a valid public key before using any other uECC
|
||||
functions. However, you may wish to avoid spending CPU time computing a shared secret or
|
||||
verifying a signature using an invalid public key.
|
||||
|
||||
Inputs:
|
||||
public_key - The public key to check.
|
||||
|
||||
Returns 1 if the public key is valid, 0 if it is invalid.
|
||||
*/
|
||||
int uECC_valid_public_key(const uint8_t *public_key, uECC_Curve curve);
|
||||
|
||||
/* uECC_compute_public_key() function.
|
||||
Compute the corresponding public key for a private key.
|
||||
|
||||
Inputs:
|
||||
private_key - The private key to compute the public key for
|
||||
|
||||
Outputs:
|
||||
public_key - Will be filled in with the corresponding public key
|
||||
|
||||
Returns 1 if the key was computed successfully, 0 if an error occurred.
|
||||
*/
|
||||
int uECC_compute_public_key(const uint8_t *private_key, uint8_t *public_key, uECC_Curve curve);
|
||||
|
||||
/* uECC_sign() function.
|
||||
Generate an ECDSA signature for a given hash value.
|
||||
|
||||
Usage: Compute a hash of the data you wish to sign (SHA-2 is recommended) and pass it in to
|
||||
this function along with your private key.
|
||||
|
||||
Inputs:
|
||||
private_key - Your private key.
|
||||
message_hash - The hash of the message to sign.
|
||||
hash_size - The size of message_hash in bytes.
|
||||
|
||||
Outputs:
|
||||
signature - Will be filled in with the signature value. Must be at least 2 * curve size long.
|
||||
For example, if the curve is secp256r1, signature must be 64 bytes long.
|
||||
|
||||
Returns 1 if the signature generated successfully, 0 if an error occurred.
|
||||
*/
|
||||
int uECC_sign(const uint8_t *private_key,
|
||||
const uint8_t *message_hash,
|
||||
unsigned hash_size,
|
||||
uint8_t *signature,
|
||||
uECC_Curve curve);
|
||||
|
||||
/* uECC_HashContext structure.
|
||||
This is used to pass in an arbitrary hash function to uECC_sign_deterministic().
|
||||
The structure will be used for multiple hash computations; each time a new hash
|
||||
is computed, init_hash() will be called, followed by one or more calls to
|
||||
update_hash(), and finally a call to finish_hash() to produce the resulting hash.
|
||||
|
||||
The intention is that you will create a structure that includes uECC_HashContext
|
||||
followed by any hash-specific data. For example:
|
||||
|
||||
typedef struct SHA256_HashContext {
|
||||
uECC_HashContext uECC;
|
||||
SHA256_CTX ctx;
|
||||
} SHA256_HashContext;
|
||||
|
||||
void init_SHA256(uECC_HashContext *base) {
|
||||
SHA256_HashContext *context = (SHA256_HashContext *)base;
|
||||
SHA256_Init(&context->ctx);
|
||||
}
|
||||
|
||||
void update_SHA256(uECC_HashContext *base,
|
||||
const uint8_t *message,
|
||||
unsigned message_size) {
|
||||
SHA256_HashContext *context = (SHA256_HashContext *)base;
|
||||
SHA256_Update(&context->ctx, message, message_size);
|
||||
}
|
||||
|
||||
void finish_SHA256(uECC_HashContext *base, uint8_t *hash_result) {
|
||||
SHA256_HashContext *context = (SHA256_HashContext *)base;
|
||||
SHA256_Final(hash_result, &context->ctx);
|
||||
}
|
||||
|
||||
... when signing ...
|
||||
{
|
||||
uint8_t tmp[32 + 32 + 64];
|
||||
SHA256_HashContext ctx = {{&init_SHA256, &update_SHA256, &finish_SHA256, 64, 32, tmp}};
|
||||
uECC_sign_deterministic(key, message_hash, &ctx.uECC, signature);
|
||||
}
|
||||
*/
|
||||
typedef struct uECC_HashContext {
|
||||
void (*init_hash)(const struct uECC_HashContext *context);
|
||||
void (*update_hash)(const struct uECC_HashContext *context,
|
||||
const uint8_t *message,
|
||||
unsigned message_size);
|
||||
void (*finish_hash)(const struct uECC_HashContext *context, uint8_t *hash_result);
|
||||
unsigned block_size; /* Hash function block size in bytes, eg 64 for SHA-256. */
|
||||
unsigned result_size; /* Hash function result size in bytes, eg 32 for SHA-256. */
|
||||
uint8_t *tmp; /* Must point to a buffer of at least (2 * result_size + block_size) bytes. */
|
||||
} uECC_HashContext;
|
||||
|
||||
/* uECC_sign_deterministic() function.
