API HAL OS: replace CMP based ticks with ARR based one, hard reset lptimer on reconfiguration. (#377)

This commit is contained in:
あく 2021-03-11 09:47:07 +03:00 committed by GitHub
parent 2f14f6dac5
commit b920248693
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 172 additions and 314 deletions

View File

@ -1,42 +1,58 @@
#pragma once #pragma once
#include <stm32wbxx_ll_lptim.h> #include <stm32wbxx_ll_lptim.h>
#include <stdbool.h> #include <stm32wbxx_ll_bus.h>
#include <stdint.h>
static inline void assert(bool value) {
if (!value) asm("bkpt 1");
}
// Timer used for system ticks // Timer used for system ticks
#define API_HAL_OS_TIMER_MAX 0xFFFF #define API_HAL_OS_TIMER_MAX 0xFFFF
#define API_HAL_OS_TIMER_REG_LOAD_DLY 0x1 #define API_HAL_OS_TIMER_REG_LOAD_DLY 0x1
#define API_HAL_OS_TIMER LPTIM2 #define API_HAL_OS_TIMER LPTIM2
#define API_HAL_OS_TIMER_IRQ LPTIM2_IRQn #define API_HAL_OS_TIMER_IRQ LPTIM2_IRQn
#define API_HAL_OS_TIMER_CLOCK_INIT() \
{ \
LL_RCC_SetLPTIMClockSource(LL_RCC_LPTIM2_CLKSOURCE_LSE); \
LL_APB1_GRP2_EnableClock(LL_APB1_GRP2_PERIPH_LPTIM2); \
} \
static inline void api_hal_os_timer_init() { static inline void api_hal_os_timer_init() {
API_HAL_OS_TIMER_CLOCK_INIT(); // Configure clock source
LL_RCC_SetLPTIMClockSource(LL_RCC_LPTIM2_CLKSOURCE_LSE);
LL_LPTIM_Enable(API_HAL_OS_TIMER); LL_APB1_GRP2_EnableClock(LL_APB1_GRP2_PERIPH_LPTIM2);
while(!LL_LPTIM_IsEnabled(API_HAL_OS_TIMER)) {} // Set interrupt priority and enable them
LL_LPTIM_SetClockSource(API_HAL_OS_TIMER, LL_LPTIM_CLK_SOURCE_INTERNAL);
LL_LPTIM_SetPrescaler(API_HAL_OS_TIMER, LL_LPTIM_PRESCALER_DIV1);
LL_LPTIM_SetPolarity(API_HAL_OS_TIMER, LL_LPTIM_OUTPUT_POLARITY_REGULAR);
LL_LPTIM_SetUpdateMode(API_HAL_OS_TIMER, LL_LPTIM_UPDATE_MODE_IMMEDIATE);
LL_LPTIM_SetCounterMode(API_HAL_OS_TIMER, LL_LPTIM_COUNTER_MODE_INTERNAL);
LL_LPTIM_TrigSw(API_HAL_OS_TIMER);
LL_LPTIM_SetInput1Src(API_HAL_OS_TIMER, LL_LPTIM_INPUT1_SRC_GPIO);
LL_LPTIM_SetInput2Src(API_HAL_OS_TIMER, LL_LPTIM_INPUT2_SRC_GPIO);
NVIC_SetPriority(API_HAL_OS_TIMER_IRQ, NVIC_EncodePriority(NVIC_GetPriorityGrouping(), 15, 0)); NVIC_SetPriority(API_HAL_OS_TIMER_IRQ, NVIC_EncodePriority(NVIC_GetPriorityGrouping(), 15, 0));
NVIC_EnableIRQ(API_HAL_OS_TIMER_IRQ); NVIC_EnableIRQ(API_HAL_OS_TIMER_IRQ);
} }
static inline void api_hal_os_timer_continuous(uint32_t count) {
// Enable timer
LL_LPTIM_Enable(API_HAL_OS_TIMER);
while(!LL_LPTIM_IsEnabled(API_HAL_OS_TIMER));
// Enable rutoreload match interrupt
LL_LPTIM_EnableIT_ARRM(API_HAL_OS_TIMER);
// Set autoreload and start counter
LL_LPTIM_SetAutoReload(API_HAL_OS_TIMER, count);
LL_LPTIM_StartCounter(API_HAL_OS_TIMER, LL_LPTIM_OPERATING_MODE_CONTINUOUS);
}
static inline void api_hal_os_timer_single(uint32_t count) {
// Enable timer
LL_LPTIM_Enable(API_HAL_OS_TIMER);
while(!LL_LPTIM_IsEnabled(API_HAL_OS_TIMER));
// Enable compare match interrupt
LL_LPTIM_EnableIT_CMPM(API_HAL_OS_TIMER);
// Set compare, autoreload and start counter
// Include some marging to workaround ARRM behaviour
LL_LPTIM_SetCompare(API_HAL_OS_TIMER, count-3);
LL_LPTIM_SetAutoReload(API_HAL_OS_TIMER, count);
LL_LPTIM_StartCounter(API_HAL_OS_TIMER, LL_LPTIM_OPERATING_MODE_ONESHOT);
