merge from master, menu not work

This commit is contained in:
aanper 2020-10-16 07:42:08 +03:00
commit a9a39fcda9
19 changed files with 802 additions and 270 deletions

View File

@ -27,7 +27,7 @@ jobs:
- name: Check syntax - name: Check syntax
uses: ./.github/actions/docker uses: ./.github/actions/docker
continue-on-error: true continue-on-error: false
with: with:
run: /syntax_check.sh run: /syntax_check.sh

View File

@ -26,6 +26,8 @@ C_SOURCES += $(APP_DIR)/tests/furi_record_test.c
C_SOURCES += $(APP_DIR)/tests/test_index.c C_SOURCES += $(APP_DIR)/tests/test_index.c
C_SOURCES += $(APP_DIR)/tests/minunit_test.c C_SOURCES += $(APP_DIR)/tests/minunit_test.c
C_SOURCES += $(APP_DIR)/tests/furi_valuemutex_test.c C_SOURCES += $(APP_DIR)/tests/furi_valuemutex_test.c
C_SOURCES += $(APP_DIR)/tests/furi_pubsub_test.c
C_SOURCES += $(APP_DIR)/tests/furi_memmgr_test.c
endif endif
APP_EXAMPLE_BLINK ?= 0 APP_EXAMPLE_BLINK ?= 0

View File

@ -0,0 +1,99 @@
#include "minunit.h"
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
// this test is not accurate, but gives a basic understanding
// that memory management is working fine
// do not include memmgr.h here
// we also test that we are linking against stdlib
extern size_t memmgr_get_free_heap(void);
extern size_t memmgr_get_minimum_free_heap(void);
// current heap managment realization consume:
// X bytes after allocate and 0 bytes after allocate and free,
// where X = sizeof(void*) + sizeof(size_t), look to BlockLink_t
const size_t heap_overhead_max_size = sizeof(void*) + sizeof(size_t);
bool heap_equal(size_t heap_size, size_t heap_size_old) {
// heap borders with overhead
const size_t heap_low = heap_size_old - heap_overhead_max_size;
const size_t heap_high = heap_size_old + heap_overhead_max_size;
// not extact, so we must test it against bigger numbers than "overhead size"
const bool result = ((heap_size >= heap_low) && (heap_size <= heap_high));
// debug allocation info
if(!result) {
printf("\n(hl: %zu) <= (p: %zu) <= (hh: %zu)\n", heap_low, heap_size, heap_high);
}
return result;
}
void test_furi_memmgr() {
size_t heap_size = 0;
size_t heap_size_old = 0;
const int alloc_size = 128;
void* ptr = NULL;
void* original_ptr = NULL;
// do not include furi memmgr.h case
#ifdef FURI_MEMMGR_GUARD
mu_fail("do not link against furi memmgr.h");
#endif
// allocate memory case
heap_size_old = memmgr_get_free_heap();
ptr = malloc(alloc_size);
heap_size = memmgr_get_free_heap();
mu_assert_pointers_not_eq(ptr, NULL);
mu_assert(heap_equal(heap_size, heap_size_old - alloc_size), "allocate failed");
// free memory case
heap_size_old = memmgr_get_free_heap();
free(ptr);
ptr = NULL;
heap_size = memmgr_get_free_heap();
mu_assert(heap_equal(heap_size, heap_size_old + alloc_size), "free failed");
// reallocate memory case
// get filled array with some data
original_ptr = malloc(alloc_size);
mu_assert_pointers_not_eq(original_ptr, NULL);
for(int i = 0; i < alloc_size; i++) {
*(unsigned char*)(original_ptr + i) = i;
}
// malloc array and copy data
ptr = malloc(alloc_size);
mu_assert_pointers_not_eq(ptr, NULL);
memcpy(ptr, original_ptr, alloc_size);
// reallocate array
heap_size_old = memmgr_get_free_heap();
ptr = realloc(ptr, alloc_size * 2);
heap_size = memmgr_get_free_heap();
mu_assert(heap_equal(heap_size, heap_size_old - alloc_size), "reallocate failed");
mu_assert_int_eq(memcmp(original_ptr, ptr, alloc_size), 0);
free(original_ptr);
free(ptr);
// allocate and zero-initialize array (calloc)
original_ptr = malloc(alloc_size);
mu_assert_pointers_not_eq(original_ptr, NULL);
for(int i = 0; i < alloc_size; i++) {
*(unsigned char*)(original_ptr + i) = 0;
}
heap_size_old = memmgr_get_free_heap();
ptr = calloc(1, alloc_size);
heap_size = memmgr_get_free_heap();
mu_assert(heap_equal(heap_size, heap_size_old - alloc_size), "callocate failed");
mu_assert_int_eq(memcmp(original_ptr, ptr, alloc_size), 0);
free(original_ptr);
free(ptr);
}