|
||||
Generate an ECDSA signature for a given hash value, using a deterministic algorithm
|
||||
(see RFC 6979). You do not need to set the RNG using uECC_set_rng() before calling
|
||||
this function; however, if the RNG is defined it will improve resistance to side-channel
|
||||
attacks.
|
||||
|
||||
Usage: Compute a hash of the data you wish to sign (SHA-2 is recommended) and pass it to
|
||||
this function along with your private key and a hash context. Note that the message_hash
|
||||
does not need to be computed with the same hash function used by hash_context.
|
||||
|
||||
Inputs:
|
||||
private_key - Your private key.
|
||||
message_hash - The hash of the message to sign.
|
||||
hash_size - The size of message_hash in bytes.
|
||||
hash_context - A hash context to use.
|
||||
|
||||
Outputs:
|
||||
signature - Will be filled in with the signature value.
|
||||
|
||||
Returns 1 if the signature generated successfully, 0 if an error occurred.
|
||||
*/
|
||||
int uECC_sign_deterministic(const uint8_t *private_key,
|
||||
const uint8_t *message_hash,
|
||||
unsigned hash_size,
|
||||
const uECC_HashContext *hash_context,
|
||||
uint8_t *signature,
|
||||
uECC_Curve curve);
|
||||
|
||||
/* uECC_verify() function.
|
||||
Verify an ECDSA signature.
|
||||
|
||||
Usage: Compute the hash of the signed data using the same hash as the signer and
|
||||
pass it to this function along with the signer's public key and the signature values (r and s).
|
||||
|
||||
Inputs:
|
||||
public_key - The signer's public key.
|
||||
message_hash - The hash of the signed data.
|
||||
hash_size - The size of message_hash in bytes.
|
||||
signature - The signature value.
|
||||
|
||||
Returns 1 if the signature is valid, 0 if it is invalid.
|
||||
*/
|
||||
int uECC_verify(const uint8_t *public_key,
|
||||
const uint8_t *message_hash,
|
||||
unsigned hash_size,
|
||||
const uint8_t *signature,
|
||||
uECC_Curve curve);
|
||||
|
||||
#ifdef __cplusplus
|
||||
} /* end of extern "C" */
|
||||
#endif
|
||||
|
||||
#endif /* _UECC_H_ */
|
172
lib/micro-ecc/uECC_vli.h
Normal file
172
lib/micro-ecc/uECC_vli.h
Normal file
@@ -0,0 +1,172 @@
|
||||
/* Copyright 2015, Kenneth MacKay. Licensed under the BSD 2-clause license. */
|
||||
|
||||
#ifndef _UECC_VLI_H_
|
||||
#define _UECC_VLI_H_
|
||||
|
||||
#include "uECC.h"
|
||||
#include "types.h"
|
||||
|
||||
/* Functions for raw large-integer manipulation. These are only available
|
||||
if uECC.c is compiled with uECC_ENABLE_VLI_API defined to 1. */
|
||||
#ifndef uECC_ENABLE_VLI_API
|
||||
#define uECC_ENABLE_VLI_API 0
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#if uECC_ENABLE_VLI_API
|
||||
|
||||
void uECC_vli_clear(uECC_word_t *vli, wordcount_t num_words);
|
||||
|
||||
/* Constant-time comparison to zero - secure way to compare long integers */
|
||||
/* Returns 1 if vli == 0, 0 otherwise. */
|
||||
uECC_word_t uECC_vli_isZero(const uECC_word_t *vli, wordcount_t num_words);
|
||||
|
||||
/* Returns nonzero if bit 'bit' of vli is set. */
|
||||
uECC_word_t uECC_vli_testBit(const uECC_word_t *vli, bitcount_t bit);
|
||||
|
||||
/* Counts the number of bits required to represent vli. */
|
||||
bitcount_t uECC_vli_numBits(const uECC_word_t *vli, const wordcount_t max_words);
|
||||
|
||||
/* Sets dest = src. */
|
||||
