Git: set git attributes to automatically manage line endings. (#771)

* Git: set git attributes to automatically manage line endings.

* Git: cleanup gitignore file
This commit is contained in:
あく
2021-10-18 01:54:19 +03:00
committed by GitHub
parent f390060922
commit bde3a47078
179 changed files with 42218 additions and 42254 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -1,357 +1,357 @@
/******************************************************************************
* \attention
*
* <h2><center>&copy; COPYRIGHT 2020 STMicroelectronics</center></h2>
*
* Licensed under ST MYLIBERTY SOFTWARE LICENSE AGREEMENT (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* www.st.com/myliberty
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
* AND SPECIFICALLY DISCLAIMING THE IMPLIED WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/*
* PROJECT: ST25R391x firmware
* Revision:
* LANGUAGE: ISO C99
*/
/*! \file rfal_AnalogConfig.h
*
* \author bkam
*
* \brief RF Chip Analog Configuration Settings
*
*
* \addtogroup RFAL
* @{
*
* \addtogroup RFAL-HAL
* \brief RFAL Hardware Abstraction Layer
* @{
*
* \addtogroup AnalogConfig
* \brief RFAL Analog Config Module
* @{
*
*/
#ifndef RFAL_ANALOG_CONFIG_H
#define RFAL_ANALOG_CONFIG_H
/*
******************************************************************************
* INCLUDES
******************************************************************************
*/
#include "platform.h"
#include "st_errno.h"
#include "rfal_rf.h"
/*
******************************************************************************
* DEFINES
******************************************************************************
*/
#define RFAL_ANALOG_CONFIG_LUT_SIZE (87U) /*!< Maximum number of Configuration IDs in the Loop Up Table */
#define RFAL_ANALOG_CONFIG_LUT_NOT_FOUND (0xFFU) /*!< Index value indicating no Configuration IDs found */
#define RFAL_ANALOG_CONFIG_TBL_SIZE (1024U) /*!< Maximum number of Register-Mask-Value in the Setting List */
#define RFAL_ANALOG_CONFIG_POLL_LISTEN_MODE_MASK (0x8000U) /*!< Mask bit of Poll Mode in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_TECH_MASK (0x7F00U) /*!< Mask bits for Technology in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_BITRATE_MASK (0x00F0U) /*!< Mask bits for Bit rate in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_DIRECTION_MASK (0x000FU) /*!< Mask bits for Direction in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_CHIP_SPECIFIC_MASK (0x00FFU) /*!< Mask bits for Chip Specific Technology */
#define RFAL_ANALOG_CONFIG_POLL_LISTEN_MODE_SHIFT (15U) /*!< Shift value of Poll Mode in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_TECH_SHIFT (8U) /*!< Shift value for Technology in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_BITRATE_SHIFT (4U) /*!< Shift value for Technology in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_DIRECTION_SHIFT (0U) /*!< Shift value for Direction in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_POLL (0x0000U) /*!< Poll Mode bit setting in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_LISTEN (0x8000U) /*!< Listen Mode bit setting in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_TECH_CHIP (0x0000U) /*!< Chip-Specific bit setting in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_TECH_NFCA (0x0100U) /*!< NFC-A Technology bits setting in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_TECH_NFCB (0x0200U) /*!< NFC-B Technology bits setting in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_TECH_NFCF (0x0400U) /*!< NFC-F Technology bits setting in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_TECH_AP2P (0x0800U) /*!< AP2P Technology bits setting in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_TECH_NFCV (0x1000U) /*!< NFC-V Technology bits setting in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_TECH_RFU (0x2000U) /*!< RFU for Technology bits */
#define RFAL_ANALOG_CONFIG_BITRATE_COMMON (0x0000U) /*!< Common settings for all bit rates in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_BITRATE_106 (0x0010U) /*!< 106kbits/s settings in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_BITRATE_212 (0x0020U) /*!< 212kbits/s settings in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_BITRATE_424 (0x0030U) /*!< 424kbits/s settings in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_BITRATE_848 (0x0040U) /*!< 848kbits/s settings in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_BITRATE_1695 (0x0050U) /*!< 1695kbits/s settings in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_BITRATE_3390 (0x0060U) /*!< 3390kbits/s settings in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_BITRATE_6780 (0x0070U) /*!< 6780kbits/s settings in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_BITRATE_1OF4 (0x00C0U) /*!< 1 out of 4 for NFC-V setting in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_BITRATE_1OF256 (0x00D0U) /*!< 1 out of 256 for NFC-V setting in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_NO_DIRECTION (0x0000U) /*!< No direction setting in Analog Conf ID (Chip Specific only) */
#define RFAL_ANALOG_CONFIG_TX (0x0001U) /*!< Transmission bit setting in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_RX (0x0002U) /*!< Reception bit setting in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_ANTICOL (0x0003U) /*!< Anticollision setting in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_DPO (0x0004U) /*!< DPO setting in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_CHIP_INIT (0x0000U) /*!< Chip-Specific event: Startup;Reset;Initialize */
#define RFAL_ANALOG_CONFIG_CHIP_DEINIT (0x0001U) /*!< Chip-Specific event: Deinitialize */
#define RFAL_ANALOG_CONFIG_CHIP_FIELD_ON (0x0002U) /*!< Chip-Specific event: Field On */
#define RFAL_ANALOG_CONFIG_CHIP_FIELD_OFF (0x0003U) /*!< Chip-Specific event: Field Off */
#define RFAL_ANALOG_CONFIG_CHIP_WAKEUP_ON (0x0004U) /*!< Chip-Specific event: Wake-up On */
#define RFAL_ANALOG_CONFIG_CHIP_WAKEUP_OFF (0x0005U) /*!< Chip-Specific event: Wake-up Off */
#define RFAL_ANALOG_CONFIG_CHIP_LISTEN_ON (0x0006U) /*!< Chip-Specific event: Listen On */
#define RFAL_ANALOG_CONFIG_CHIP_LISTEN_OFF (0x0007U) /*!< Chip-Specific event: Listen Off */
#define RFAL_ANALOG_CONFIG_CHIP_POLL_COMMON (0x0008U) /*!< Chip-Specific event: Poll common */
#define RFAL_ANALOG_CONFIG_CHIP_LISTEN_COMMON (0x0009U) /*!< Chip-Specific event: Listen common */
#define RFAL_ANALOG_CONFIG_CHIP_LOWPOWER_ON (0x000AU) /*!< Chip-Specific event: Low Power On */
#define RFAL_ANALOG_CONFIG_CHIP_LOWPOWER_OFF (0x000BU) /*!< Chip-Specific event: Low Power Off */
#define RFAL_ANALOG_CONFIG_UPDATE_LAST (0x00U) /*!< Value indicating Last configuration set during update */
#define RFAL_ANALOG_CONFIG_UPDATE_MORE (0x01U) /*!< Value indicating More configuration set coming during update */
/*
******************************************************************************
* GLOBAL MACROS
******************************************************************************
*/
#define RFAL_ANALOG_CONFIG_ID_GET_POLL_LISTEN(id) (RFAL_ANALOG_CONFIG_POLL_LISTEN_MODE_MASK & (id)) /*!< Check if id indicates Listen mode */
#define RFAL_ANALOG_CONFIG_ID_GET_TECH(id) (RFAL_ANALOG_CONFIG_TECH_MASK & (id)) /*!< Get the technology of Configuration ID */
#define RFAL_ANALOG_CONFIG_ID_IS_CHIP(id) (RFAL_ANALOG_CONFIG_TECH_MASK & (id)) /*!< Check if ID indicates Chip-specific */