View File

@ -0,0 +1,56 @@
#include <stdio.h>
#include <string.h>
#include "flipper_v2.h"
#include "log.h"
#include "minunit.h"
const uint32_t context_value = 0xdeadbeef;
const uint32_t notify_value_0 = 0x12345678;
const uint32_t notify_value_1 = 0x11223344;
uint32_t pubsub_value = 0;
uint32_t pubsub_context_value = 0;
void test_pubsub_handler(void* arg, void* ctx) {
pubsub_value = *(uint32_t*)arg;
pubsub_context_value = *(uint32_t*)ctx;
}
void test_furi_pubsub() {
bool result;
PubSub test_pubsub;
PubSubItem* test_pubsub_item;
// init pubsub case
result = init_pubsub(&test_pubsub);
mu_assert(result, "init pubsub failed");
// subscribe pubsub case
test_pubsub_item = subscribe_pubsub(&test_pubsub, test_pubsub_handler, (void*)&context_value);
mu_assert_pointers_not_eq(test_pubsub_item, NULL);
/// notify pubsub case
result = notify_pubsub(&test_pubsub, (void*)&notify_value_0);
mu_assert(result, "notify pubsub failed");
mu_assert_int_eq(pubsub_value, notify_value_0);
mu_assert_int_eq(pubsub_context_value, context_value);
// unsubscribe pubsub case
result = unsubscribe_pubsub(test_pubsub_item);
mu_assert(result, "unsubscribe pubsub failed");
result = unsubscribe_pubsub(test_pubsub_item);
mu_assert(!result, "unsubscribe pubsub not failed");
/// notify unsubscribed pubsub case
result = notify_pubsub(&test_pubsub, (void*)&notify_value_1);
mu_assert(result, "notify pubsub failed");
mu_assert_int_not_eq(pubsub_value, notify_value_1);
// delete pubsub case
result = delete_pubsub(&test_pubsub);
mu_assert(result, "unsubscribe pubsub failed");
// TODO test case that the pubsub_delete will remove pubsub from heap
}

View File

@ -14,197 +14,3 @@ void test_furi_create_open() {
void* record = furi_open("test/holding"); void* record = furi_open("test/holding");
mu_assert_pointers_eq(record, &test_data); mu_assert_pointers_eq(record, &test_data);
} }
/*
TEST: non-existent data
1. Try to open non-existent record
2. Check for NULL handler
3. Try to write/read, get error
TODO: implement this test
*/
bool test_furi_nonexistent_data() {
return true;
}
/*
TEST: mute algorithm
1. Create "parent" application:
1. Create pipe record
2. Open watch handler: no_mute=false, solo=false, subscribe to data.
2. Open handler A: no_mute=false, solo=false, NULL subscriber. Subscribe to state.
Try to write data to A and check subscriber.
3. Open handler B: no_mute=true, solo=true, NULL subscriber.
Check A state cb get FlipperRecordStateMute.
Try to write data to A and check that subscriber get no data. (muted)
Try to write data to B and check that subscriber get data.
TODO: test 3 not pass beacuse state callback not implemented
4. Open hadler C: no_mute=false, solo=true, NULL subscriber.
Try to write data to A and check that subscriber get no data. (muted)
Try to write data to B and check that subscriber get data. (not muted because open with no_mute)
Try to write data to C and check that subscriber get data.
5. Open handler D: no_mute=false, solo=false, NULL subscriber.
Try to write data to A and check that subscriber get no data. (muted)
Try to write data to B and check that subscriber get data. (not muted because open with no_mute)
Try to write data to C and check that subscriber get data. (not muted because D open without solo)
Try to write data to D and check that subscriber get data.
6. Close C, close B.
Check A state cb get FlipperRecordStateUnmute
Try to write data to A and check that subscriber get data. (unmuted)
Try to write data to D and check that subscriber get data.
TODO: test 6 not pass beacuse cleanup is not implemented
TODO: test 6 not pass because mute algorithm is unfinished.
7. Exit "parent application"
Check A state cb get FlipperRecordStateDeleted
TODO: test 7 not pass beacuse cleanup is not implemented
*/
static uint8_t mute_last_value = 0;
static FlipperRecordState mute_last_state = 255;
void mute_record_cb(const void* value, size_t size, void* ctx) {
// hold value to static var
mute_last_value = *((uint8_t*)value);
}
void mute_record_state_cb(FlipperRecordState state, void* ctx) {
mute_last_state = state;
}
void furi_mute_parent_app(void* p) {
// 1. Create pipe record
if(!furi_create_deprecated("test/mute", NULL, 0)) {
printf("cannot create record\n");
furiac_exit(NULL);
}
// 2. Open watch handler: solo=false, no_mute=false, subscribe to data
FuriRecordSubscriber* watch_handler =
furi_open_deprecated("test/mute", false, false, mute_record_cb, NULL, NULL);
if(watch_handler == NULL) {
printf("cannot open watch handler\n");
furiac_exit(NULL);
}
while(1) {
// TODO we don't have thread sleep
delay(100000);
}
}
bool test_furi_mute_algorithm() {
// 1. Create "parent" application:
FuriApp* parent_app = furiac_start(furi_mute_parent_app, "parent app", NULL);
delay(2); // wait creating record
// 2. Open handler A: solo=false, no_mute=false, NULL subscriber. Subscribe to state.
FuriRecordSubscriber* handler_a =
furi_open_deprecated("test/mute", false, false, NULL, mute_record_state_cb, NULL);
if(handler_a == NULL) {
printf("cannot open handler A\n");
return false;
}
uint8_t test_counter = 1;
// Try to write data to A and check subscriber
if(!furi_write(handler_a, &test_counter, sizeof(uint8_t))) {
printf("write to A failed\n");
return false;
}
if(mute_last_value != test_counter) {
printf("value A mismatch: %d vs %d\n", mute_last_value, test_counter);
return false;
}
// 3. Open handler B: solo=true, no_mute=true, NULL subscriber.
FuriRecordSubscriber* handler_b =
furi_open_deprecated("test/mute", true, true, NULL, NULL, NULL);
if(handler_b == NULL) {
printf("cannot open handler B\n");
return false;
}
// Check A state cb get FlipperRecordStateMute.
if(mute_last_state != FlipperRecordStateMute) {
printf("A state is not FlipperRecordStateMute: %d\n", mute_last_state);
return false;
}
test_counter = 2;
// Try to write data to A and check that subscriber get no data. (muted)
if(furi_write(handler_a, &test_counter, sizeof(uint8_t))) {
printf("A not muted\n");
return false;
}
if(mute_last_value == test_counter) {
printf("value A must be muted\n");
return false;
}
test_counter = 3;
// Try to write data to B and check that subscriber get data.
if(!furi_write(handler_b, &test_counter, sizeof(uint8_t))) {
printf("write to B failed\n");
return false;
}
if(mute_last_value != test_counter) {
printf("value B mismatch: %d vs %d\n", mute_last_value, test_counter);
return false;
}
// 4. Open hadler C: solo=true, no_mute=false, NULL subscriber.
FuriRecordSubscriber* handler_c =
furi_open_deprecated("test/mute", true, false, NULL, NULL, NULL);
if(handler_c == NULL) {
printf("cannot open handler C\n");
return false;
}
// TODO: Try to write data to A and check that subscriber get no data. (muted)
// TODO: Try to write data to B and check that subscriber get data. (not muted because open with no_mute)
// TODO: Try to write data to C and check that subscriber get data.
// 5. Open handler D: solo=false, no_mute=false, NULL subscriber.
FuriRecordSubscriber* handler_d =
furi_open_deprecated("test/mute", false, false, NULL, NULL, NULL);
if(handler_d == NULL) {
printf("cannot open handler D\n");
return false;
}
// TODO: Try to write data to A and check that subscriber get no data. (muted)
// TODO: Try to write data to B and check that subscriber get data. (not muted because open with no_mute)
// TODO: Try to write data to C and check that subscriber get data. (not muted because D open without solo)
// TODO: Try to write data to D and check that subscriber get data.
// 6. Close C, close B.
// TODO: Check A state cb get FlipperRecordStateUnmute
// TODO: Try to write data to A and check that subscriber get data. (unmuted)
// TODO: Try to write data to D and check that subscriber get data.
// 7. Exit "parent application"
if(!furiac_kill(parent_app)) {
printf("kill parent_app fail\n");
return false;
}
// TODO: Check A state cb get FlipperRecordStateDeleted
return true;
}