void uECC_vli_set(uECC_word_t *dest, const uECC_word_t *src, wordcount_t num_words);
|
||||
|
||||
/* Constant-time comparison function - secure way to compare long integers */
|
||||
/* Returns one if left == right, zero otherwise */
|
||||
uECC_word_t uECC_vli_equal(const uECC_word_t *left,
|
||||
const uECC_word_t *right,
|
||||
wordcount_t num_words);
|
||||
|
||||
/* Constant-time comparison function - secure way to compare long integers */
|
||||
/* Returns sign of left - right, in constant time. */
|
||||
cmpresult_t uECC_vli_cmp(const uECC_word_t *left, const uECC_word_t *right, wordcount_t num_words);
|
||||
|
||||
/* Computes vli = vli >> 1. */
|
||||
void uECC_vli_rshift1(uECC_word_t *vli, wordcount_t num_words);
|
||||
|
||||
/* Computes result = left + right, returning carry. Can modify in place. */
|
||||
uECC_word_t uECC_vli_add(uECC_word_t *result,
|
||||
const uECC_word_t *left,
|
||||
const uECC_word_t *right,
|
||||
wordcount_t num_words);
|
||||
|
||||
/* Computes result = left - right, returning borrow. Can modify in place. */
|
||||
uECC_word_t uECC_vli_sub(uECC_word_t *result,
|
||||
const uECC_word_t *left,
|
||||
const uECC_word_t *right,
|
||||
wordcount_t num_words);
|
||||
|
||||
/* Computes result = left * right. Result must be 2 * num_words long. */
|
||||
void uECC_vli_mult(uECC_word_t *result,
|
||||
const uECC_word_t *left,
|
||||
const uECC_word_t *right,
|
||||
wordcount_t num_words);
|
||||
|
||||
/* Computes result = left^2. Result must be 2 * num_words long. */
|
||||
void uECC_vli_square(uECC_word_t *result, const uECC_word_t *left, wordcount_t num_words);
|
||||
|
||||
/* Computes result = (left + right) % mod.
|
||||
Assumes that left < mod and right < mod, and that result does not overlap mod. */
|
||||
void uECC_vli_modAdd(uECC_word_t *result,
|
||||
const uECC_word_t *left,
|
||||
const uECC_word_t *right,
|
||||
const uECC_word_t *mod,
|
||||
wordcount_t num_words);
|
||||
|
||||
/* Computes result = (left - right) % mod.
|
||||
Assumes that left < mod and right < mod, and that result does not overlap mod. */
|
||||
void uECC_vli_modSub(uECC_word_t *result,
|
||||
const uECC_word_t *left,
|
||||
const uECC_word_t *right,
|
||||
const uECC_word_t *mod,
|
||||
wordcount_t num_words);
|
||||
|
||||
/* Computes result = product % mod, where product is 2N words long.
|
||||
Currently only designed to work for mod == curve->p or curve_n. */
|
||||
void uECC_vli_mmod(uECC_word_t *result,
|
||||
uECC_word_t *product,
|
||||
const uECC_word_t *mod,
|
||||
wordcount_t num_words);
|
||||
|
||||
/* Calculates result = product (mod curve->p), where product is up to
|
||||
2 * curve->num_words long. */
|
||||
void uECC_vli_mmod_fast(uECC_word_t *result, uECC_word_t *product, uECC_Curve curve);
|
||||
|
||||
/* Computes result = (left * right) % mod.
|
||||
Currently only designed to work for mod == curve->p or curve_n. */
|
||||
void uECC_vli_modMult(uECC_word_t *result,
|
||||
const uECC_word_t *left,
|
||||
const uECC_word_t *right,
|
||||
const uECC_word_t *mod,
|
||||
wordcount_t num_words);
|
||||
|
||||
/* Computes result = (left * right) % curve->p. */
|
||||
void uECC_vli_modMult_fast(uECC_word_t *result,
|
||||
const uECC_word_t *left,
|
||||
const uECC_word_t *right,
|
||||
uECC_Curve curve);
|
||||
|
||||
/* Computes result = left^2 % mod.