#define RFAL_ANALOG_CONFIG_ID_IS_NFCA(id) (RFAL_ANALOG_CONFIG_TECH_NFCA & (id)) /*!< Check if ID indicates NFC-A */
#define RFAL_ANALOG_CONFIG_ID_IS_NFCB(id) (RFAL_ANALOG_CONFIG_TECH_NFCB & (id)) /*!< Check if ID indicates NFC-B */
#define RFAL_ANALOG_CONFIG_ID_IS_NFCF(id) (RFAL_ANALOG_CONFIG_TECH_NFCF & (id)) /*!< Check if ID indicates NFC-F */
#define RFAL_ANALOG_CONFIG_ID_IS_AP2P(id) (RFAL_ANALOG_CONFIG_TECH_AP2P & (id)) /*!< Check if ID indicates AP2P */
#define RFAL_ANALOG_CONFIG_ID_IS_NFCV(id) (RFAL_ANALOG_CONFIG_TECH_NFCV & (id)) /*!< Check if ID indicates NFC-V */
#define RFAL_ANALOG_CONFIG_ID_GET_BITRATE(id) (RFAL_ANALOG_CONFIG_BITRATE_MASK & (id)) /*!< Get Bitrate of Configuration ID */
#define RFAL_ANALOG_CONFIG_ID_IS_COMMON(id) (RFAL_ANALOG_CONFIG_BITRATE_MASK & (id)) /*!< Check if ID indicates common bitrate */
#define RFAL_ANALOG_CONFIG_ID_IS_106(id) (RFAL_ANALOG_CONFIG_BITRATE_106 & (id)) /*!< Check if ID indicates 106kbits/s */
#define RFAL_ANALOG_CONFIG_ID_IS_212(id) (RFAL_ANALOG_CONFIG_BITRATE_212 & (id)) /*!< Check if ID indicates 212kbits/s */
#define RFAL_ANALOG_CONFIG_ID_IS_424(id) (RFAL_ANALOG_CONFIG_BITRATE_424 & (id)) /*!< Check if ID indicates 424kbits/s */
#define RFAL_ANALOG_CONFIG_ID_IS_848(id) (RFAL_ANALOG_CONFIG_BITRATE_848 & (id)) /*!< Check if ID indicates 848kbits/s */
#define RFAL_ANALOG_CONFIG_ID_IS_1695(id) (RFAL_ANALOG_CONFIG_BITRATE_1695 & (id)) /*!< Check if ID indicates 1695kbits/s */
#define RFAL_ANALOG_CONFIG_ID_IS_3390(id) (RFAL_ANALOG_CONFIG_BITRATE_3390 & (id)) /*!< Check if ID indicates 3390kbits/s */
#define RFAL_ANALOG_CONFIG_ID_IS_6780(id) (RFAL_ANALOG_CONFIG_BITRATE_6780 & (id)) /*!< Check if ID indicates 6780kbits/s */
#define RFAL_ANALOG_CONFIG_ID_IS_1OF4(id) (RFAL_ANALOG_CONFIG_BITRATE_1OF4 & (id)) /*!< Check if ID indicates 1 out of 4 bitrate */
#define RFAL_ANALOG_CONFIG_ID_IS_1OF256(id) (RFAL_ANALOG_CONFIG_BITRATE_1OF256 & (id)) /*!< Check if ID indicates 1 out of 256 bitrate */
#define RFAL_ANALOG_CONFIG_ID_GET_DIRECTION(id) (RFAL_ANALOG_CONFIG_DIRECTION_MASK & (id)) /*!< Get Direction of Configuration ID */
#define RFAL_ANALOG_CONFIG_ID_IS_TX(id) (RFAL_ANALOG_CONFIG_TX & (id)) /*!< Check if id indicates TX */
#define RFAL_ANALOG_CONFIG_ID_IS_RX(id) (RFAL_ANALOG_CONFIG_RX & (id)) /*!< Check if id indicates RX */
#define RFAL_ANALOG_CONFIG_CONFIG_NUM(x) (sizeof(x)/sizeof((x)[0])) /*!< Get Analog Config number */
/*! Set Analog Config ID value by: Mode, Technology, Bitrate and Direction */
#define RFAL_ANALOG_CONFIG_ID_SET(mode, tech, br, direction) \
( RFAL_ANALOG_CONFIG_ID_GET_POLL_LISTEN(mode) \
| RFAL_ANALOG_CONFIG_ID_GET_TECH(tech) \
| RFAL_ANALOG_CONFIG_ID_GET_BITRATE(br) \
| RFAL_ANALOG_CONFIG_ID_GET_DIRECTION(direction) \
)
/*
******************************************************************************
* GLOBAL DATA TYPES
******************************************************************************
*/
typedef uint8_t rfalAnalogConfigMode; /*!< Polling or Listening Mode of Configuration */
typedef uint8_t rfalAnalogConfigTech; /*!< Technology of Configuration */
typedef uint8_t rfalAnalogConfigBitrate; /*!< Bitrate of Configuration */
typedef uint8_t rfalAnalogConfigDirection; /*!< Transmit/Receive direction of Configuration */
typedef uint8_t rfalAnalogConfigRegAddr[2]; /*!< Register Address to ST Chip */
typedef uint8_t rfalAnalogConfigRegMask; /*!< Register Mask Value */
typedef uint8_t rfalAnalogConfigRegVal; /*!< Register Value */
typedef uint16_t rfalAnalogConfigId; /*!< Analog Configuration ID */
typedef uint16_t rfalAnalogConfigOffset; /*!< Analog Configuration offset address in the table */
typedef uint8_t rfalAnalogConfigNum; /*!< Number of Analog settings for the respective Configuration ID */
/*! Struct that contain the Register-Mask-Value set. Make sure that the whole structure size is even and unaligned! */
typedef struct {
rfalAnalogConfigRegAddr addr; /*!< Register Address */
rfalAnalogConfigRegMask mask; /*!< Register Mask Value */
rfalAnalogConfigRegVal val; /*!< Register Value */
} rfalAnalogConfigRegAddrMaskVal;
/*! Struct that represents the Analog Configs */
typedef struct {
uint8_t id[sizeof(rfalAnalogConfigId)]; /*!< Configuration ID */
rfalAnalogConfigNum num; /*!< Number of Config Sets to follow */
rfalAnalogConfigRegAddrMaskVal regSet[]; /*!< Register-Mask-Value sets */ /* PRQA S 1060 # MISRA 18.7 - Flexible Array Members are the only meaningful way of denoting a variable length input buffer which follows a fixed header structure. */
} rfalAnalogConfig;
/*
******************************************************************************
* GLOBAL FUNCTION PROTOTYPES
******************************************************************************
*/
/*!
*****************************************************************************
* \brief Initialize the Analog Configuration
*
* Reset the Analog Configuration LUT pointer to reference to default settings.
*
*****************************************************************************
*/
void rfalAnalogConfigInitialize( void );
/*!
*****************************************************************************
* \brief Indicate if the current Analog Configuration Table is complete and ready to be used.
*
* \return true if current Analog Configuration Table is complete and ready to be used.
* \return false if current Analog Configuration Table is incomplete
*
*****************************************************************************
*/
bool rfalAnalogConfigIsReady( void );
/*!
*****************************************************************************
* \brief Write the whole Analog Configuration table in raw format
*
* Writes the Analog Configuration and Look Up Table with the given raw table
*
* NOTE: Function does not check the validity of the given Table contents
*
* \param[in] configTbl: location of config Table to be loaded
* \param[in] configTblSize: size of the config Table to be loaded
*
* \return ERR_NONE : if setting is updated
* \return ERR_PARAM : if configTbl is invalid
* \return ERR_NOMEM : if the given Table is bigger exceeds the max size
* \return ERR_REQUEST : if the update Configuration Id is disabled
*
*****************************************************************************
*/
ReturnCode rfalAnalogConfigListWriteRaw( const uint8_t *configTbl, uint16_t configTblSize );
/*!
*****************************************************************************
* \brief Write the Analog Configuration table with new analog settings.
*
* Writes the Analog Configuration and Look Up Table with the new list of register-mask-value
* and Configuration ID respectively.
*
* NOTE: Function does not check for the validity of the Register Address.
*
* \param[in] more: 0x00 indicates it is last Configuration ID settings;
* 0x01 indicates more Configuration ID setting(s) are coming.
* \param[in] *config: reference to the configuration list of current Configuraiton ID.
*
* \return ERR_PARAM : if Configuration ID or parameter is invalid
* \return ERR_NOMEM : if LUT is full
* \return ERR_REQUEST : if the update Configuration Id is disabled
* \return ERR_NONE : if setting is updated
*
*****************************************************************************
*/
ReturnCode rfalAnalogConfigListWrite( uint8_t more, const rfalAnalogConfig *config );
/*!