}
static inline void api_hal_os_timer_reset() {
// Hard reset timer
// THE ONLY RELIABLEWAY to stop it according to errata
LL_LPTIM_DeInit(API_HAL_OS_TIMER);
}
static inline uint32_t api_hal_os_timer_get_cnt() { static inline uint32_t api_hal_os_timer_get_cnt() {
uint32_t counter = LL_LPTIM_GetCounter(API_HAL_OS_TIMER); uint32_t counter = LL_LPTIM_GetCounter(API_HAL_OS_TIMER);
uint32_t counter_shadow = LL_LPTIM_GetCounter(API_HAL_OS_TIMER); uint32_t counter_shadow = LL_LPTIM_GetCounter(API_HAL_OS_TIMER);
@ -46,50 +62,3 @@ static inline uint32_t api_hal_os_timer_get_cnt() {
} }
return counter; return counter;
} }
static inline bool api_hal_os_timer_arr_is_ok() {
return LL_LPTIM_IsActiveFlag_ARROK(API_HAL_OS_TIMER);
}
static inline uint32_t api_hal_os_timer_get_arr() {
return LL_LPTIM_GetAutoReload(API_HAL_OS_TIMER);;
}
static inline void api_hal_os_timer_set_arr(uint32_t value) {
value &= API_HAL_OS_TIMER_MAX;
if (value != api_hal_os_timer_get_arr()) {
assert(api_hal_os_timer_arr_is_ok());
LL_LPTIM_ClearFlag_ARROK(API_HAL_OS_TIMER);
LL_LPTIM_SetAutoReload(API_HAL_OS_TIMER, value);
}
}
static inline bool api_hal_os_timer_cmp_is_ok() {
return LL_LPTIM_IsActiveFlag_CMPOK(API_HAL_OS_TIMER);
}
static inline uint32_t api_hal_os_timer_get_cmp() {
return LL_LPTIM_GetCompare(API_HAL_OS_TIMER);
}
static inline void api_hal_os_timer_set_cmp(uint32_t value) {
value &= API_HAL_OS_TIMER_MAX;
if (value != api_hal_os_timer_get_cmp()) {
assert(api_hal_os_timer_cmp_is_ok());
LL_LPTIM_ClearFlag_CMPOK(API_HAL_OS_TIMER);
LL_LPTIM_SetCompare(API_HAL_OS_TIMER, value);
}
}
static inline bool api_hal_os_timer_is_safe() {
uint16_t cmp = api_hal_os_timer_get_cmp();
uint16_t cnt = api_hal_os_timer_get_cnt();
uint16_t margin = (cmp > cnt) ? cmp - cnt : cnt - cmp;
if (margin < 8) {
return false;
}
if (!api_hal_os_timer_cmp_is_ok()) {
return false;
}
return true;
}

View File

@ -13,114 +13,78 @@
#ifdef API_HAL_OS_DEBUG #ifdef API_HAL_OS_DEBUG
#include <stm32wbxx_ll_gpio.h> #include <stm32wbxx_ll_gpio.h>
#define LED_GREEN_PORT GPIOA #define LED_SLEEP_PORT GPIOA
#define LED_GREEN_PIN LL_GPIO_PIN_2 #define LED_SLEEP_PIN LL_GPIO_PIN_7
#define LED_TICK_PORT GPIOA
#define LED_TICK_PIN LL_GPIO_PIN_6
#endif #endif
typedef struct { volatile uint32_t api_hal_os_skew = 0;
// Tick counters
volatile uint32_t in_sleep;
volatile uint32_t in_awake;
// Error counters
volatile uint32_t sleep_error;
volatile uint32_t awake_error;
} ApiHalOs;
ApiHalOs api_hal_os = {
.in_sleep = 0,
.in_awake = 0,
.sleep_error = 0,
.awake_error = 0,
};
void api_hal_os_init() { void api_hal_os_init() {
api_hal_os_timer_init();
LL_DBGMCU_APB1_GRP2_FreezePeriph(LL_DBGMCU_APB1_GRP2_LPTIM2_STOP); LL_DBGMCU_APB1_GRP2_FreezePeriph(LL_DBGMCU_APB1_GRP2_LPTIM2_STOP);
LL_LPTIM_EnableIT_CMPM(API_HAL_OS_TIMER); api_hal_os_timer_init();
LL_LPTIM_EnableIT_ARRM(API_HAL_OS_TIMER); api_hal_os_timer_continuous(API_HAL_OS_CLK_PER_TICK);
LL_LPTIM_SetAutoReload(API_HAL_OS_TIMER, API_HAL_OS_TIMER_MAX); #ifdef API_HAL_OS_DEBUG
LL_LPTIM_SetCompare(API_HAL_OS_TIMER, API_HAL_OS_CLK_PER_TICK); LL_GPIO_SetPinMode(LED_SLEEP_PORT, LED_SLEEP_PIN, LL_GPIO_MODE_OUTPUT);
LL_GPIO_SetPinMode(LED_TICK_PORT, LED_TICK_PIN, LL_GPIO_MODE_OUTPUT);