|
||||
Currently only designed to work for mod == curve->p or curve_n. */
|
||||
void uECC_vli_modSquare(uECC_word_t *result,
|
||||
const uECC_word_t *left,
|
||||
const uECC_word_t *mod,
|
||||
wordcount_t num_words);
|
||||
|
||||
/* Computes result = left^2 % curve->p. */
|
||||
void uECC_vli_modSquare_fast(uECC_word_t *result, const uECC_word_t *left, uECC_Curve curve);
|
||||
|
||||
/* Computes result = (1 / input) % mod.*/
|
||||
void uECC_vli_modInv(uECC_word_t *result,
|
||||
const uECC_word_t *input,
|
||||
const uECC_word_t *mod,
|
||||
wordcount_t num_words);
|
||||
|
||||
#if uECC_SUPPORT_COMPRESSED_POINT
|
||||
/* Calculates a = sqrt(a) (mod curve->p) */
|
||||
void uECC_vli_mod_sqrt(uECC_word_t *a, uECC_Curve curve);
|
||||
#endif
|
||||
|
||||
/* Converts an integer in uECC native format to big-endian bytes. */
|
||||
void uECC_vli_nativeToBytes(uint8_t *bytes, int num_bytes, const uECC_word_t *native);
|
||||
/* Converts big-endian bytes to an integer in uECC native format. */
|
||||
void uECC_vli_bytesToNative(uECC_word_t *native, const uint8_t *bytes, int num_bytes);
|
||||
|
||||
unsigned uECC_curve_num_words(uECC_Curve curve);
|
||||
unsigned uECC_curve_num_bytes(uECC_Curve curve);
|
||||
unsigned uECC_curve_num_bits(uECC_Curve curve);
|
||||
unsigned uECC_curve_num_n_words(uECC_Curve curve);
|
||||
unsigned uECC_curve_num_n_bytes(uECC_Curve curve);
|
||||
unsigned uECC_curve_num_n_bits(uECC_Curve curve);
|
||||
|
||||
const uECC_word_t *uECC_curve_p(uECC_Curve curve);
|
||||
const uECC_word_t *uECC_curve_n(uECC_Curve curve);
|
||||
const uECC_word_t *uECC_curve_G(uECC_Curve curve);
|
||||
const uECC_word_t *uECC_curve_b(uECC_Curve curve);
|
||||
|
||||
int uECC_valid_point(const uECC_word_t *point, uECC_Curve curve);
|
||||
|
||||
/* Multiplies a point by a scalar. Points are represented by the X coordinate followed by
|
||||
the Y coordinate in the same array, both coordinates are curve->num_words long. Note
|
||||
that scalar must be curve->num_n_words long (NOT curve->num_words). */
|
||||
void uECC_point_mult(uECC_word_t *result,
|
||||
const uECC_word_t *point,
|
||||
const uECC_word_t *scalar,
|
||||
uECC_Curve curve);
|
||||
|
||||
/* Generates a random integer in the range 0 < random < top.
|
||||
Both random and top have num_words words. */
|
||||
int uECC_generate_random_int(uECC_word_t *random,
|
||||
const uECC_word_t *top,
|
||||
wordcount_t num_words);
|
||||
|
||||
#endif /* uECC_ENABLE_VLI_API */
|
||||
|
||||
#ifdef __cplusplus
|
||||
} /* end of extern "C" */
|
||||
#endif
|
||||
|
||||
#endif /* _UECC_VLI_H_ */
|
123
lib/toolbox/hmac_sha256.c
Normal file
123
lib/toolbox/hmac_sha256.c
Normal file
@@ -0,0 +1,123 @@
|
||||
/*
|
||||
* hmac.c - HMAC
|
||||
*
|
||||
* Copyright (C) 2017 Sergei Glushchenko
|
||||
* Author: Sergei Glushchenko <gl.sergei@gmail.com>
|
||||
*
|
||||
* This file is a part of U2F firmware for STM32
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful, but
|
||||
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* As additional permission under GNU GPL version 3 section 7, you may
|
||||
* distribute non-source form of the Program without the copy of the
|
||||
* GNU GPL normally required by section 4, provided you inform the
|
||||
* recipients of GNU GPL by a written offer.