View File

@ -7,13 +7,13 @@
bool test_furi_ac_create_kill(); bool test_furi_ac_create_kill();
bool test_furi_ac_switch_exit(); bool test_furi_ac_switch_exit();
bool test_furi_nonexistent_data();
bool test_furi_mute_algorithm();
// v2 tests // v2 tests
void test_furi_create_open(); void test_furi_create_open();
void test_furi_valuemutex(); void test_furi_valuemutex();
void test_furi_concurrent_access(); void test_furi_concurrent_access();
void test_furi_pubsub();
void test_furi_memmgr();
static int foo = 0; static int foo = 0;
@ -37,10 +37,6 @@ MU_TEST(mu_test_furi_ac_switch_exit) {
mu_assert_int_eq(test_furi_ac_switch_exit(), true); mu_assert_int_eq(test_furi_ac_switch_exit(), true);
} }
MU_TEST(mu_test_furi_nonexistent_data) {
mu_assert_int_eq(test_furi_nonexistent_data(), true);
}
// v2 tests // v2 tests
MU_TEST(mu_test_furi_create_open) { MU_TEST(mu_test_furi_create_open) {
test_furi_create_open(); test_furi_create_open();
@ -54,6 +50,16 @@ MU_TEST(mu_test_furi_concurrent_access) {
test_furi_concurrent_access(); test_furi_concurrent_access();
} }
MU_TEST(mu_test_furi_pubsub) {
test_furi_pubsub();
}
MU_TEST(mu_test_furi_memmgr) {
// this test is not accurate, but gives a basic understanding
// that memory management is working fine
test_furi_memmgr();
}
MU_TEST_SUITE(test_suite) { MU_TEST_SUITE(test_suite) {
MU_SUITE_CONFIGURE(&test_setup, &test_teardown); MU_SUITE_CONFIGURE(&test_setup, &test_teardown);
@ -61,12 +67,13 @@ MU_TEST_SUITE(test_suite) {
MU_RUN_TEST(mu_test_furi_ac_create_kill); MU_RUN_TEST(mu_test_furi_ac_create_kill);
MU_RUN_TEST(mu_test_furi_ac_switch_exit); MU_RUN_TEST(mu_test_furi_ac_switch_exit);
MU_RUN_TEST(mu_test_furi_nonexistent_data);
// v2 tests // v2 tests
MU_RUN_TEST(mu_test_furi_create_open); MU_RUN_TEST(mu_test_furi_create_open);
MU_RUN_TEST(mu_test_furi_valuemutex); MU_RUN_TEST(mu_test_furi_valuemutex);
MU_RUN_TEST(mu_test_furi_concurrent_access); MU_RUN_TEST(mu_test_furi_concurrent_access);
MU_RUN_TEST(mu_test_furi_pubsub);
MU_RUN_TEST(mu_test_furi_memmgr);
} }
int run_minunit() { int run_minunit() {