*****************************************************************************
* \brief Read the whole Analog Configuration table in raw format
*
* Reads the whole Analog Configuration Table in raw format
*
* \param[out] tblBuf: location to the buffer to place the Config Table
* \param[in] tblBufLen: length of the buffer to place the Config Table
* \param[out] configTblSize: Config Table size
*
* \return ERR_PARAM : if configTbl or configTblSize is invalid
* \return ERR_NOMEM : if configTblSize is not enough for the whole table
* \return ERR_NONE : if read is successful
*
*****************************************************************************
*/
ReturnCode rfalAnalogConfigListReadRaw( uint8_t *tblBuf, uint16_t tblBufLen, uint16_t *configTblSize );
/*!
*****************************************************************************
* \brief Read the Analog Configuration table.
*
* Read the Analog Configuration Table
*
* \param[in] configOffset: offset to the next Configuration ID in the List Table to be read.
* \param[out] more: 0x00 indicates it is last Configuration ID settings;
* 0x01 indicates more Configuration ID setting(s) are coming.
* \param[out] config: configuration id, number of configuration sets and register-mask-value sets
* \param[in] numConfig: the remaining configuration settings space available;
*
* \return ERR_NOMEM : if number of Configuration for respective Configuration ID is greater the the remaining configuration setting space available
* \return ERR_NONE : if read is successful
*
*****************************************************************************
*/
ReturnCode rfalAnalogConfigListRead( rfalAnalogConfigOffset *configOffset, uint8_t *more, rfalAnalogConfig *config, rfalAnalogConfigNum numConfig );
/*!
*****************************************************************************
* \brief Set the Analog settings of indicated Configuration ID.
*
* Update the chip with indicated analog settings of indicated Configuration ID.
*
* \param[in] configId: configuration ID
*
* \return ERR_PARAM if Configuration ID is invalid
* \return ERR_INTERNAL if error updating setting to chip
* \return ERR_NONE if new settings is applied to chip
*
*****************************************************************************
*/
ReturnCode rfalSetAnalogConfig( rfalAnalogConfigId configId );
/*!
*****************************************************************************
* \brief Generates Analog Config mode ID
*
* Converts RFAL mode and bitrate into Analog Config Mode ID.
*
* Update the chip with indicated analog settings of indicated Configuration ID.
*
* \param[in] md: RFAL mode format
* \param[in] br: RFAL bit rate format
* \param[in] dir: Analog Config communication direction
*
* \return Analog Config Mode ID
*
*****************************************************************************
*/
uint16_t rfalAnalogConfigGenModeID( rfalMode md, rfalBitRate br, uint16_t dir );
#endif /* RFAL_ANALOG_CONFIG_H */
/**
* @}
*
* @}
*
* @}
*/
/******************************************************************************
* \attention
*
* <h2><center>&copy; COPYRIGHT 2020 STMicroelectronics</center></h2>
*
* Licensed under ST MYLIBERTY SOFTWARE LICENSE AGREEMENT (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* www.st.com/myliberty
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
* AND SPECIFICALLY DISCLAIMING THE IMPLIED WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/*
* PROJECT: ST25R391x firmware
* Revision:
* LANGUAGE: ISO C99
*/
/*! \file rfal_AnalogConfig.h
*
* \author bkam
*
* \brief RF Chip Analog Configuration Settings
*
*
* \addtogroup RFAL
* @{
*
* \addtogroup RFAL-HAL
* \brief RFAL Hardware Abstraction Layer
* @{
*
* \addtogroup AnalogConfig
* \brief RFAL Analog Config Module
* @{
*
*/
#ifndef RFAL_ANALOG_CONFIG_H
#define RFAL_ANALOG_CONFIG_H
/*
******************************************************************************
* INCLUDES
******************************************************************************
*/
#include "platform.h"
#include "st_errno.h"
#include "rfal_rf.h"
/*
******************************************************************************
* DEFINES
******************************************************************************
*/
#define RFAL_ANALOG_CONFIG_LUT_SIZE (87U) /*!< Maximum number of Configuration IDs in the Loop Up Table */
#define RFAL_ANALOG_CONFIG_LUT_NOT_FOUND (0xFFU) /*!< Index value indicating no Configuration IDs found */
#define RFAL_ANALOG_CONFIG_TBL_SIZE (1024U) /*!< Maximum number of Register-Mask-Value in the Setting List */
#define RFAL_ANALOG_CONFIG_POLL_LISTEN_MODE_MASK (0x8000U) /*!< Mask bit of Poll Mode in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_TECH_MASK (0x7F00U) /*!< Mask bits for Technology in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_BITRATE_MASK (0x00F0U) /*!< Mask bits for Bit rate in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_DIRECTION_MASK (0x000FU) /*!< Mask bits for Direction in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_CHIP_SPECIFIC_MASK (0x00FFU) /*!< Mask bits for Chip Specific Technology */
#define RFAL_ANALOG_CONFIG_POLL_LISTEN_MODE_SHIFT (15U) /*!< Shift value of Poll Mode in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_TECH_SHIFT (8U) /*!< Shift value for Technology in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_BITRATE_SHIFT (4U) /*!< Shift value for Technology in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_DIRECTION_SHIFT (0U) /*!< Shift value for Direction in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_POLL (0x0000U) /*!< Poll Mode bit setting in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_LISTEN (0x8000U) /*!< Listen Mode bit setting in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_TECH_CHIP (0x0000U) /*!< Chip-Specific bit setting in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_TECH_NFCA (0x0100U) /*!< NFC-A Technology bits setting in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_TECH_NFCB (0x0200U) /*!< NFC-B Technology bits setting in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_TECH_NFCF (0x0400U) /*!< NFC-F Technology bits setting in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_TECH_AP2P (0x0800U) /*!< AP2P Technology bits setting in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_TECH_NFCV (0x1000U) /*!< NFC-V Technology bits setting in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_TECH_RFU (0x2000U) /*!< RFU for Technology bits */
#define RFAL_ANALOG_CONFIG_BITRATE_COMMON (0x0000U) /*!< Common settings for all bit rates in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_BITRATE_106 (0x0010U) /*!< 106kbits/s settings in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_BITRATE_212 (0x0020U) /*!< 212kbits/s settings in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_BITRATE_424 (0x0030U) /*!< 424kbits/s settings in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_BITRATE_848 (0x0040U) /*!< 848kbits/s settings in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_BITRATE_1695 (0x0050U) /*!< 1695kbits/s settings in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_BITRATE_3390 (0x0060U) /*!< 3390kbits/s settings in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_BITRATE_6780 (0x0070U) /*!< 6780kbits/s settings in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_BITRATE_1OF4 (0x00C0U) /*!< 1 out of 4 for NFC-V setting in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_BITRATE_1OF256 (0x00D0U) /*!< 1 out of 256 for NFC-V setting in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_NO_DIRECTION (0x0000U) /*!< No direction setting in Analog Conf ID (Chip Specific only) */