|
||||
*
|
||||
*/
|
||||
#include <stdint.h>
|
||||
|
||||
#include "sha256.h"
|
||||
#include "hmac_sha256.h"
|
||||
|
||||
static void
|
||||
_hmac_sha256_init (const hmac_context *ctx)
|
||||
{
|
||||
hmac_sha256_context *context = (hmac_sha256_context *)ctx;
|
||||
sha256_start(&context->sha_ctx);
|
||||
}
|
||||
|
||||
static void
|
||||
_hmac_sha256_update (const hmac_context *ctx, const uint8_t *message,
|
||||
unsigned message_size)
|
||||
{
|
||||
hmac_sha256_context *context = (hmac_sha256_context *)ctx;
|
||||
sha256_update(&context->sha_ctx, message, message_size);
|
||||
}
|
||||
|
||||
static void
|
||||
_hmac_sha256_finish (const hmac_context *ctx, uint8_t *hash_result)
|
||||
{
|
||||
hmac_sha256_context *context = (hmac_sha256_context *)ctx;
|
||||
sha256_finish(&context->sha_ctx, hash_result);
|
||||
}
|
||||
|
||||
/* Compute an HMAC using K as a key (as in RFC 6979). Note that K is always
|
||||
the same size as the hash result size. */
|
||||
static void
|
||||
hmac_init(const hmac_context *ctx, const uint8_t *K)
|
||||
{
|
||||
uint8_t *pad = ctx->tmp + 2 * ctx->result_size;
|
||||
unsigned i;
|
||||
for (i = 0; i < ctx->result_size; ++i)
|
||||
pad[i] = K[i] ^ 0x36;
|
||||
for (; i < ctx->block_size; ++i)
|
||||
pad[i] = 0x36;
|
||||
|
||||
ctx->init_hash (ctx);
|
||||
ctx->update_hash (ctx, pad, ctx->block_size);
|
||||
}
|
||||
|
||||
static void
|
||||
hmac_update(const hmac_context *ctx,
|
||||
const uint8_t *message,
|
||||
unsigned message_size)
|
||||
{
|
||||
ctx->update_hash (ctx, message, message_size);
|
||||
}
|
||||
|
||||
static void
|
||||
hmac_finish(const hmac_context *ctx,
|
||||
const uint8_t *K,
|
||||
uint8_t *result)
|
||||
{
|
||||
uint8_t *pad = ctx->tmp + 2 * ctx->result_size;
|
||||
unsigned i;
|
||||
for (i = 0; i < ctx->result_size; ++i)
|
||||
pad[i] = K[i] ^ 0x5c;
|
||||
for (; i < ctx->block_size; ++i)
|
||||
pad[i] = 0x5c;
|
||||
|
||||
ctx->finish_hash (ctx, result);
|
||||
|
||||
ctx->init_hash (ctx);
|
||||
ctx->update_hash (ctx, pad, ctx->block_size);
|
||||
ctx->update_hash (ctx, result, ctx->result_size);
|
||||
ctx->finish_hash (ctx, result);
|
||||
}
|
||||
|
||||
void
|
||||
hmac_sha256_init (hmac_sha256_context *ctx, const uint8_t *K)
|
||||
{
|
||||
ctx->hmac_ctx.init_hash = _hmac_sha256_init;
|
||||
ctx->hmac_ctx.update_hash = _hmac_sha256_update;
|
||||
ctx->hmac_ctx.finish_hash = _hmac_sha256_finish;
|
||||
ctx->hmac_ctx.block_size = 64;
|
||||
ctx->hmac_ctx.result_size = 32;
|
||||
ctx->hmac_ctx.tmp = ctx->tmp;
|
||||
hmac_init (&ctx->hmac_ctx, K);
|
||||
}
|
||||
|
||||
void
|
||||
hmac_sha256_update (const hmac_sha256_context *ctx, const uint8_t *message,
|
||||
unsigned message_size)
|
||||
{
|
||||
hmac_update (&ctx->hmac_ctx, message, message_size);
|
||||
}
|
||||
|
||||
void
|
||||
hmac_sha256_finish (const hmac_sha256_context *ctx, const uint8_t *K,
|
||||
uint8_t *hash_result)
|
||||
{
|
||||
hmac_finish (&ctx->hmac_ctx, K, hash_result);
|
||||
}
|
29
lib/toolbox/hmac_sha256.h
Normal file
29
lib/toolbox/hmac_sha256.h
Normal file
@@ -0,0 +1,29 @@
|
||||
|
||||
typedef struct hmac_context {
|
||||
void (*init_hash)(const struct hmac_context *context);
|
||||
void (*update_hash)(const struct hmac_context *context,
|
||||
const uint8_t *message,
|
||||
unsigned message_size);
|
||||
void (*finish_hash)(const struct hmac_context *context, uint8_t *hash_result);
|
||||
unsigned block_size; /* Hash function block size in bytes, eg 64 for SHA-256. */
|
||||
unsigned result_size; /* Hash function result size in bytes, eg 32 for SHA-256. */
|
||||
uint8_t *tmp; /* Must point to a buffer of at least (2 * result_size + block_size) bytes. */
|
||||
} hmac_context;
|
||||
|
||||
|
||||
typedef struct hmac_sha256_context {
|
||||
hmac_context hmac_ctx;
|
||||
sha256_context sha_ctx;
|
||||
uint8_t tmp[32 * 2 + 64];
|
||||
} hmac_sha256_context;
|
||||
|
||||
void
|
||||
hmac_sha256_init (hmac_sha256_context *ctx, const uint8_t *K);
|
||||
|
||||
void
|
||||
hmac_sha256_update (const hmac_sha256_context *ctx, const uint8_t *message,
|
||||
unsigned message_size);
|
||||
|
||||
void
|
||||
hmac_sha256_finish (const hmac_sha256_context *ctx, const uint8_t *K,
|
||||
uint8_t *hash_result);
|
226
lib/toolbox/sha256.c
Normal file
226
lib/toolbox/sha256.c
Normal file
@@ -0,0 +1,226 @@
|
||||
/*
|
||||
* sha256.c -- Compute SHA-256 hash
|
||||
*
|
||||
* Just for little endian architecture.