51
core/api-basic/memmgr.c Normal file
View File

@ -0,0 +1,51 @@
#include "memmgr.h"
#include <string.h>
extern void* pvPortMalloc(size_t xSize);
extern void vPortFree(void* pv);
extern size_t xPortGetFreeHeapSize(void);
extern size_t xPortGetMinimumEverFreeHeapSize(void);
void* malloc(size_t size) {
return pvPortMalloc(size);
}
void free(void* ptr) {
vPortFree(ptr);
}
void* realloc(void* ptr, size_t size) {
if(size == 0) {
vPortFree(ptr);
return NULL;
}
void* p;
p = pvPortMalloc(size);
if(p) {
// TODO implement secure realloc
// insecure, but will do job in our case
if(ptr != NULL) {
memcpy(p, ptr, size);
vPortFree(ptr);
}
}
return p;
}
void* calloc(size_t count, size_t size) {
void* ptr = pvPortMalloc(count * size);
if(ptr) {
// zero the memory
memset(ptr, 0, count * size);
}
return ptr;
}
size_t memmgr_get_free_heap(void) {
return xPortGetFreeHeapSize();
}
size_t memmgr_get_minimum_free_heap(void) {
return xPortGetMinimumEverFreeHeapSize();
}

13
core/api-basic/memmgr.h Normal file
View File

@ -0,0 +1,13 @@
#pragma once
#include <stddef.h>
// define for test case "link against furi memmgr"
#define FURI_MEMMGR_GUARD 1
void* malloc(size_t size);
void free(void* ptr);
void* realloc(void* ptr, size_t size);
void* calloc(size_t count, size_t size);
size_t memmgr_get_free_heap(void);
size_t memmgr_get_minimum_free_heap(void);

90
core/api-basic/pubsub.c Normal file
View File

@ -0,0 +1,90 @@
#include "pubsub.h"
bool init_pubsub(PubSub* pubsub) {
// mutex without name,
// no attributes (unfortunatly robust mutex is not supported by FreeRTOS),
// with dynamic memory allocation
const osMutexAttr_t value_mutex_attr = {
.name = NULL, .attr_bits = 0, .cb_mem = NULL, .cb_size = 0U};
pubsub->mutex = osMutexNew(&value_mutex_attr);
if(pubsub->mutex == NULL) return false;
// construct list
list_pubsub_cb_init(pubsub->items);
return true;
}
bool delete_pubsub(PubSub* pubsub) {
if(osMutexAcquire(pubsub->mutex, osWaitForever) == osOK) {
bool result = osMutexDelete(pubsub->mutex) == osOK;
list_pubsub_cb_clear(pubsub->items);
return result;
} else {
return false;
}
}
PubSubItem* subscribe_pubsub(PubSub* pubsub, PubSubCallback cb, void* ctx) {
if(osMutexAcquire(pubsub->mutex, osWaitForever) == osOK) {
// put uninitialized item to the list
PubSubItem* item = list_pubsub_cb_push_raw(pubsub->items);
// initialize item
item->cb = cb;
item->ctx = ctx;
item->self = pubsub;
// TODO unsubscribe pubsub on app exit
//flapp_on_exit(unsubscribe_pubsub, item);
osMutexRelease(pubsub->mutex);
return item;
} else {
return NULL;
}
}
bool unsubscribe_pubsub(PubSubItem* pubsub_id) {
if(osMutexAcquire(pubsub_id->self->mutex, osWaitForever) == osOK) {
bool result = false;
// iterate over items
list_pubsub_cb_it_t it;
for(list_pubsub_cb_it(it, pubsub_id->self->items); !list_pubsub_cb_end_p(it);
list_pubsub_cb_next(it)) {
const PubSubItem* item = list_pubsub_cb_cref(it);
// if the iterator is equal to our element
if(item == pubsub_id) {
list_pubsub_cb_remove(pubsub_id->self->items, it);
result = true;
break;
}
}
osMutexRelease(pubsub_id->self->mutex);
return result;
} else {
return false;
}
}
bool notify_pubsub(PubSub* pubsub, void* arg) {
if(osMutexAcquire(pubsub->mutex, osWaitForever) == osOK) {
// iterate over subscribers
list_pubsub_cb_it_t it;
for(list_pubsub_cb_it(it, pubsub->items); !list_pubsub_cb_end_p(it);
list_pubsub_cb_next(it)) {
const PubSubItem* item = list_pubsub_cb_cref(it);
item->cb(arg, item->ctx);
}
osMutexRelease(pubsub->mutex);
return true;
} else {
return false;
}
}

View File

@ -1,48 +0,0 @@
#include "pubsub.h"
void init_pubsub(PubSub* pubsub) {
pubsub->count = 0;
for(size_t i = 0; i < NUM_OF_CALLBACKS; i++) {
pubsub->items[i].
}
}
// TODO add mutex to reconfigurate PubSub
PubSubId* subscribe_pubsub(PubSub* pubsub, PubSubCallback cb, void* ctx) {
if(pubsub->count >= NUM_OF_CALLBACKS) return NULL;
pubsub->count++;
PubSubItem* current = pubsub->items[pubsub->count];
current->cb = cb;
currrnt->ctx = ctx;
pubsub->ids[pubsub->count].self = pubsub;
pubsub->ids[pubsub->count].item = current;
flapp_on_exit(unsubscribe_pubsub, &(pubsub->ids[pubsub->count]));
return current;
}
void unsubscribe_pubsub(PubSubId* pubsub_id) {
// TODO: add, and rearrange all items to keep subscribers item continuous
// TODO: keep ids link actual
// TODO: also add mutex on every pubsub changes
// trivial implementation for NUM_OF_CALLBACKS = 1
if(NUM_OF_CALLBACKS != 1) return;
if(pubsub_id != NULL || pubsub_id->self != NULL || pubsub_id->item != NULL) return;
pubsub_id->self->count = 0;
pubsub_id->item = NULL;
}
void notify_pubsub(PubSub* pubsub, void* arg) {
// iterate over subscribers
for(size_t i = 0; i < pubsub->count; i++) {
pubsub->items[i]->cb(arg, pubsub->items[i]->ctx);
}
}