#define RFAL_ANALOG_CONFIG_TX (0x0001U) /*!< Transmission bit setting in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_RX (0x0002U) /*!< Reception bit setting in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_ANTICOL (0x0003U) /*!< Anticollision setting in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_DPO (0x0004U) /*!< DPO setting in Analog Configuration ID */
#define RFAL_ANALOG_CONFIG_CHIP_INIT (0x0000U) /*!< Chip-Specific event: Startup;Reset;Initialize */
#define RFAL_ANALOG_CONFIG_CHIP_DEINIT (0x0001U) /*!< Chip-Specific event: Deinitialize */
#define RFAL_ANALOG_CONFIG_CHIP_FIELD_ON (0x0002U) /*!< Chip-Specific event: Field On */
#define RFAL_ANALOG_CONFIG_CHIP_FIELD_OFF (0x0003U) /*!< Chip-Specific event: Field Off */
#define RFAL_ANALOG_CONFIG_CHIP_WAKEUP_ON (0x0004U) /*!< Chip-Specific event: Wake-up On */
#define RFAL_ANALOG_CONFIG_CHIP_WAKEUP_OFF (0x0005U) /*!< Chip-Specific event: Wake-up Off */
#define RFAL_ANALOG_CONFIG_CHIP_LISTEN_ON (0x0006U) /*!< Chip-Specific event: Listen On */
#define RFAL_ANALOG_CONFIG_CHIP_LISTEN_OFF (0x0007U) /*!< Chip-Specific event: Listen Off */
#define RFAL_ANALOG_CONFIG_CHIP_POLL_COMMON (0x0008U) /*!< Chip-Specific event: Poll common */
#define RFAL_ANALOG_CONFIG_CHIP_LISTEN_COMMON (0x0009U) /*!< Chip-Specific event: Listen common */
#define RFAL_ANALOG_CONFIG_CHIP_LOWPOWER_ON (0x000AU) /*!< Chip-Specific event: Low Power On */
#define RFAL_ANALOG_CONFIG_CHIP_LOWPOWER_OFF (0x000BU) /*!< Chip-Specific event: Low Power Off */
#define RFAL_ANALOG_CONFIG_UPDATE_LAST (0x00U) /*!< Value indicating Last configuration set during update */
#define RFAL_ANALOG_CONFIG_UPDATE_MORE (0x01U) /*!< Value indicating More configuration set coming during update */
/*
******************************************************************************
* GLOBAL MACROS
******************************************************************************
*/
#define RFAL_ANALOG_CONFIG_ID_GET_POLL_LISTEN(id) (RFAL_ANALOG_CONFIG_POLL_LISTEN_MODE_MASK & (id)) /*!< Check if id indicates Listen mode */
#define RFAL_ANALOG_CONFIG_ID_GET_TECH(id) (RFAL_ANALOG_CONFIG_TECH_MASK & (id)) /*!< Get the technology of Configuration ID */
#define RFAL_ANALOG_CONFIG_ID_IS_CHIP(id) (RFAL_ANALOG_CONFIG_TECH_MASK & (id)) /*!< Check if ID indicates Chip-specific */
#define RFAL_ANALOG_CONFIG_ID_IS_NFCA(id) (RFAL_ANALOG_CONFIG_TECH_NFCA & (id)) /*!< Check if ID indicates NFC-A */
#define RFAL_ANALOG_CONFIG_ID_IS_NFCB(id) (RFAL_ANALOG_CONFIG_TECH_NFCB & (id)) /*!< Check if ID indicates NFC-B */
#define RFAL_ANALOG_CONFIG_ID_IS_NFCF(id) (RFAL_ANALOG_CONFIG_TECH_NFCF & (id)) /*!< Check if ID indicates NFC-F */
#define RFAL_ANALOG_CONFIG_ID_IS_AP2P(id) (RFAL_ANALOG_CONFIG_TECH_AP2P & (id)) /*!< Check if ID indicates AP2P */
#define RFAL_ANALOG_CONFIG_ID_IS_NFCV(id) (RFAL_ANALOG_CONFIG_TECH_NFCV & (id)) /*!< Check if ID indicates NFC-V */
#define RFAL_ANALOG_CONFIG_ID_GET_BITRATE(id) (RFAL_ANALOG_CONFIG_BITRATE_MASK & (id)) /*!< Get Bitrate of Configuration ID */
#define RFAL_ANALOG_CONFIG_ID_IS_COMMON(id) (RFAL_ANALOG_CONFIG_BITRATE_MASK & (id)) /*!< Check if ID indicates common bitrate */
#define RFAL_ANALOG_CONFIG_ID_IS_106(id) (RFAL_ANALOG_CONFIG_BITRATE_106 & (id)) /*!< Check if ID indicates 106kbits/s */
#define RFAL_ANALOG_CONFIG_ID_IS_212(id) (RFAL_ANALOG_CONFIG_BITRATE_212 & (id)) /*!< Check if ID indicates 212kbits/s */
#define RFAL_ANALOG_CONFIG_ID_IS_424(id) (RFAL_ANALOG_CONFIG_BITRATE_424 & (id)) /*!< Check if ID indicates 424kbits/s */
#define RFAL_ANALOG_CONFIG_ID_IS_848(id) (RFAL_ANALOG_CONFIG_BITRATE_848 & (id)) /*!< Check if ID indicates 848kbits/s */
#define RFAL_ANALOG_CONFIG_ID_IS_1695(id) (RFAL_ANALOG_CONFIG_BITRATE_1695 & (id)) /*!< Check if ID indicates 1695kbits/s */
#define RFAL_ANALOG_CONFIG_ID_IS_3390(id) (RFAL_ANALOG_CONFIG_BITRATE_3390 & (id)) /*!< Check if ID indicates 3390kbits/s */
#define RFAL_ANALOG_CONFIG_ID_IS_6780(id) (RFAL_ANALOG_CONFIG_BITRATE_6780 & (id)) /*!< Check if ID indicates 6780kbits/s */
#define RFAL_ANALOG_CONFIG_ID_IS_1OF4(id) (RFAL_ANALOG_CONFIG_BITRATE_1OF4 & (id)) /*!< Check if ID indicates 1 out of 4 bitrate */
#define RFAL_ANALOG_CONFIG_ID_IS_1OF256(id) (RFAL_ANALOG_CONFIG_BITRATE_1OF256 & (id)) /*!< Check if ID indicates 1 out of 256 bitrate */
#define RFAL_ANALOG_CONFIG_ID_GET_DIRECTION(id) (RFAL_ANALOG_CONFIG_DIRECTION_MASK & (id)) /*!< Get Direction of Configuration ID */
#define RFAL_ANALOG_CONFIG_ID_IS_TX(id) (RFAL_ANALOG_CONFIG_TX & (id)) /*!< Check if id indicates TX */
#define RFAL_ANALOG_CONFIG_ID_IS_RX(id) (RFAL_ANALOG_CONFIG_RX & (id)) /*!< Check if id indicates RX */
#define RFAL_ANALOG_CONFIG_CONFIG_NUM(x) (sizeof(x)/sizeof((x)[0])) /*!< Get Analog Config number */
/*! Set Analog Config ID value by: Mode, Technology, Bitrate and Direction */
#define RFAL_ANALOG_CONFIG_ID_SET(mode, tech, br, direction) \
( RFAL_ANALOG_CONFIG_ID_GET_POLL_LISTEN(mode) \
| RFAL_ANALOG_CONFIG_ID_GET_TECH(tech) \
| RFAL_ANALOG_CONFIG_ID_GET_BITRATE(br) \
| RFAL_ANALOG_CONFIG_ID_GET_DIRECTION(direction) \
)
/*
******************************************************************************
* GLOBAL DATA TYPES
******************************************************************************
*/
typedef uint8_t rfalAnalogConfigMode; /*!< Polling or Listening Mode of Configuration */
typedef uint8_t rfalAnalogConfigTech; /*!< Technology of Configuration */
typedef uint8_t rfalAnalogConfigBitrate; /*!< Bitrate of Configuration */
typedef uint8_t rfalAnalogConfigDirection; /*!< Transmit/Receive direction of Configuration */
typedef uint8_t rfalAnalogConfigRegAddr[2]; /*!< Register Address to ST Chip */
typedef uint8_t rfalAnalogConfigRegMask; /*!< Register Mask Value */
typedef uint8_t rfalAnalogConfigRegVal; /*!< Register Value */
typedef uint16_t rfalAnalogConfigId; /*!< Analog Configuration ID */
typedef uint16_t rfalAnalogConfigOffset; /*!< Analog Configuration offset address in the table */
typedef uint8_t rfalAnalogConfigNum; /*!< Number of Analog settings for the respective Configuration ID */
/*! Struct that contain the Register-Mask-Value set. Make sure that the whole structure size is even and unaligned! */
typedef struct {
rfalAnalogConfigRegAddr addr; /*!< Register Address */
rfalAnalogConfigRegMask mask; /*!< Register Mask Value */
rfalAnalogConfigRegVal val; /*!< Register Value */
} rfalAnalogConfigRegAddrMaskVal;
/*! Struct that represents the Analog Configs */
typedef struct {
uint8_t id[sizeof(rfalAnalogConfigId)]; /*!< Configuration ID */
rfalAnalogConfigNum num; /*!< Number of Config Sets to follow */
rfalAnalogConfigRegAddrMaskVal regSet[]; /*!< Register-Mask-Value sets */ /* PRQA S 1060 # MISRA 18.7 - Flexible Array Members are the only meaningful way of denoting a variable length input buffer which follows a fixed header structure. */
} rfalAnalogConfig;
/*
******************************************************************************
* GLOBAL FUNCTION PROTOTYPES
******************************************************************************
*/
/*!
*****************************************************************************
* \brief Initialize the Analog Configuration
*
* Reset the Analog Configuration LUT pointer to reference to default settings.
*
*****************************************************************************
*/
void rfalAnalogConfigInitialize( void );
/*!