|
||||
*
|
||||
* Code taken from:
|
||||
* http://gladman.plushost.co.uk/oldsite/cryptography_technology/sha/index.php
|
||||
*
|
||||
* File names are sha2.c, sha2.h, brg_types.h, brg_endian.h
|
||||
* in the archive sha2-07-01-07.zip.
|
||||
*
|
||||
* Code is modified in the style of PolarSSL API.
|
||||
*
|
||||
* See original copyright notice below.
|
||||
*/
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software in both source and binary
|
||||
form is allowed (with or without changes) provided that:
|
||||
|
||||
1. distributions of this source code include the above copyright
|
||||
notice, this list of conditions and the following disclaimer;
|
||||
|
||||
2. distributions in binary form include the above copyright
|
||||
notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other associated materials;
|
||||
|
||||
3. the copyright holder's name is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
ALTERNATIVELY, provided that this notice is retained in full, this product
|
||||
may be distributed under the terms of the GNU General Public License (GPL),
|
||||
in which case the provisions of the GPL apply INSTEAD OF those given above.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 01/08/2005
|
||||
*/
|
||||
|
||||
#include <string.h>
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
#include "sha256.h"
|
||||
|
||||
#define SHA256_MASK (SHA256_BLOCK_SIZE - 1)
|
||||
|
||||
static void memcpy_output_bswap32 (unsigned char *dst, const uint32_t *p)
|
||||
{
|
||||
int i;
|
||||
uint32_t q = 0;
|
||||
|
||||
for (i = 0; i < 32; i++)
|
||||
{
|
||||
if ((i & 3) == 0)
|
||||
q = __builtin_bswap32 (p[i >> 2]); /* bswap32 is GCC extention */
|
||||
dst[i] = q >> ((i & 3) * 8);
|
||||
}
|
||||
}
|
||||
|
||||
#define rotr32(x,n) (((x) >> n) | ((x) << (32 - n)))
|
||||
|
||||
#define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
|
||||
#define maj(x,y,z) (((x) & (y)) | ((z) & ((x) ^ (y))))
|
||||
|
||||
/* round transforms for SHA256 compression functions */
|
||||
#define vf(n,i) v[(n - i) & 7]
|
||||
|
||||
#define hf(i) (p[i & 15] += \
|
||||
g_1(p[(i + 14) & 15]) + p[(i + 9) & 15] + g_0(p[(i + 1) & 15]))
|
||||
|
||||
#define v_cycle0(i) \
|
||||
p[i] = __builtin_bswap32 (p[i]); \
|
||||
vf(7,i) += p[i] + k_0[i] \
|
||||
+ s_1(vf(4,i)) + ch(vf(4,i),vf(5,i),vf(6,i)); \
|
||||
vf(3,i) += vf(7,i); \
|
||||
vf(7,i) += s_0(vf(0,i))+ maj(vf(0,i),vf(1,i),vf(2,i))
|
||||
|
||||
#define v_cycle(i, j) \
|
||||
vf(7,i) += hf(i) + k_0[i+j] \
|
||||
+ s_1(vf(4,i)) + ch(vf(4,i),vf(5,i),vf(6,i)); \
|
||||
vf(3,i) += vf(7,i); \
|
||||
vf(7,i) += s_0(vf(0,i))+ maj(vf(0,i),vf(1,i),vf(2,i))
|
||||
|
||||