LL_LPTIM_StartCounter(API_HAL_OS_TIMER, LL_LPTIM_OPERATING_MODE_CONTINUOUS); #endif
} }
void LPTIM2_IRQHandler(void) { void LPTIM2_IRQHandler(void) {
// Autoreload // Autoreload
const bool arrm_flag = LL_LPTIM_IsActiveFlag_ARRM(API_HAL_OS_TIMER); if(LL_LPTIM_IsActiveFlag_ARRM(API_HAL_OS_TIMER)) {
if(arrm_flag) {
LL_LPTIM_ClearFLAG_ARRM(API_HAL_OS_TIMER); LL_LPTIM_ClearFLAG_ARRM(API_HAL_OS_TIMER);
if (xTaskGetSchedulerState() != taskSCHEDULER_NOT_STARTED) {
#ifdef API_HAL_OS_DEBUG
LL_GPIO_TogglePin(LED_TICK_PORT, LED_TICK_PIN);
#endif
xPortSysTickHandler();
}
} }
if(LL_LPTIM_IsActiveFlag_CMPM(API_HAL_OS_TIMER)) { if(LL_LPTIM_IsActiveFlag_CMPM(API_HAL_OS_TIMER)) {
LL_LPTIM_ClearFLAG_CMPM(API_HAL_OS_TIMER); LL_LPTIM_ClearFLAG_CMPM(API_HAL_OS_TIMER);
// Store important value
uint16_t cnt = api_hal_os_timer_get_cnt();
uint16_t cmp = api_hal_os_timer_get_cmp();
uint16_t current_tick = cnt / API_HAL_OS_CLK_PER_TICK;
uint16_t compare_tick = cmp / API_HAL_OS_CLK_PER_TICK;
// Calculate error
// happens when HAL or other high priority IRQ takes our time
int32_t error = (int32_t)compare_tick - current_tick;
api_hal_os.awake_error += ((error>0) ? error : -error);
// Calculate and set next tick
uint16_t next_tick = current_tick + 1;
api_hal_os_timer_set_cmp(next_tick * API_HAL_OS_CLK_PER_TICK);
// Notify OS
api_hal_os.in_awake ++;
if (xTaskGetSchedulerState() != taskSCHEDULER_NOT_STARTED) {
xPortSysTickHandler();
}
} }
} }
static inline uint32_t api_hal_os_sleep(TickType_t expected_idle_ticks) { static inline uint32_t api_hal_os_sleep(TickType_t expected_idle_ticks) {
// Store important value before going to sleep // Stop ticks
const uint16_t before_cnt = api_hal_os_timer_get_cnt(); api_hal_os_timer_reset();
const uint16_t before_tick = before_cnt / API_HAL_OS_CLK_PER_TICK;
// Calculate and set next wakeup compare value
const uint16_t expected_cnt = (before_tick + expected_idle_ticks - 2) * API_HAL_OS_CLK_PER_TICK;
api_hal_os_timer_set_cmp(expected_cnt);
HAL_SuspendTick(); HAL_SuspendTick();
// Start wakeup timer
api_hal_os_timer_single(expected_idle_ticks * API_HAL_OS_CLK_PER_TICK);
#ifdef API_HAL_OS_DEBUG
LL_GPIO_SetOutputPin(LED_SLEEP_PORT, LED_SLEEP_PIN);
#endif
// Go to stop2 mode // Go to stop2 mode
#ifdef API_HAL_OS_DEBUG
LL_GPIO_SetOutputPin(LED_GREEN_PORT, LED_GREEN_PIN);
#endif
api_hal_power_deep_sleep(); api_hal_power_deep_sleep();
#ifdef API_HAL_OS_DEBUG #ifdef API_HAL_OS_DEBUG
LL_GPIO_ResetOutputPin(LED_GREEN_PORT, LED_GREEN_PIN); LL_GPIO_ResetOutputPin(LED_SLEEP_PORT, LED_SLEEP_PIN);
#endif #endif
// Calculate how much time we spent in the sleep
uint32_t after_cnt = api_hal_os_timer_get_cnt() + api_hal_os_skew;
uint32_t after_tick = after_cnt / API_HAL_OS_CLK_PER_TICK;
api_hal_os_skew = after_cnt % API_HAL_OS_CLK_PER_TICK;
// Prepare tick timer for new round
api_hal_os_timer_reset();
// Resume ticks
HAL_ResumeTick(); HAL_ResumeTick();
api_hal_os_timer_continuous(API_HAL_OS_CLK_PER_TICK);
// Spin till we are in timer safe zone return after_tick;
while(!api_hal_os_timer_is_safe()) {}
// Store current counter value, calculate current tick
const uint16_t after_cnt = api_hal_os_timer_get_cnt();