*****************************************************************************
* \brief Indicate if the current Analog Configuration Table is complete and ready to be used.
*
* \return true if current Analog Configuration Table is complete and ready to be used.
* \return false if current Analog Configuration Table is incomplete
*
*****************************************************************************
*/
bool rfalAnalogConfigIsReady( void );
/*!
*****************************************************************************
* \brief Write the whole Analog Configuration table in raw format
*
* Writes the Analog Configuration and Look Up Table with the given raw table
*
* NOTE: Function does not check the validity of the given Table contents
*
* \param[in] configTbl: location of config Table to be loaded
* \param[in] configTblSize: size of the config Table to be loaded
*
* \return ERR_NONE : if setting is updated
* \return ERR_PARAM : if configTbl is invalid
* \return ERR_NOMEM : if the given Table is bigger exceeds the max size
* \return ERR_REQUEST : if the update Configuration Id is disabled
*
*****************************************************************************
*/
ReturnCode rfalAnalogConfigListWriteRaw( const uint8_t *configTbl, uint16_t configTblSize );
/*!
*****************************************************************************
* \brief Write the Analog Configuration table with new analog settings.
*
* Writes the Analog Configuration and Look Up Table with the new list of register-mask-value
* and Configuration ID respectively.
*
* NOTE: Function does not check for the validity of the Register Address.
*
* \param[in] more: 0x00 indicates it is last Configuration ID settings;
* 0x01 indicates more Configuration ID setting(s) are coming.
* \param[in] *config: reference to the configuration list of current Configuraiton ID.
*
* \return ERR_PARAM : if Configuration ID or parameter is invalid
* \return ERR_NOMEM : if LUT is full
* \return ERR_REQUEST : if the update Configuration Id is disabled
* \return ERR_NONE : if setting is updated
*
*****************************************************************************
*/
ReturnCode rfalAnalogConfigListWrite( uint8_t more, const rfalAnalogConfig *config );
/*!
*****************************************************************************
* \brief Read the whole Analog Configuration table in raw format
*
* Reads the whole Analog Configuration Table in raw format
*
* \param[out] tblBuf: location to the buffer to place the Config Table
* \param[in] tblBufLen: length of the buffer to place the Config Table
* \param[out] configTblSize: Config Table size
*
* \return ERR_PARAM : if configTbl or configTblSize is invalid
* \return ERR_NOMEM : if configTblSize is not enough for the whole table
* \return ERR_NONE : if read is successful
*
*****************************************************************************
*/
ReturnCode rfalAnalogConfigListReadRaw( uint8_t *tblBuf, uint16_t tblBufLen, uint16_t *configTblSize );
/*!
*****************************************************************************
* \brief Read the Analog Configuration table.
*
* Read the Analog Configuration Table
*
* \param[in] configOffset: offset to the next Configuration ID in the List Table to be read.
* \param[out] more: 0x00 indicates it is last Configuration ID settings;
* 0x01 indicates more Configuration ID setting(s) are coming.
* \param[out] config: configuration id, number of configuration sets and register-mask-value sets
* \param[in] numConfig: the remaining configuration settings space available;
*
* \return ERR_NOMEM : if number of Configuration for respective Configuration ID is greater the the remaining configuration setting space available
* \return ERR_NONE : if read is successful
*
*****************************************************************************
*/
ReturnCode rfalAnalogConfigListRead( rfalAnalogConfigOffset *configOffset, uint8_t *more, rfalAnalogConfig *config, rfalAnalogConfigNum numConfig );
/*!
*****************************************************************************
* \brief Set the Analog settings of indicated Configuration ID.
*
* Update the chip with indicated analog settings of indicated Configuration ID.
*
* \param[in] configId: configuration ID
*
* \return ERR_PARAM if Configuration ID is invalid
* \return ERR_INTERNAL if error updating setting to chip
* \return ERR_NONE if new settings is applied to chip
*
*****************************************************************************
*/
ReturnCode rfalSetAnalogConfig( rfalAnalogConfigId configId );
/*!
*****************************************************************************
* \brief Generates Analog Config mode ID
*
* Converts RFAL mode and bitrate into Analog Config Mode ID.
*
* Update the chip with indicated analog settings of indicated Configuration ID.
*
* \param[in] md: RFAL mode format
* \param[in] br: RFAL bit rate format
* \param[in] dir: Analog Config communication direction
*
* \return Analog Config Mode ID
*
*****************************************************************************
*/
uint16_t rfalAnalogConfigGenModeID( rfalMode md, rfalBitRate br, uint16_t dir );
#endif /* RFAL_ANALOG_CONFIG_H */
/**
* @}
*
* @}
*
* @}
*/

View File

@@ -1,209 +1,209 @@
/******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2020 STMicroelectronics</center></h2>
*
* Licensed under ST MYLIBERTY SOFTWARE LICENSE AGREEMENT (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/myliberty
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
* AND SPECIFICALLY DISCLAIMING THE IMPLIED WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/*
* PROJECT: ST25R391x firmware
* $Revision: $
* LANGUAGE: ISO C99
*/
/*! \file rfal_dpo.h
*
* \author Martin Zechleitner
*
* \brief Dynamic Power adjustment
*
* This module provides an interface to perform the power adjustment dynamically
*
*
* \addtogroup RFAL
* @{
*
* \addtogroup RFAL-HAL
* \brief RFAL Hardware Abstraction Layer
* @{
*
* \addtogroup DPO
* \brief RFAL Dynamic Power Module
* @{
*
*/
#ifndef RFAL_DPO_H
#define RFAL_DPO_H
/*
******************************************************************************
* INCLUDES
******************************************************************************
*/
#include "platform.h"
#include "st_errno.h"
/*
******************************************************************************
* GLOBAL DEFINES
******************************************************************************
*/
#define RFAL_DPO_TABLE_SIZE_MAX 15U /*!< Max DPO table size */
#define RFAL_DPO_TABLE_PARAMETER 3U /*!< DPO table Parameter length */
/*
******************************************************************************
* GLOBAL TYPES
******************************************************************************
*/
/*! DPO table entry struct */
typedef struct {
uint8_t rfoRes; /*!< Setting for the resistance level of the RFO */
uint8_t inc; /*!< Threshold for incrementing the output power */
uint8_t dec; /*!< Threshold for decrementing the output power */
}rfalDpoEntry;
/*! Function pointer to methode doing the reference measurement */
typedef ReturnCode (*rfalDpoMeasureFunc)(uint8_t*);
/*
******************************************************************************
* GLOBAL FUNCTION PROTOTYPES
******************************************************************************
*/
/*!
*****************************************************************************
* \brief Initialize dynamic power table
*
* This function sets the internal dynamic power table to the default
* values stored in rfal_DpoTbl.h
*
*****************************************************************************
*/
void rfalDpoInitialize( void );
/*!
*****************************************************************************
* \brief Set the measurement methode
*
* This function sets the measurement method used for reference measurement.
* Based on the measurement the power will then be adjusted
*
* \param[in] dpoMeasureFunc: callback of measurement function
*
*****************************************************************************
*/
void rfalDpoSetMeasureCallback( rfalDpoMeasureFunc dpoMeasureFunc );
/*!
*****************************************************************************
* \brief Write dynamic power table
*
* Load the dynamic power table
*
* \param[in] powerTbl: location of power Table to be loaded
* \param[in] powerTblEntries: number of entries of the power Table to be loaded
*
* \return ERR_NONE : No error
* \return ERR_PARAM : if configTbl is invalid
* \return ERR_NOMEM : if the given Table is bigger exceeds the max size
*****************************************************************************
*/
ReturnCode rfalDpoTableWrite( rfalDpoEntry* powerTbl, uint8_t powerTblEntries );
/*!
*****************************************************************************
* \brief Dynamic power table Read
*
* Read the dynamic power table
*
* \param[out] tblBuf: location to the rfalDpoEntry[] to place the Table
* \param[in] tblBufEntries: number of entries available in tblBuf to place the power Table
* \param[out] tableEntries: returned number of entries actually written into tblBuf
*
* \return ERR_NONE : No error
* \return ERR_PARAM : if configTbl is invalid or parameters are invalid
*****************************************************************************
*/
ReturnCode rfalDpoTableRead( rfalDpoEntry* tblBuf, uint8_t tblBufEntries, uint8_t* tableEntries );
/*!