#define s_0(x) (rotr32((x), 2) ^ rotr32((x), 13) ^ rotr32((x), 22))
|
||||
#define s_1(x) (rotr32((x), 6) ^ rotr32((x), 11) ^ rotr32((x), 25))
|
||||
#define g_0(x) (rotr32((x), 7) ^ rotr32((x), 18) ^ ((x) >> 3))
|
||||
#define g_1(x) (rotr32((x), 17) ^ rotr32((x), 19) ^ ((x) >> 10))
|
||||
#define k_0 k256
|
||||
|
||||
static const uint32_t k256[64] = {
|
||||
0X428A2F98, 0X71374491, 0XB5C0FBCF, 0XE9B5DBA5,
|
||||
0X3956C25B, 0X59F111F1, 0X923F82A4, 0XAB1C5ED5,
|
||||
0XD807AA98, 0X12835B01, 0X243185BE, 0X550C7DC3,
|
||||
0X72BE5D74, 0X80DEB1FE, 0X9BDC06A7, 0XC19BF174,
|
||||
0XE49B69C1, 0XEFBE4786, 0X0FC19DC6, 0X240CA1CC,
|
||||
0X2DE92C6F, 0X4A7484AA, 0X5CB0A9DC, 0X76F988DA,
|
||||
0X983E5152, 0XA831C66D, 0XB00327C8, 0XBF597FC7,
|
||||
0XC6E00BF3, 0XD5A79147, 0X06CA6351, 0X14292967,
|
||||
0X27B70A85, 0X2E1B2138, 0X4D2C6DFC, 0X53380D13,
|
||||
0X650A7354, 0X766A0ABB, 0X81C2C92E, 0X92722C85,
|
||||
0XA2BFE8A1, 0XA81A664B, 0XC24B8B70, 0XC76C51A3,
|
||||
0XD192E819, 0XD6990624, 0XF40E3585, 0X106AA070,
|
||||
0X19A4C116, 0X1E376C08, 0X2748774C, 0X34B0BCB5,
|
||||
0X391C0CB3, 0X4ED8AA4A, 0X5B9CCA4F, 0X682E6FF3,
|
||||
0X748F82EE, 0X78A5636F, 0X84C87814, 0X8CC70208,
|
||||
0X90BEFFFA, 0XA4506CEB, 0XBEF9A3F7, 0XC67178F2,
|
||||
};
|
||||
|
||||
void
|
||||
sha256_process (sha256_context *ctx)
|
||||
{
|
||||
uint32_t i;
|
||||
uint32_t *p = ctx->wbuf;
|
||||
uint32_t v[8];
|
||||
|
||||
memcpy (v, ctx->state, 8 * sizeof (uint32_t));
|
||||
|
||||
v_cycle0 ( 0); v_cycle0 ( 1); v_cycle0 ( 2); v_cycle0 ( 3);
|
||||
v_cycle0 ( 4); v_cycle0 ( 5); v_cycle0 ( 6); v_cycle0 ( 7);
|
||||
v_cycle0 ( 8); v_cycle0 ( 9); v_cycle0 (10); v_cycle0 (11);
|
||||
v_cycle0 (12); v_cycle0 (13); v_cycle0 (14); v_cycle0 (15);
|
||||
|
||||
for (i = 16; i < 64; i += 16)
|
||||
{
|
||||
v_cycle ( 0, i); v_cycle ( 1, i); v_cycle ( 2, i); v_cycle ( 3, i);
|
||||
v_cycle ( 4, i); v_cycle ( 5, i); v_cycle ( 6, i); v_cycle ( 7, i);
|
||||
v_cycle ( 8, i); v_cycle ( 9, i); v_cycle (10, i); v_cycle (11, i);
|
||||
v_cycle (12, i); v_cycle (13, i); v_cycle (14, i); v_cycle (15, i);
|
||||
}
|
||||
|
||||
ctx->state[0] += v[0];
|
||||
ctx->state[1] += v[1];
|
||||
ctx->state[2] += v[2];
|
||||
ctx->state[3] += v[3];
|
||||
ctx->state[4] += v[4];
|
||||
ctx->state[5] += v[5];
|
||||
ctx->state[6] += v[6];
|
||||
ctx->state[7] += v[7];
|
||||
}
|
||||
|
||||
void
|
||||
sha256_update (sha256_context *ctx, const unsigned char *input,
|
||||
unsigned int ilen)
|
||||
{
|
||||
uint32_t left = (ctx->total[0] & SHA256_MASK);
|
||||
uint32_t fill = SHA256_BLOCK_SIZE - left;
|
||||
|
||||
ctx->total[0] += ilen;
|
||||
if (ctx->total[0] < ilen)
|
||||
ctx->total[1]++;
|
||||
|
||||