const uint16_t after_tick = after_cnt / API_HAL_OS_CLK_PER_TICK;
// Store and clear interrupt flags
// we don't want handler to be called after renabling IRQ
bool arrm_flag = LL_LPTIM_IsActiveFlag_ARRM(API_HAL_OS_TIMER);
// Calculate and set next wakeup compare value
const uint16_t next_cmp = (after_tick + 1) * API_HAL_OS_CLK_PER_TICK;
api_hal_os_timer_set_cmp(next_cmp);
// Calculate ticks count spent in sleep and perform sanity checks
int32_t completed_ticks = arrm_flag ? (int32_t)before_tick - after_tick : (int32_t)after_tick - before_tick;
return completed_ticks;
} }
void vPortSuppressTicksAndSleep(TickType_t expected_idle_ticks) { void vPortSuppressTicksAndSleep(TickType_t expected_idle_ticks) {
// Check if sleep is available now
if (!api_hal_power_deep_available()) { if (!api_hal_power_deep_available()) {
return; return;
} }
@ -136,26 +100,20 @@ void vPortSuppressTicksAndSleep(TickType_t expected_idle_ticks) {
// Confirm OS that sleep is still possible // Confirm OS that sleep is still possible
// And check if timer is in safe zone // And check if timer is in safe zone
// (8 clocks till any IRQ event or ongoing synchronization) // (8 clocks till any IRQ event or ongoing synchronization)
if (eTaskConfirmSleepModeStatus() == eAbortSleep if (eTaskConfirmSleepModeStatus() == eAbortSleep) {
|| !api_hal_os_timer_is_safe()) {
__enable_irq(); __enable_irq();
return; return;
} }
// Sleep and track how much ticks we spent sleeping
uint32_t completed_ticks = api_hal_os_sleep(expected_idle_ticks); uint32_t completed_ticks = api_hal_os_sleep(expected_idle_ticks);
assert(completed_ticks >= 0);
// Reenable IRQ // Reenable IRQ
__enable_irq(); __enable_irq();
// Notify system about time spent in sleep // Notify system about time spent in sleep
if (completed_ticks > 0) { if (completed_ticks > 0) {
api_hal_os.in_sleep += completed_ticks;
if (completed_ticks > expected_idle_ticks) { if (completed_ticks > expected_idle_ticks) {
// We are late, count error
api_hal_os.sleep_error += (completed_ticks - expected_idle_ticks);
// Freertos is not happy when we overleep
// But we are not going to tell her
vTaskStepTick(expected_idle_ticks); vTaskStepTick(expected_idle_ticks);
} else { } else {
vTaskStepTick(completed_ticks); vTaskStepTick(completed_ticks);

View File

@ -74,6 +74,8 @@ C_SOURCES += \
$(CUBE_DIR)/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_ll_adc.c \ $(CUBE_DIR)/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_ll_adc.c \
$(CUBE_DIR)/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_ll_gpio.c \ $(CUBE_DIR)/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_ll_gpio.c \
$(CUBE_DIR)/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_ll_i2c.c \ $(CUBE_DIR)/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_ll_i2c.c \
$(CUBE_DIR)/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_ll_rcc.c \
$(CUBE_DIR)/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_ll_lptim.c \
$(CUBE_DIR)/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_ll_usb.c \ $(CUBE_DIR)/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_ll_usb.c \
$(CUBE_DIR)/Middlewares/Third_Party/FreeRTOS/Source/croutine.c \ $(CUBE_DIR)/Middlewares/Third_Party/FreeRTOS/Source/croutine.c \