*****************************************************************************
* \brief Dynamic power adjust
*
* It measures the current output and adjusts the power accordingly to
* the dynamic power table
*
* \return ERR_NONE : No error
* \return ERR_PARAM : if configTbl is invalid or parameters are invalid
* \return ERR_WRONG_STATE : if the current state is valid for DPO Adjustment
*****************************************************************************
*/
ReturnCode rfalDpoAdjust( void );
/*!
*****************************************************************************
* \brief Get Current Dynamic power table entry
*
* Return current used DPO power table entry settings
*
* \return ERR_NONE : Current DpoEntry. This includes d_res, inc and dec
*
*****************************************************************************
*/
rfalDpoEntry* rfalDpoGetCurrentTableEntry(void);
/*!
*****************************************************************************
* \brief Dynamic power set enabled state
*
* \param[in] enable: new active state
*
* Set state to enable or disable the Dynamic power adjustment
*
*****************************************************************************
*/
void rfalDpoSetEnabled( bool enable );
/*!
*****************************************************************************
* \brief Get the Dynamic power enabled state
*
* Get state of the Dynamic power adjustment
*
* \return true : enabled
* \return false : disabled
*****************************************************************************
*/
bool rfalDpoIsEnabled(void);
#endif /* RFAL_DPO_H */
/**
* @}
*
* @}
*
* @}
*/
/******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2020 STMicroelectronics</center></h2>
*
* Licensed under ST MYLIBERTY SOFTWARE LICENSE AGREEMENT (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/myliberty
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
* AND SPECIFICALLY DISCLAIMING THE IMPLIED WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/*
* PROJECT: ST25R391x firmware
* $Revision: $
* LANGUAGE: ISO C99
*/
/*! \file rfal_dpo.h
*
* \author Martin Zechleitner
*
* \brief Dynamic Power adjustment
*
* This module provides an interface to perform the power adjustment dynamically
*
*
* \addtogroup RFAL
* @{
*
* \addtogroup RFAL-HAL
* \brief RFAL Hardware Abstraction Layer
* @{
*
* \addtogroup DPO
* \brief RFAL Dynamic Power Module
* @{
*
*/
#ifndef RFAL_DPO_H
#define RFAL_DPO_H
/*
******************************************************************************
* INCLUDES
******************************************************************************
*/
#include "platform.h"
#include "st_errno.h"
/*
******************************************************************************
* GLOBAL DEFINES
******************************************************************************
*/
#define RFAL_DPO_TABLE_SIZE_MAX 15U /*!< Max DPO table size */
#define RFAL_DPO_TABLE_PARAMETER 3U /*!< DPO table Parameter length */
/*
******************************************************************************
* GLOBAL TYPES
******************************************************************************
*/
/*! DPO table entry struct */
typedef struct {
uint8_t rfoRes; /*!< Setting for the resistance level of the RFO */
uint8_t inc; /*!< Threshold for incrementing the output power */
uint8_t dec; /*!< Threshold for decrementing the output power */
}rfalDpoEntry;
/*! Function pointer to methode doing the reference measurement */
typedef ReturnCode (*rfalDpoMeasureFunc)(uint8_t*);
/*
******************************************************************************
* GLOBAL FUNCTION PROTOTYPES
******************************************************************************
*/
/*!
*****************************************************************************
* \brief Initialize dynamic power table
*
* This function sets the internal dynamic power table to the default
* values stored in rfal_DpoTbl.h
*
*****************************************************************************
*/
void rfalDpoInitialize( void );
/*!
*****************************************************************************
* \brief Set the measurement methode
*
* This function sets the measurement method used for reference measurement.
* Based on the measurement the power will then be adjusted
*
* \param[in] dpoMeasureFunc: callback of measurement function
*
*****************************************************************************
*/
void rfalDpoSetMeasureCallback( rfalDpoMeasureFunc dpoMeasureFunc );
/*!
*****************************************************************************
* \brief Write dynamic power table
*
* Load the dynamic power table
*
* \param[in] powerTbl: location of power Table to be loaded
* \param[in] powerTblEntries: number of entries of the power Table to be loaded
*
* \return ERR_NONE : No error
* \return ERR_PARAM : if configTbl is invalid
* \return ERR_NOMEM : if the given Table is bigger exceeds the max size
*****************************************************************************
*/
ReturnCode rfalDpoTableWrite( rfalDpoEntry* powerTbl, uint8_t powerTblEntries );
/*!
*****************************************************************************
* \brief Dynamic power table Read
*
* Read the dynamic power table
*
* \param[out] tblBuf: location to the rfalDpoEntry[] to place the Table
* \param[in] tblBufEntries: number of entries available in tblBuf to place the power Table
* \param[out] tableEntries: returned number of entries actually written into tblBuf
*
* \return ERR_NONE : No error
* \return ERR_PARAM : if configTbl is invalid or parameters are invalid
*****************************************************************************
*/
ReturnCode rfalDpoTableRead( rfalDpoEntry* tblBuf, uint8_t tblBufEntries, uint8_t* tableEntries );
/*!
*****************************************************************************
* \brief Dynamic power adjust
*
* It measures the current output and adjusts the power accordingly to
* the dynamic power table
*
* \return ERR_NONE : No error
* \return ERR_PARAM : if configTbl is invalid or parameters are invalid
* \return ERR_WRONG_STATE : if the current state is valid for DPO Adjustment
*****************************************************************************
*/
ReturnCode rfalDpoAdjust( void );
/*!
*****************************************************************************
* \brief Get Current Dynamic power table entry
*
* Return current used DPO power table entry settings
*
* \return ERR_NONE : Current DpoEntry. This includes d_res, inc and dec
*
*****************************************************************************
*/
rfalDpoEntry* rfalDpoGetCurrentTableEntry(void);
/*!
*****************************************************************************
* \brief Dynamic power set enabled state
*
* \param[in] enable: new active state
*
* Set state to enable or disable the Dynamic power adjustment
*
*****************************************************************************
*/
void rfalDpoSetEnabled( bool enable );
/*!
*****************************************************************************
* \brief Get the Dynamic power enabled state
*
* Get state of the Dynamic power adjustment
*
* \return true : enabled
* \return false : disabled
*****************************************************************************
*/
bool rfalDpoIsEnabled(void);
#endif /* RFAL_DPO_H */
/**
* @}
*
* @}
*
* @}
*/

View File

@@ -1,464 +1,464 @@
/******************************************************************************
* \attention
*
* <h2><center>&copy; COPYRIGHT 2020 STMicroelectronics</center></h2>
*
* Licensed under ST MYLIBERTY SOFTWARE LICENSE AGREEMENT (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* www.st.com/myliberty
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
* AND SPECIFICALLY DISCLAIMING THE IMPLIED WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/*
* PROJECT: ST25R391x firmware
* Revision:
* LANGUAGE: ISO C99
*/
/*! \file rfal_nfca.h
*
* \author Gustavo Patricio
*
* \brief Provides several NFC-A convenience methods and definitions
*
* It provides a Poller (ISO14443A PCD) interface and as well as
* some NFC-A Listener (ISO14443A PICC) helpers.