View File

@ -1,6 +1,7 @@
#pragma once #pragma once
#include "flipper.h" #include "flipper_v2.h"
#include "m-list.h"
/* /*
== PubSub == == PubSub ==
@ -11,43 +12,46 @@ and also subscriber can set `void*` context pointer that pass into
callback (you can see callback signature below). callback (you can see callback signature below).
*/ */
typedef void(PubSubCallback*)(void*, void*); typedef void (*PubSubCallback)(void*, void*);
typedef struct PubSubType PubSub;
typedef struct { typedef struct {
PubSubCallback cb; PubSubCallback cb;
void* ctx; void* ctx;
PubSub* self;
} PubSubItem; } PubSubItem;
typedef struct { LIST_DEF(list_pubsub_cb, PubSubItem, M_POD_OPLIST);
PubSub* self;
PubSubItem* item;
} PubSubId;
typedef struct { struct PubSubType {
PubSubItem items[NUM_OF_CALLBACKS]; list_pubsub_cb_t items;
PubSubId ids[NUM_OF_CALLBACKS]; ///< permanent links to item osMutexId_t mutex;
size_t count; ///< count of callbacks };
} PubSub;
/* /*
To create PubSub you should create PubSub instance and call `init_pubsub`. To create PubSub you should create PubSub instance and call `init_pubsub`.
*/ */
void init_pubsub(PubSub* pubsub); bool init_pubsub(PubSub* pubsub);
/*
Since we use dynamic memory - we must explicity delete pubsub
*/
bool delete_pubsub(PubSub* pubsub);
/* /*
Use `subscribe_pubsub` to register your callback. Use `subscribe_pubsub` to register your callback.
*/ */
PubSubId* subscribe_pubsub(PubSub* pubsub, PubSubCallback cb, void* ctx); PubSubItem* subscribe_pubsub(PubSub* pubsub, PubSubCallback cb, void* ctx);
/* /*
Use `unsubscribe_pubsub` to unregister callback. Use `unsubscribe_pubsub` to unregister callback.
*/ */
void unsubscribe_pubsub(PubSubId* pubsub_id); bool unsubscribe_pubsub(PubSubItem* pubsub_id);
/* /*
Use `notify_pubsub` to notify subscribers. Use `notify_pubsub` to notify subscribers.
*/ */
void notify_pubsub(PubSub* pubsub, void* arg); bool notify_pubsub(PubSub* pubsub, void* arg);
/* /*

View File

@ -4,4 +4,6 @@
//#include "api-basic/flapp.h" //#include "api-basic/flapp.h"
#include "cmsis_os2.h" #include "cmsis_os2.h"
#include "api-basic/valuemutex.h" #include "api-basic/valuemutex.h"
//#include "api-basic/pubsub.h" #include "api-basic/pubsub.h"
#include "api-basic/memmgr.h"

View File

@ -26,7 +26,7 @@ rust_syntax_rc=$?
if [[ $rust_syntax_rc -eq 0 ]] && [[ $c_syntax_rc -eq 0 ]]; then if [[ $rust_syntax_rc -eq 0 ]] && [[ $c_syntax_rc -eq 0 ]]; then
echo "Code looks fine for me!" echo "Code looks fine for me!"
exit 1 exit 0
fi fi
read -p "Do you want fix syntax? (y/n): " confirm && [[ $confirm == [yY] || $confirm == [yY][eE][sS] ]] || exit 1 read -p "Do you want fix syntax? (y/n): " confirm && [[ $confirm == [yY] || $confirm == [yY][eE][sS] ]] || exit 1

View File

@ -94,5 +94,6 @@ typedef enum {
osStatus_t osMutexAcquire (osMutexId_t mutex_id, uint32_t timeout); osStatus_t osMutexAcquire (osMutexId_t mutex_id, uint32_t timeout);
osStatus_t osMutexRelease (osMutexId_t mutex_id); osStatus_t osMutexRelease (osMutexId_t mutex_id);
osStatus_t osMutexDelete (osMutexId_t mutex_id);
#define osWaitForever portMAX_DELAY #define osWaitForever portMAX_DELAY