$(CUBE_DIR)/Middlewares/Third_Party/FreeRTOS/Source/event_groups.c \ $(CUBE_DIR)/Middlewares/Third_Party/FreeRTOS/Source/event_groups.c \

View File

@ -1,42 +1,58 @@
#pragma once #pragma once
#include <stm32wbxx_ll_lptim.h> #include <stm32wbxx_ll_lptim.h>
#include <stdbool.h> #include <stm32wbxx_ll_bus.h>
#include <stdint.h>
static inline void assert(bool value) {
if (!value) asm("bkpt 1");
}
// Timer used for system ticks // Timer used for system ticks
#define API_HAL_OS_TIMER_MAX 0xFFFF #define API_HAL_OS_TIMER_MAX 0xFFFF
#define API_HAL_OS_TIMER_REG_LOAD_DLY 0x1 #define API_HAL_OS_TIMER_REG_LOAD_DLY 0x1
#define API_HAL_OS_TIMER LPTIM2 #define API_HAL_OS_TIMER LPTIM2
#define API_HAL_OS_TIMER_IRQ LPTIM2_IRQn #define API_HAL_OS_TIMER_IRQ LPTIM2_IRQn
#define API_HAL_OS_TIMER_CLOCK_INIT() \
{ \
LL_RCC_SetLPTIMClockSource(LL_RCC_LPTIM2_CLKSOURCE_LSE); \
LL_APB1_GRP2_EnableClock(LL_APB1_GRP2_PERIPH_LPTIM2); \
} \
static inline void api_hal_os_timer_init() { static inline void api_hal_os_timer_init() {
API_HAL_OS_TIMER_CLOCK_INIT(); // Configure clock source
LL_RCC_SetLPTIMClockSource(LL_RCC_LPTIM2_CLKSOURCE_LSE);
LL_LPTIM_Enable(API_HAL_OS_TIMER); LL_APB1_GRP2_EnableClock(LL_APB1_GRP2_PERIPH_LPTIM2);
while(!LL_LPTIM_IsEnabled(API_HAL_OS_TIMER)) {} // Set interrupt priority and enable them
LL_LPTIM_SetClockSource(API_HAL_OS_TIMER, LL_LPTIM_CLK_SOURCE_INTERNAL);
LL_LPTIM_SetPrescaler(API_HAL_OS_TIMER, LL_LPTIM_PRESCALER_DIV1);
LL_LPTIM_SetPolarity(API_HAL_OS_TIMER, LL_LPTIM_OUTPUT_POLARITY_REGULAR);
LL_LPTIM_SetUpdateMode(API_HAL_OS_TIMER, LL_LPTIM_UPDATE_MODE_IMMEDIATE);
LL_LPTIM_SetCounterMode(API_HAL_OS_TIMER, LL_LPTIM_COUNTER_MODE_INTERNAL);
LL_LPTIM_TrigSw(API_HAL_OS_TIMER);
LL_LPTIM_SetInput1Src(API_HAL_OS_TIMER, LL_LPTIM_INPUT1_SRC_GPIO);
LL_LPTIM_SetInput2Src(API_HAL_OS_TIMER, LL_LPTIM_INPUT2_SRC_GPIO);
NVIC_SetPriority(API_HAL_OS_TIMER_IRQ, NVIC_EncodePriority(NVIC_GetPriorityGrouping(), 15, 0)); NVIC_SetPriority(API_HAL_OS_TIMER_IRQ, NVIC_EncodePriority(NVIC_GetPriorityGrouping(), 15, 0));
NVIC_EnableIRQ(API_HAL_OS_TIMER_IRQ); NVIC_EnableIRQ(API_HAL_OS_TIMER_IRQ);
} }
static inline void api_hal_os_timer_continuous(uint32_t count) {
// Enable timer
LL_LPTIM_Enable(API_HAL_OS_TIMER);
while(!LL_LPTIM_IsEnabled(API_HAL_OS_TIMER));
// Enable rutoreload match interrupt
LL_LPTIM_EnableIT_ARRM(API_HAL_OS_TIMER);
// Set autoreload and start counter
LL_LPTIM_SetAutoReload(API_HAL_OS_TIMER, count);
LL_LPTIM_StartCounter(API_HAL_OS_TIMER, LL_LPTIM_OPERATING_MODE_CONTINUOUS);
}
static inline void api_hal_os_timer_single(uint32_t count) {
// Enable timer
LL_LPTIM_Enable(API_HAL_OS_TIMER);
while(!LL_LPTIM_IsEnabled(API_HAL_OS_TIMER));
// Enable compare match interrupt
LL_LPTIM_EnableIT_CMPM(API_HAL_OS_TIMER);
// Set compare, autoreload and start counter
// Include some marging to workaround ARRM behaviour
LL_LPTIM_SetCompare(API_HAL_OS_TIMER, count-3);
LL_LPTIM_SetAutoReload(API_HAL_OS_TIMER, count);
LL_LPTIM_StartCounter(API_HAL_OS_TIMER, LL_LPTIM_OPERATING_MODE_ONESHOT);
}
static inline void api_hal_os_timer_reset() {
// Hard reset timer
// THE ONLY RELIABLEWAY to stop it according to errata
LL_LPTIM_DeInit(API_HAL_OS_TIMER);