*
* The definitions and helpers methods provided by this module are only
* up to ISO14443-3 layer
*
*
* An usage example is provided here: \ref exampleRfalNfca.c
* \example exampleRfalNfca.c
*
*
* \addtogroup RFAL
* @{
*
* \addtogroup RFAL-AL
* \brief RFAL Abstraction Layer
* @{
*
* \addtogroup NFC-A
* \brief RFAL NFC-A Module
* @{
*
*/
#ifndef RFAL_NFCA_H
#define RFAL_NFCA_H
/*
******************************************************************************
* INCLUDES
******************************************************************************
*/
#include "platform.h"
#include "st_errno.h"
#include "rfal_rf.h"
#include "rfal_t1t.h"
/*
******************************************************************************
* GLOBAL DEFINES
******************************************************************************
*/
#define RFAL_NFCA_CASCADE_1_UID_LEN 4U /*!< UID length of cascade level 1 only tag */
#define RFAL_NFCA_CASCADE_2_UID_LEN 7U /*!< UID length of cascade level 2 only tag */
#define RFAL_NFCA_CASCADE_3_UID_LEN 10U /*!< UID length of cascade level 3 only tag */
#define RFAL_NFCA_SENS_RES_PLATFORM_MASK 0x0FU /*!< SENS_RES (ATQA) platform configuration mask Digital 1.1 Table 10 */
#define RFAL_NFCA_SENS_RES_PLATFORM_T1T 0x0CU /*!< SENS_RES (ATQA) T1T platform configuration Digital 1.1 Table 10 */
#define RFAL_NFCA_SEL_RES_CONF_MASK 0x60U /*!< SEL_RES (SAK) platform configuration mask Digital 1.1 Table 19 */
#define RFAL_NFCA_SEL_RES_CONF_T2T 0x00U /*!< SEL_RES (SAK) T2T configuration Digital 1.1 Table 19 */
#define RFAL_NFCA_SEL_RES_CONF_T4T 0x20U /*!< SEL_RES (SAK) T4T configuration Digital 1.1 Table 19 */
#define RFAL_NFCA_SEL_RES_CONF_NFCDEP 0x40U /*!< SEL_RES (SAK) NFC-DEP configuration Digital 1.1 Table 19 */
#define RFAL_NFCA_SEL_RES_CONF_T4T_NFCDEP 0x60U /*!< SEL_RES (SAK) T4T and NFC-DEP configuration Digital 1.1 Table 19 */
/*! NFC-A minimum FDT(listen) = ((n * 128 + (84)) / fc) with n_min = 9 Digital 1.1 6.10.1
* = (1236)/fc
* Relax with 3etu: (3*128)/fc as with multiple NFC-A cards, response may take longer (JCOP cards)
* = (1236 + 384)/fc = 1620 / fc */
#define RFAL_NFCA_FDTMIN 1620U
/*
******************************************************************************
* GLOBAL MACROS
******************************************************************************
*/
/*! Checks if device is a T1T given its SENS_RES */
#define rfalNfcaIsSensResT1T( sensRes ) ((((rfalNfcaSensRes*)(sensRes))->platformInfo & RFAL_NFCA_SENS_RES_PLATFORM_MASK) == RFAL_NFCA_SENS_RES_PLATFORM_T1T )
/*! Checks if device is a T2T given its SENS_RES */
#define rfalNfcaIsSelResT2T( selRes ) ((((rfalNfcaSelRes*)(selRes))->sak & RFAL_NFCA_SEL_RES_CONF_MASK) == RFAL_NFCA_SEL_RES_CONF_T2T )
/*! Checks if device is a T4T given its SENS_RES */
#define rfalNfcaIsSelResT4T( selRes ) ((((rfalNfcaSelRes*)(selRes))->sak & RFAL_NFCA_SEL_RES_CONF_MASK) == RFAL_NFCA_SEL_RES_CONF_T4T )
/*! Checks if device supports NFC-DEP protocol given its SENS_RES */
#define rfalNfcaIsSelResNFCDEP( selRes ) ((((rfalNfcaSelRes*)(selRes))->sak & RFAL_NFCA_SEL_RES_CONF_MASK) == RFAL_NFCA_SEL_RES_CONF_NFCDEP )
/*! Checks if device supports ISO-DEP and NFC-DEP protocol given its SENS_RES */
#define rfalNfcaIsSelResT4TNFCDEP( selRes ) ((((rfalNfcaSelRes*)(selRes))->sak & RFAL_NFCA_SEL_RES_CONF_MASK) == RFAL_NFCA_SEL_RES_CONF_T4T_NFCDEP )
/*! Checks if a NFC-A listener device supports multiple protocols (ISO-DEP and NFC-DEP) */
#define rfalNfcaLisDevIsMultiProto( lisDev ) (((rfalNfcaListenDevice*)(lisDev))->type == RFAL_NFCA_T4T_NFCDEP )
/*
******************************************************************************
* GLOBAL TYPES
******************************************************************************
*/
/*! NFC-A Listen device types */
typedef enum {
RFAL_NFCA_T1T = 0x01, /* Device configured for T1T Digital 1.1 Table 9 */
RFAL_NFCA_T2T = 0x00, /* Device configured for T2T Digital 1.1 Table 19 */
RFAL_NFCA_T4T = 0x20, /* Device configured for T4T Digital 1.1 Table 19 */
RFAL_NFCA_NFCDEP = 0x40, /* Device configured for NFC-DEP Digital 1.1 Table 19 */
RFAL_NFCA_T4T_NFCDEP = 0x60 /* Device configured for NFC-DEP and T4T Digital 1.1 Table 19 */
} rfalNfcaListenDeviceType;
/*! SENS_RES (ATQA) format Digital 1.1 6.6.3 & Table 7 */
typedef struct
{
uint8_t anticollisionInfo; /*!< SENS_RES Anticollision Information */
uint8_t platformInfo; /*!< SENS_RES Platform Information */
} rfalNfcaSensRes;
/*! SDD_REQ (Anticollision) format Digital 1.1 6.7.1 & Table 11 */
typedef struct
{
uint8_t selCmd; /*!< SDD_REQ SEL_CMD: cascade Level */
uint8_t selPar; /*!< SDD_REQ SEL_PAR: Byte Count[4b] | Bit Count[4b] (NVB: Number of Valid Bits)*/
} rfalNfcaSddReq;
/*! SDD_RES (UID CLn) format Digital 1.1 6.7.2 & Table 15 */
typedef struct
{
uint8_t nfcid1[RFAL_NFCA_CASCADE_1_UID_LEN]; /*!< NFCID1 cascade level NFCID */
uint8_t bcc; /*!< BCC Exclusive-OR over first 4 bytes of SDD_RES */
} rfalNfcaSddRes;
/*! SEL_REQ (Select) format Digital 1.1 6.8.1 & Table 17 */
typedef struct
{
uint8_t selCmd; /*!< SDD_REQ SEL_CMD: cascade Level */
uint8_t selPar; /*!< SDD_REQ SEL_PAR: Byte Count[4b] | Bit Count[4b] (NVB: Number of Valid Bits)*/
uint8_t nfcid1[RFAL_NFCA_CASCADE_1_UID_LEN]; /*!< NFCID1 data */
uint8_t bcc; /*!< Checksum calculated as exclusive-OR over the 4 bytes of NFCID1 CLn */
} rfalNfcaSelReq;
/*! SEL_RES (SAK) format Digital 1.1 6.8.2 & Table 19 */
typedef struct
{
uint8_t sak; /*!< Select Acknowledge */
} rfalNfcaSelRes;
/*! NFC-A listener device (PICC) struct */
typedef struct
{
rfalNfcaListenDeviceType type; /*!< NFC-A Listen device type */
rfalNfcaSensRes sensRes; /*!< SENS_RES (ATQA) */
rfalNfcaSelRes selRes; /*!< SEL_RES (SAK) */
uint8_t nfcId1Len; /*!< NFCID1 Length */
uint8_t nfcId1[RFAL_NFCA_CASCADE_3_UID_LEN]; /*!< NFCID1 (UID) */
#ifdef RFAL_FEATURE_T1T
rfalT1TRidRes ridRes; /*!< RID_RES */
#endif /* RFAL_FEATURE_T1T */
bool isSleep; /*!< Device sleeping flag */
} rfalNfcaListenDevice;
/*
******************************************************************************
* GLOBAL FUNCTION PROTOTYPES
******************************************************************************
*/
/*!
*****************************************************************************
* \brief Initialize NFC-A Poller mode
*
* This methods configures RFAL RF layer to perform as a
* NFC-A Poller/RW (ISO14443A PCD) including all default timings and bit rate
* to 106 kbps
*
* \return ERR_WRONG_STATE : RFAL not initialized or mode not set
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalNfcaPollerInitialize( void );
/*!
*****************************************************************************
* \brief NFC-A Poller Check Presence
*
* This method checks if a NFC-A Listen device (PICC) is present on the field
* by sending an ALL_REQ (WUPA) or SENS_REQ (REQA)
*
* \param[in] cmd : Indicate if to send an ALL_REQ or a SENS_REQ
* \param[out] sensRes : If received, the SENS_RES
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_RF_COLLISION : Collision detected one or more device in the field
* \return ERR_PAR : Parity error detected, one or more device in the field
* \return ERR_CRC : CRC error detected, one or more device in the field
* \return ERR_FRAMING : Framing error detected, one or more device in the field
* \return ERR_PROTO : Protocol error detected, one or more device in the field
* \return ERR_TIMEOUT : Timeout error, no listener device detected
* \return ERR_NONE : No error, one or more device in the field
*****************************************************************************
*/
ReturnCode rfalNfcaPollerCheckPresence( rfal14443AShortFrameCmd cmd, rfalNfcaSensRes *sensRes );
/*!