View File

@ -0,0 +1,389 @@
/*
* FreeRTOS Kernel V10.2.1
* Copyright (C) 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* http://www.FreeRTOS.org
* http://aws.amazon.com/freertos
*
* 1 tab == 4 spaces!
*/
/*
* A sample implementation of pvPortMalloc() and vPortFree() that combines
* (coalescences) adjacent memory blocks as they are freed, and in so doing
* limits memory fragmentation.
*
* See heap_1.c, heap_2.c and heap_3.c for alternative implementations, and the
* memory management pages of http://www.FreeRTOS.org for more information.
*/
#include "heap.h"
osMutexId_t heap_managment_mutex = NULL;
/* Block sizes must not get too small. */
#define heapMINIMUM_BLOCK_SIZE ((size_t)(xHeapStructSize << 1))
/* Assumes 8bit bytes! */
#define heapBITS_PER_BYTE ((size_t)8)
/* Allocate the memory for the heap. */
#if(configAPPLICATION_ALLOCATED_HEAP == 1)
/* The application writer has already defined the array used for the RTOS
heap - probably so it can be placed in a special segment or address. */
extern uint8_t ucHeap[configTOTAL_HEAP_SIZE];
#else
static uint8_t ucHeap[configTOTAL_HEAP_SIZE];
#endif /* configAPPLICATION_ALLOCATED_HEAP */
/* Define the linked list structure. This is used to link free blocks in order
of their memory address. */
typedef struct A_BLOCK_LINK {
struct A_BLOCK_LINK* pxNextFreeBlock; /*<< The next free block in the list. */
size_t xBlockSize; /*<< The size of the free block. */
} BlockLink_t;
/*-----------------------------------------------------------*/
/*
* Inserts a block of memory that is being freed into the correct position in
* the list of free memory blocks. The block being freed will be merged with
* the block in front it and/or the block behind it if the memory blocks are
* adjacent to each other.
*/
static void prvInsertBlockIntoFreeList(BlockLink_t* pxBlockToInsert);
// this function is not thread-safe, so it must be called in single thread context
bool prvHeapInit(void);
/*-----------------------------------------------------------*/
/* The size of the structure placed at the beginning of each allocated memory
block must by correctly byte aligned. */
static const size_t xHeapStructSize = (sizeof(BlockLink_t) + ((size_t)(portBYTE_ALIGNMENT - 1))) &
~((size_t)portBYTE_ALIGNMENT_MASK);
/* Create a couple of list links to mark the start and end of the list. */
static BlockLink_t xStart, *pxEnd = NULL;
/* Keeps track of the number of free bytes remaining, but says nothing about
fragmentation. */
static size_t xFreeBytesRemaining = 0U;
static size_t xMinimumEverFreeBytesRemaining = 0U;
/* Gets set to the top bit of an size_t type. When this bit in the xBlockSize
member of an BlockLink_t structure is set then the block belongs to the
application. When the bit is free the block is still part of the free heap
space. */
static size_t xBlockAllocatedBit = 0;
/*-----------------------------------------------------------*/
void* pvPortMalloc(size_t xWantedSize) {
BlockLink_t *pxBlock, *pxPreviousBlock, *pxNewBlockLink;
void* pvReturn = NULL;
acquire_memalloc_mutex();
{
/* If this is the first call to malloc then the heap will require
initialisation to setup the list of free blocks. */
if(pxEnd == NULL) {
prvHeapInit();
} else {
mtCOVERAGE_TEST_MARKER();
}
/* Check the requested block size is not so large that the top bit is
set. The top bit of the block size member of the BlockLink_t structure
is used to determine who owns the block - the application or the
kernel, so it must be free. */
if((xWantedSize & xBlockAllocatedBit) == 0) {
/* The wanted size is increased so it can contain a BlockLink_t
structure in addition to the requested amount of bytes. */
if(xWantedSize > 0) {
xWantedSize += xHeapStructSize;
/* Ensure that blocks are always aligned to the required number
of bytes. */
if((xWantedSize & portBYTE_ALIGNMENT_MASK) != 0x00) {
/* Byte alignment required. */
xWantedSize += (portBYTE_ALIGNMENT - (xWantedSize & portBYTE_ALIGNMENT_MASK));
configASSERT((xWantedSize & portBYTE_ALIGNMENT_MASK) == 0);
} else {
mtCOVERAGE_TEST_MARKER();
}
} else {
mtCOVERAGE_TEST_MARKER();
}
if((xWantedSize > 0) && (xWantedSize <= xFreeBytesRemaining)) {
/* Traverse the list from the start (lowest address) block until
one of adequate size is found. */
pxPreviousBlock = &xStart;
pxBlock = xStart.pxNextFreeBlock;
while((pxBlock->xBlockSize < xWantedSize) && (pxBlock->pxNextFreeBlock != NULL)) {
pxPreviousBlock = pxBlock;
pxBlock = pxBlock->pxNextFreeBlock;
}
/* If the end marker was reached then a block of adequate size
was not found. */
if(pxBlock != pxEnd) {
/* Return the memory space pointed to - jumping over the
BlockLink_t structure at its start. */
pvReturn =
(void*)(((uint8_t*)pxPreviousBlock->pxNextFreeBlock) + xHeapStructSize);
/* This block is being returned for use so must be taken out
of the list of free blocks. */
pxPreviousBlock->pxNextFreeBlock = pxBlock->pxNextFreeBlock;
/* If the block is larger than required it can be split into
two. */
if((pxBlock->xBlockSize - xWantedSize) > heapMINIMUM_BLOCK_SIZE) {
/* This block is to be split into two. Create a new
block following the number of bytes requested. The void
cast is used to prevent byte alignment warnings from the
compiler. */
pxNewBlockLink = (void*)(((uint8_t*)pxBlock) + xWantedSize);
configASSERT((((size_t)pxNewBlockLink) & portBYTE_ALIGNMENT_MASK) == 0);
/* Calculate the sizes of two blocks split from the
single block. */
pxNewBlockLink->xBlockSize = pxBlock->xBlockSize - xWantedSize;
pxBlock->xBlockSize = xWantedSize;
/* Insert the new block into the list of free blocks. */
prvInsertBlockIntoFreeList(pxNewBlockLink);
} else {
mtCOVERAGE_TEST_MARKER();
}
xFreeBytesRemaining -= pxBlock->xBlockSize;
if(xFreeBytesRemaining < xMinimumEverFreeBytesRemaining) {
xMinimumEverFreeBytesRemaining = xFreeBytesRemaining;
} else {
mtCOVERAGE_TEST_MARKER();
}
/* The block is being returned - it is allocated and owned
by the application and has no "next" block. */
pxBlock->xBlockSize |= xBlockAllocatedBit;