}
static inline uint32_t api_hal_os_timer_get_cnt() { static inline uint32_t api_hal_os_timer_get_cnt() {
uint32_t counter = LL_LPTIM_GetCounter(API_HAL_OS_TIMER); uint32_t counter = LL_LPTIM_GetCounter(API_HAL_OS_TIMER);
uint32_t counter_shadow = LL_LPTIM_GetCounter(API_HAL_OS_TIMER); uint32_t counter_shadow = LL_LPTIM_GetCounter(API_HAL_OS_TIMER);
@ -46,50 +62,3 @@ static inline uint32_t api_hal_os_timer_get_cnt() {
} }
return counter; return counter;
} }
static inline bool api_hal_os_timer_arr_is_ok() {
return LL_LPTIM_IsActiveFlag_ARROK(API_HAL_OS_TIMER);
}
static inline uint32_t api_hal_os_timer_get_arr() {
return LL_LPTIM_GetAutoReload(API_HAL_OS_TIMER);;
}
static inline void api_hal_os_timer_set_arr(uint32_t value) {
value &= API_HAL_OS_TIMER_MAX;
if (value != api_hal_os_timer_get_arr()) {
assert(api_hal_os_timer_arr_is_ok());
LL_LPTIM_ClearFlag_ARROK(API_HAL_OS_TIMER);
LL_LPTIM_SetAutoReload(API_HAL_OS_TIMER, value);
}
}
static inline bool api_hal_os_timer_cmp_is_ok() {
return LL_LPTIM_IsActiveFlag_CMPOK(API_HAL_OS_TIMER);
}
static inline uint32_t api_hal_os_timer_get_cmp() {
return LL_LPTIM_GetCompare(API_HAL_OS_TIMER);
}
static inline void api_hal_os_timer_set_cmp(uint32_t value) {
value &= API_HAL_OS_TIMER_MAX;
if (value != api_hal_os_timer_get_cmp()) {
assert(api_hal_os_timer_cmp_is_ok());
LL_LPTIM_ClearFlag_CMPOK(API_HAL_OS_TIMER);
LL_LPTIM_SetCompare(API_HAL_OS_TIMER, value);
}
}
static inline bool api_hal_os_timer_is_safe() {
uint16_t cmp = api_hal_os_timer_get_cmp();
uint16_t cnt = api_hal_os_timer_get_cnt();
uint16_t margin = (cmp > cnt) ? cmp - cnt : cnt - cmp;
if (margin < 8) {
return false;
}
if (!api_hal_os_timer_cmp_is_ok()) {
return false;
}
return true;
}

View File

@ -13,114 +13,78 @@
#ifdef API_HAL_OS_DEBUG #ifdef API_HAL_OS_DEBUG
#include <stm32wbxx_ll_gpio.h> #include <stm32wbxx_ll_gpio.h>
#define LED_GREEN_PORT GPIOA #define LED_SLEEP_PORT GPIOA
#define LED_GREEN_PIN LL_GPIO_PIN_7 #define LED_SLEEP_PIN LL_GPIO_PIN_7
#define LED_TICK_PORT GPIOA
#define LED_TICK_PIN LL_GPIO_PIN_6
#endif #endif
typedef struct { volatile uint32_t api_hal_os_skew = 0;
// Tick counters
volatile uint32_t in_sleep;
volatile uint32_t in_awake;
// Error counters
volatile uint32_t sleep_error;
volatile uint32_t awake_error;
} ApiHalOs;
ApiHalOs api_hal_os = {
.in_sleep = 0,
.in_awake = 0,
.sleep_error = 0,
.awake_error = 0,
};
void api_hal_os_init() { void api_hal_os_init() {
api_hal_os_timer_init();
LL_DBGMCU_APB1_GRP2_FreezePeriph(LL_DBGMCU_APB1_GRP2_LPTIM2_STOP); LL_DBGMCU_APB1_GRP2_FreezePeriph(LL_DBGMCU_APB1_GRP2_LPTIM2_STOP);
LL_LPTIM_EnableIT_CMPM(API_HAL_OS_TIMER); api_hal_os_timer_init();
LL_LPTIM_EnableIT_ARRM(API_HAL_OS_TIMER); api_hal_os_timer_continuous(API_HAL_OS_CLK_PER_TICK);
LL_LPTIM_SetAutoReload(API_HAL_OS_TIMER, API_HAL_OS_TIMER_MAX); #ifdef API_HAL_OS_DEBUG
LL_LPTIM_SetCompare(API_HAL_OS_TIMER, API_HAL_OS_CLK_PER_TICK); LL_GPIO_SetPinMode(LED_SLEEP_PORT, LED_SLEEP_PIN, LL_GPIO_MODE_OUTPUT);
LL_GPIO_SetPinMode(LED_TICK_PORT, LED_TICK_PIN, LL_GPIO_MODE_OUTPUT);
LL_LPTIM_StartCounter(API_HAL_OS_TIMER, LL_LPTIM_OPERATING_MODE_CONTINUOUS); #endif
} }
void LPTIM2_IRQHandler(void) { void LPTIM2_IRQHandler(void) {