while (ilen >= fill)
|
||||
{
|
||||
memcpy (((unsigned char*)ctx->wbuf) + left, input, fill);
|
||||
sha256_process (ctx);
|
||||
input += fill;
|
||||
ilen -= fill;
|
||||
left = 0;
|
||||
fill = SHA256_BLOCK_SIZE;
|
||||
}
|
||||
|
||||
memcpy (((unsigned char*)ctx->wbuf) + left, input, ilen);
|
||||
}
|
||||
|
||||
void
|
||||
sha256_finish (sha256_context *ctx, unsigned char output[32])
|
||||
{
|
||||
uint32_t last = (ctx->total[0] & SHA256_MASK);
|
||||
|
||||
ctx->wbuf[last >> 2] = __builtin_bswap32 (ctx->wbuf[last >> 2]);
|
||||
ctx->wbuf[last >> 2] &= 0xffffff80 << (8 * (~last & 3));
|
||||
ctx->wbuf[last >> 2] |= 0x00000080 << (8 * (~last & 3));
|
||||
ctx->wbuf[last >> 2] = __builtin_bswap32 (ctx->wbuf[last >> 2]);
|
||||
|
||||
if (last > SHA256_BLOCK_SIZE - 9)
|
||||
{
|
||||
if (last < 60)
|
||||
ctx->wbuf[15] = 0;
|
||||
sha256_process (ctx);
|
||||
last = 0;
|
||||
}
|
||||
else
|
||||
last = (last >> 2) + 1;
|
||||
|
||||
while (last < 14)
|
||||
ctx->wbuf[last++] = 0;
|
||||
|
||||
ctx->wbuf[14] = __builtin_bswap32 ((ctx->total[0] >> 29) | (ctx->total[1] << 3));
|
||||
ctx->wbuf[15] = __builtin_bswap32 (ctx->total[0] << 3);
|
||||
sha256_process (ctx);
|
||||
|
||||
memcpy_output_bswap32 (output, ctx->state);
|
||||
memset (ctx, 0, sizeof (sha256_context));
|
||||
}
|
||||
|
||||
static const uint32_t initial_state[8] =
|
||||
{
|
||||
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
|
||||
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
|
||||
};
|
||||
|
||||
void
|
||||
sha256_start (sha256_context *ctx)
|
||||
{
|
||||
ctx->total[0] = ctx->total[1] = 0;
|
||||
memcpy (ctx->state, initial_state, 8 * sizeof(uint32_t));
|
||||
}
|
||||
|
||||
void
|
||||
sha256 (const unsigned char *input, unsigned int ilen,
|
||||
unsigned char output[32])
|
||||
{
|
||||
sha256_context ctx;
|
||||
|
||||
sha256_start (&ctx);
|
||||
sha256_update (&ctx, input, ilen);
|
||||
sha256_finish (&ctx, output);
|
||||
}
|
17
lib/toolbox/sha256.h
Normal file
17
lib/toolbox/sha256.h
Normal file
@@ -0,0 +1,17 @@
|
||||
#define SHA256_DIGEST_SIZE 32
|
||||
#define SHA256_BLOCK_SIZE 64
|
||||
|
||||
typedef struct
|
||||
{
|
||||
uint32_t total[2];
|
||||
uint32_t state[8];
|
||||
uint32_t wbuf[16];
|
||||
} sha256_context;
|
||||
|
||||
void sha256 (const unsigned char *input, unsigned int ilen,
|
||||
unsigned char output[32]);
|
||||
void sha256_start (sha256_context *ctx);
|
||||
void sha256_finish (sha256_context *ctx, unsigned char output[32]);
|
||||
void sha256_update (sha256_context *ctx, const unsigned char *input,
|
||||
unsigned int ilen);
|
||||
void sha256_process (sha256_context *ctx);
|
Reference in New Issue
Block a user