pxBlock->pxNextFreeBlock = NULL;
} else {
mtCOVERAGE_TEST_MARKER();
}
} else {
mtCOVERAGE_TEST_MARKER();
}
} else {
mtCOVERAGE_TEST_MARKER();
}
traceMALLOC(pvReturn, xWantedSize);
}
release_memalloc_mutex();
#if(configUSE_MALLOC_FAILED_HOOK == 1)
{
if(pvReturn == NULL) {
extern void vApplicationMallocFailedHook(void);
vApplicationMallocFailedHook();
} else {
mtCOVERAGE_TEST_MARKER();
}
}
#endif
configASSERT((((size_t)pvReturn) & (size_t)portBYTE_ALIGNMENT_MASK) == 0);
return pvReturn;
}
/*-----------------------------------------------------------*/
void vPortFree(void* pv) {
uint8_t* puc = (uint8_t*)pv;
BlockLink_t* pxLink;
if(pv != NULL) {
/* The memory being freed will have an BlockLink_t structure immediately
before it. */
puc -= xHeapStructSize;
/* This casting is to keep the compiler from issuing warnings. */
pxLink = (void*)puc;
/* Check the block is actually allocated. */
configASSERT((pxLink->xBlockSize & xBlockAllocatedBit) != 0);
configASSERT(pxLink->pxNextFreeBlock == NULL);
if((pxLink->xBlockSize & xBlockAllocatedBit) != 0) {
if(pxLink->pxNextFreeBlock == NULL) {
/* The block is being returned to the heap - it is no longer
allocated. */
pxLink->xBlockSize &= ~xBlockAllocatedBit;
acquire_memalloc_mutex();
{
/* Add this block to the list of free blocks. */
xFreeBytesRemaining += pxLink->xBlockSize;
traceFREE(pv, pxLink->xBlockSize);
prvInsertBlockIntoFreeList(((BlockLink_t*)pxLink));
}
release_memalloc_mutex();
} else {
mtCOVERAGE_TEST_MARKER();
}
} else {
mtCOVERAGE_TEST_MARKER();
}
}
}
/*-----------------------------------------------------------*/
size_t xPortGetFreeHeapSize(void) {
return xFreeBytesRemaining;
}
/*-----------------------------------------------------------*/
size_t xPortGetMinimumEverFreeHeapSize(void) {
return xMinimumEverFreeBytesRemaining;
}
/*-----------------------------------------------------------*/
void vPortInitialiseBlocks(void) {
/* This just exists to keep the linker quiet. */
}
/*-----------------------------------------------------------*/
bool prvHeapInit(void) {
BlockLink_t* pxFirstFreeBlock;
uint8_t* pucAlignedHeap;
size_t uxAddress;
size_t xTotalHeapSize = configTOTAL_HEAP_SIZE;
/* Ensure the heap starts on a correctly aligned boundary. */
uxAddress = (size_t)ucHeap;
if((uxAddress & portBYTE_ALIGNMENT_MASK) != 0) {
uxAddress += (portBYTE_ALIGNMENT - 1);
uxAddress &= ~((size_t)portBYTE_ALIGNMENT_MASK);
xTotalHeapSize -= uxAddress - (size_t)ucHeap;
}
pucAlignedHeap = (uint8_t*)uxAddress;
/* xStart is used to hold a pointer to the first item in the list of free
blocks. The void cast is used to prevent compiler warnings. */
xStart.pxNextFreeBlock = (void*)pucAlignedHeap;
xStart.xBlockSize = (size_t)0;
/* pxEnd is used to mark the end of the list of free blocks and is inserted
at the end of the heap space. */
uxAddress = ((size_t)pucAlignedHeap) + xTotalHeapSize;
uxAddress -= xHeapStructSize;
uxAddress &= ~((size_t)portBYTE_ALIGNMENT_MASK);
pxEnd = (void*)uxAddress;
pxEnd->xBlockSize = 0;
pxEnd->pxNextFreeBlock = NULL;
/* To start with there is a single free block that is sized to take up the
entire heap space, minus the space taken by pxEnd. */
pxFirstFreeBlock = (void*)pucAlignedHeap;
pxFirstFreeBlock->xBlockSize = uxAddress - (size_t)pxFirstFreeBlock;
pxFirstFreeBlock->pxNextFreeBlock = pxEnd;
/* Only one block exists - and it covers the entire usable heap space. */
xMinimumEverFreeBytesRemaining = pxFirstFreeBlock->xBlockSize;
xFreeBytesRemaining = pxFirstFreeBlock->xBlockSize;
/* Work out the position of the top bit in a size_t variable. */
xBlockAllocatedBit = ((size_t)1) << ((sizeof(size_t) * heapBITS_PER_BYTE) - 1);
// now we can use malloc, so we init heap managment mutex
const osMutexAttr_t heap_managment_mutext_attr = {
.name = NULL, .attr_bits = 0, .cb_mem = NULL, .cb_size = 0U};
heap_managment_mutex = osMutexNew(&heap_managment_mutext_attr);
return heap_managment_mutex != NULL;
}
/*-----------------------------------------------------------*/
static void prvInsertBlockIntoFreeList(BlockLink_t* pxBlockToInsert) {
BlockLink_t* pxIterator;
uint8_t* puc;
/* Iterate through the list until a block is found that has a higher address
than the block being inserted. */
for(pxIterator = &xStart; pxIterator->pxNextFreeBlock < pxBlockToInsert;
pxIterator = pxIterator->pxNextFreeBlock) {
/* Nothing to do here, just iterate to the right position. */
}
/* Do the block being inserted, and the block it is being inserted after
make a contiguous block of memory? */
puc = (uint8_t*)pxIterator;
if((puc + pxIterator->xBlockSize) == (uint8_t*)pxBlockToInsert) {
pxIterator->xBlockSize += pxBlockToInsert->xBlockSize;
pxBlockToInsert = pxIterator;
} else {
mtCOVERAGE_TEST_MARKER();
}
/* Do the block being inserted, and the block it is being inserted before
make a contiguous block of memory? */
puc = (uint8_t*)pxBlockToInsert;
if((puc + pxBlockToInsert->xBlockSize) == (uint8_t*)pxIterator->pxNextFreeBlock) {
if(pxIterator->pxNextFreeBlock != pxEnd) {
/* Form one big block from the two blocks. */
pxBlockToInsert->xBlockSize += pxIterator->pxNextFreeBlock->xBlockSize;
pxBlockToInsert->pxNextFreeBlock = pxIterator->pxNextFreeBlock->pxNextFreeBlock;
} else {
pxBlockToInsert->pxNextFreeBlock = pxEnd;
}
} else {
pxBlockToInsert->pxNextFreeBlock = pxIterator->pxNextFreeBlock;
}
/* If the block being inserted plugged a gab, so was merged with the block
before and the block after, then it's pxNextFreeBlock pointer will have
already been set, and should not be set here as that would make it point
to itself. */
if(pxIterator != pxBlockToInsert) {
pxIterator->pxNextFreeBlock = pxBlockToInsert;
} else {
mtCOVERAGE_TEST_MARKER();
}
}
/*
at first run (heap init) it not work properly and prvHeapInit
is not thread-safe. But then we init mutex or die
*/
void acquire_memalloc_mutex() {
if(heap_managment_mutex != NULL) {
osMutexAcquire(heap_managment_mutex, osWaitForever);
}
}
void release_memalloc_mutex() {
if(heap_managment_mutex != NULL) {
osMutexRelease(heap_managment_mutex);
}
}