// Autoreload // Autoreload
const bool arrm_flag = LL_LPTIM_IsActiveFlag_ARRM(API_HAL_OS_TIMER); if(LL_LPTIM_IsActiveFlag_ARRM(API_HAL_OS_TIMER)) {
if(arrm_flag) {
LL_LPTIM_ClearFLAG_ARRM(API_HAL_OS_TIMER); LL_LPTIM_ClearFLAG_ARRM(API_HAL_OS_TIMER);
if (xTaskGetSchedulerState() != taskSCHEDULER_NOT_STARTED) {
#ifdef API_HAL_OS_DEBUG
LL_GPIO_TogglePin(LED_TICK_PORT, LED_TICK_PIN);
#endif
xPortSysTickHandler();
}
} }
if(LL_LPTIM_IsActiveFlag_CMPM(API_HAL_OS_TIMER)) { if(LL_LPTIM_IsActiveFlag_CMPM(API_HAL_OS_TIMER)) {
LL_LPTIM_ClearFLAG_CMPM(API_HAL_OS_TIMER); LL_LPTIM_ClearFLAG_CMPM(API_HAL_OS_TIMER);
// Store important value
uint16_t cnt = api_hal_os_timer_get_cnt();
uint16_t cmp = api_hal_os_timer_get_cmp();
uint16_t current_tick = cnt / API_HAL_OS_CLK_PER_TICK;
uint16_t compare_tick = cmp / API_HAL_OS_CLK_PER_TICK;
// Calculate error
// happens when HAL or other high priority IRQ takes our time
int32_t error = (int32_t)compare_tick - current_tick;
api_hal_os.awake_error += ((error>0) ? error : -error);
// Calculate and set next tick
uint16_t next_tick = current_tick + 1;
api_hal_os_timer_set_cmp(next_tick * API_HAL_OS_CLK_PER_TICK);
// Notify OS
api_hal_os.in_awake ++;
if (xTaskGetSchedulerState() != taskSCHEDULER_NOT_STARTED) {
xPortSysTickHandler();
}
} }
} }
static inline uint32_t api_hal_os_sleep(TickType_t expected_idle_ticks) { static inline uint32_t api_hal_os_sleep(TickType_t expected_idle_ticks) {
// Store important value before going to sleep // Stop ticks
const uint16_t before_cnt = api_hal_os_timer_get_cnt(); api_hal_os_timer_reset();
const uint16_t before_tick = before_cnt / API_HAL_OS_CLK_PER_TICK;
// Calculate and set next wakeup compare value
const uint16_t expected_cnt = (before_tick + expected_idle_ticks - 2) * API_HAL_OS_CLK_PER_TICK;
api_hal_os_timer_set_cmp(expected_cnt);
HAL_SuspendTick(); HAL_SuspendTick();
// Start wakeup timer
api_hal_os_timer_single(expected_idle_ticks * API_HAL_OS_CLK_PER_TICK);
#ifdef API_HAL_OS_DEBUG
LL_GPIO_SetOutputPin(LED_SLEEP_PORT, LED_SLEEP_PIN);
#endif
// Go to stop2 mode // Go to stop2 mode
#ifdef API_HAL_OS_DEBUG
LL_GPIO_SetOutputPin(LED_GREEN_PORT, LED_GREEN_PIN);
#endif
api_hal_power_deep_sleep(); api_hal_power_deep_sleep();
#ifdef API_HAL_OS_DEBUG #ifdef API_HAL_OS_DEBUG
LL_GPIO_ResetOutputPin(LED_GREEN_PORT, LED_GREEN_PIN); LL_GPIO_ResetOutputPin(LED_SLEEP_PORT, LED_SLEEP_PIN);
#endif #endif
// Calculate how much time we spent in the sleep
uint32_t after_cnt = api_hal_os_timer_get_cnt() + api_hal_os_skew;
uint32_t after_tick = after_cnt / API_HAL_OS_CLK_PER_TICK;
api_hal_os_skew = after_cnt % API_HAL_OS_CLK_PER_TICK;
// Prepare tick timer for new round
api_hal_os_timer_reset();
// Resume ticks
HAL_ResumeTick(); HAL_ResumeTick();
api_hal_os_timer_continuous(API_HAL_OS_CLK_PER_TICK);
// Spin till we are in timer safe zone return after_tick;
while(!api_hal_os_timer_is_safe()) {}
// Store current counter value, calculate current tick
const uint16_t after_cnt = api_hal_os_timer_get_cnt();
const uint16_t after_tick = after_cnt / API_HAL_OS_CLK_PER_TICK;
// Store and clear interrupt flags
// we don't want handler to be called after renabling IRQ
bool arrm_flag = LL_LPTIM_IsActiveFlag_ARRM(API_HAL_OS_TIMER);
// Calculate and set next wakeup compare value
const uint16_t next_cmp = (after_tick + 1) * API_HAL_OS_CLK_PER_TICK;
api_hal_os_timer_set_cmp(next_cmp);
// Calculate ticks count spent in sleep and perform sanity checks
int32_t completed_ticks = arrm_flag ? (int32_t)before_tick - after_tick : (int32_t)after_tick - before_tick;
return completed_ticks;
} }
void vPortSuppressTicksAndSleep(TickType_t expected_idle_ticks) { void vPortSuppressTicksAndSleep(TickType_t expected_idle_ticks) {
// Check if sleep is available now
if (!api_hal_power_deep_available()) { if (!api_hal_power_deep_available()) {
return; return;
} }
@ -136,26 +100,20 @@ void vPortSuppressTicksAndSleep(TickType_t expected_idle_ticks) {
// Confirm OS that sleep is still possible // Confirm OS that sleep is still possible
// And check if timer is in safe zone // And check if timer is in safe zone
// (8 clocks till any IRQ event or ongoing synchronization) // (8 clocks till any IRQ event or ongoing synchronization)
if (eTaskConfirmSleepModeStatus() == eAbortSleep if (eTaskConfirmSleepModeStatus() == eAbortSleep) {
|| !api_hal_os_timer_is_safe()) {
__enable_irq(); __enable_irq();
return; return;
} }
// Sleep and track how much ticks we spent sleeping
uint32_t completed_ticks = api_hal_os_sleep(expected_idle_ticks); uint32_t completed_ticks = api_hal_os_sleep(expected_idle_ticks);
assert(completed_ticks >= 0);
// Reenable IRQ // Reenable IRQ
__enable_irq(); __enable_irq();
// Notify system about time spent in sleep // Notify system about time spent in sleep
if (completed_ticks > 0) { if (completed_ticks > 0) {
api_hal_os.in_sleep += completed_ticks;
if (completed_ticks > expected_idle_ticks) { if (completed_ticks > expected_idle_ticks) {
// We are late, count error
api_hal_os.sleep_error += (completed_ticks - expected_idle_ticks);
// Freertos is not happy when we overleep
// But we are not going to tell her
vTaskStepTick(expected_idle_ticks); vTaskStepTick(expected_idle_ticks);
} else { } else {
vTaskStepTick(completed_ticks); vTaskStepTick(completed_ticks);

View File

@ -74,6 +74,8 @@ C_SOURCES += \
$(CUBE_DIR)/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_ll_adc.c \ $(CUBE_DIR)/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_ll_adc.c \
$(CUBE_DIR)/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_ll_gpio.c \ $(CUBE_DIR)/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_ll_gpio.c \
$(CUBE_DIR)/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_ll_i2c.c \ $(CUBE_DIR)/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_ll_i2c.c \
$(CUBE_DIR)/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_ll_rcc.c \
$(CUBE_DIR)/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_ll_lptim.c \
$(CUBE_DIR)/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_ll_usb.c \ $(CUBE_DIR)/Drivers/STM32WBxx_HAL_Driver/Src/stm32wbxx_ll_usb.c \
$(CUBE_DIR)/Middlewares/Third_Party/FreeRTOS/Source/croutine.c \ $(CUBE_DIR)/Middlewares/Third_Party/FreeRTOS/Source/croutine.c \
$(CUBE_DIR)/Middlewares/Third_Party/FreeRTOS/Source/event_groups.c \ $(CUBE_DIR)/Middlewares/Third_Party/FreeRTOS/Source/event_groups.c \