View File

@ -253,3 +253,15 @@ osStatus_t osMutexRelease (osMutexId_t mutex_id) {
return osError; return osError;
} }
} }
osStatus_t osMutexDelete (osMutexId_t mutex_id) {
osMutexRelease(mutex_id);
int res = 0;
if((res = pthread_mutex_destroy(&mutex_id->mutex)) == 0) {
return osOK;
} else {
printf("res = %d\n", res);
return osError;
}
}

View File

@ -1,3 +1,6 @@
#include "heap.h"
#include "errno.h"
/* /*
Flipper devices inc. Flipper devices inc.
@ -7,5 +10,10 @@ Local fw build entry point.
int app(); int app();
int main() { int main() {
// this function is not thread-safe, so it must be called in single thread context
if(!prvHeapInit()){
return ENOMEM;
}
return app(); return app();
} }

View File

@ -0,0 +1,37 @@
#include <stdbool.h>
#include <stdlib.h>
#include <stdint.h>
#include <cmsis_os.h>
#define configTOTAL_HEAP_SIZE ((size_t)(8192 * 16))
#define configAPPLICATION_ALLOCATED_HEAP 0
#define portBYTE_ALIGNMENT 8
#if portBYTE_ALIGNMENT == 8
#define portBYTE_ALIGNMENT_MASK (0x0007)
#endif
/* No test marker by default. */
#ifndef mtCOVERAGE_TEST_MARKER
#define mtCOVERAGE_TEST_MARKER()
#endif
/* No tracing by default. */
#ifndef traceMALLOC
#define traceMALLOC(pvReturn, xWantedSize)
#endif
/* No tracing by default. */
#ifndef traceFREE
#define traceFREE(pvReturn, xBlockSize)
#endif
/* No assert by default. */
#ifndef configASSERT
#define configASSERT(var)
#endif
bool prvHeapInit(void);
void acquire_memalloc_mutex();
void release_memalloc_mutex();

View File

@ -15,5 +15,8 @@ LDFLAGS += -pthread
CFLAGS += -I$(TARGET_DIR)/fatfs CFLAGS += -I$(TARGET_DIR)/fatfs
C_SOURCES += $(TARGET_DIR)/fatfs/syscall.c C_SOURCES += $(TARGET_DIR)/fatfs/syscall.c
# memory manager
C_SOURCES += $(TARGET_DIR)/Src/heap_4.c
run: all run: all
$(OBJ_DIR)/$(PROJECT).elf $(OBJ_DIR)/$(PROJECT).elf