*****************************************************************************
* \brief NFC-A Poller Select
*
* This method selects a NFC-A Listener device (PICC)
*
* \param[in] nfcid1 : Listener device NFCID1 to be selected
* \param[in] nfcidLen : Length of the NFCID1 to be selected
* \param[out] selRes : pointer to place the SEL_RES
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_TIMEOUT : Timeout error
* \return ERR_PAR : Parity error detected
* \return ERR_CRC : CRC error detected
* \return ERR_FRAMING : Framing error detected
* \return ERR_PROTO : Protocol error detected
* \return ERR_NONE : No error, SEL_RES received
*****************************************************************************
*/
ReturnCode rfalNfcaPollerSelect( const uint8_t *nfcid1, uint8_t nfcidLen, rfalNfcaSelRes *selRes );
/*!
*****************************************************************************
* \brief NFC-A Poller Sleep
*
* This method sends a SLP_REQ (HLTA)
* No response is expected afterwards Digital 1.1 6.9.2.1
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalNfcaPollerSleep( void );
/*!
*****************************************************************************
* \brief NFC-A Technology Detection
*
* This method performs NFC-A Technology Detection as defined in the spec
* given in the compliance mode
*
* \param[in] compMode : compliance mode to be performed
* \param[out] sensRes : location to store the SENS_RES, if received
*
* When compMode is set to ISO compliance a SLP_REQ (HLTA) is not sent
* after detection. When set to EMV a ALL_REQ (WUPA) is sent instead of
* a SENS_REQ (REQA)
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_NONE : No error, one or more device in the field
*****************************************************************************
*/
ReturnCode rfalNfcaPollerTechnologyDetection( rfalComplianceMode compMode, rfalNfcaSensRes *sensRes );
/*!
*****************************************************************************
* \brief NFC-A Poller Collision Resolution
*
* Collision resolution for one NFC-A Listener device/card (PICC) as
* defined in Activity 2.1 9.3.4
*
* This method executes anti collision loop and select the device with higher NFCID1
*
* When devLimit = 0 it is configured to perform collision detection only. Once a collision
* is detected the collision resolution is aborted immidiatly. If only one device is found
* with no collisions, it will properly resolved.
*
* \param[in] devLimit : device limit value (CON_DEVICES_LIMIT)
* \param[out] collPending : pointer to collision pending flag (INT_COLL_PEND)
* \param[out] selRes : location to store the last Select Response from listener device (PICC)
* \param[out] nfcId1 : location to store the NFCID1 (UID), ensure RFAL_NFCA_CASCADE_3_UID_LEN
* \param[out] nfcId1Len : pointer to length of NFCID1 (UID)
*
* \return ERR_WRONG_STATE : RFAL not initialized or mode not set
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_PROTO : Card length invalid
* \return ERR_IGNORE : conDevLimit is 0 and there is a collision
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalNfcaPollerSingleCollisionResolution( uint8_t devLimit, bool *collPending, rfalNfcaSelRes *selRes, uint8_t *nfcId1, uint8_t *nfcId1Len );
/*!
*****************************************************************************
* \brief NFC-A Poller Full Collision Resolution
*
* Performs a full Collision resolution as defined in Activity 2.1 9.3.4
*
* \param[in] compMode : compliance mode to be performed
* \param[in] devLimit : device limit value, and size nfcaDevList
* \param[out] nfcaDevList : NFC-A listener device info
* \param[out] devCnt : Devices found counter
*
* When compMode is set to ISO compliance it assumes that the device is
* not sleeping and therefore no ALL_REQ (WUPA) is sent at the beginning.
* When compMode is set to NFC compliance an additional ALL_REQ (WUPA) is sent
* at the beginning.
*
*
* When devLimit = 0 it is configured to perform collision detection only. Once a collision
* is detected the collision resolution is aborted immidiatly. If only one device is found
* with no collisions, it will properly resolved.
*
*
* \return ERR_WRONG_STATE : RFAL not initialized or mode not set
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalNfcaPollerFullCollisionResolution( rfalComplianceMode compMode, uint8_t devLimit, rfalNfcaListenDevice *nfcaDevList, uint8_t *devCnt );
/*!
*****************************************************************************
* \brief NFC-A Poller Full Collision Resolution with Sleep
*
* Performs a full Collision resolution similar to rfalNfcaPollerFullCollisionResolution
* but an additional SLP_REQ (HLTA) -> SENS_RES (REQA) is sent regardless if there
* was a collision.
* This proprietary behaviour ensures proper activation of certain devices that suffer
* from influence of Type B commands as foreseen in ISO14443-3 5.2.3 or were somehow
* not detected by the first round of collision resolution
*
* \param[in] devLimit : device limit value, and size nfcaDevList
* \param[out] nfcaDevList : NFC-A listener device info
* \param[out] devCnt : Devices found counter
*
*
* \return ERR_WRONG_STATE : RFAL not initialized or mode not set
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalNfcaPollerSleepFullCollisionResolution( uint8_t devLimit, rfalNfcaListenDevice *nfcaDevList, uint8_t *devCnt );
/*!
*****************************************************************************
* \brief NFC-A Poller Start Full Collision Resolution
*
* This method starts the full Collision resolution as defined
* in Activity 1.0 or 1.1 9.3.4
*
* \param[in] compMode : compliance mode to be performed
* \param[in] devLimit : device limit value, and size nfcaDevList
* \param[out] nfcaDevList : NFC-A listener device info
* \param[out] devCnt : Devices found counter
*
* When compMode is set to ISO compliance it assumes that the device is
* not sleeping and therefore no ALL_REQ (WUPA) is sent at the beginning.
* When compMode is set to NFC compliance an additional ALL_REQ (WUPA) is sent at
* the beginning.
*
*
* When devLimit = 0 it is configured to perform collision detection only. Once a collision
* is detected the collision resolution is aborted immidiatly. If only one device is found
* with no collisions, it will properly resolved.
*
*
* \return ERR_WRONG_STATE : RFAL not initialized or mode not set
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalNfcaPollerStartFullCollisionResolution( rfalComplianceMode compMode, uint8_t devLimit, rfalNfcaListenDevice *nfcaDevList, uint8_t *devCnt );
/*!
*****************************************************************************
* \brief NFC-A Get Full Collision Resolution Status
*
* Returns the Collision Resolution status
*
* \return ERR_BUSY : Operation is ongoing
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_TIMEOUT : Timeout error
* \return ERR_PAR : Parity error detected
* \return ERR_CRC : CRC error detected
* \return ERR_FRAMING : Framing error detected
* \return ERR_PROTO : Protocol error detected
* \return ERR_NONE : No error, activation successful
*****************************************************************************
*/
ReturnCode rfalNfcaPollerGetFullCollisionResolutionStatus( void );
/*!
*****************************************************************************
* \brief NFC-A Listener is SLP_REQ
*
* Checks if the given buffer contains valid NFC-A SLP_REQ (HALT)
*
* \param[in] buf: buffer containing data
* \param[in] bufLen: length of the data in buffer to be checked
*
* \return true if data in buf contains a SLP_REQ ; false otherwise
*****************************************************************************
*/
bool rfalNfcaListenerIsSleepReq( const uint8_t *buf, uint16_t bufLen );
#endif /* RFAL_NFCA_H */
/**
* @}
*
* @}
*
* @}
*/
/******************************************************************************
* \attention
*
* <h2><center>&copy; COPYRIGHT 2020 STMicroelectronics</center></h2>
*
* Licensed under ST MYLIBERTY SOFTWARE LICENSE AGREEMENT (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* www.st.com/myliberty
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
* AND SPECIFICALLY DISCLAIMING THE IMPLIED WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/*
* PROJECT: ST25R391x firmware
* Revision:
* LANGUAGE: ISO C99
*/
/*! \file rfal_nfca.h
*
* \author Gustavo Patricio
*
* \brief Provides several NFC-A convenience methods and definitions
*
* It provides a Poller (ISO14443A PCD) interface and as well as
* some NFC-A Listener (ISO14443A PICC) helpers.
*
* The definitions and helpers methods provided by this module are only
* up to ISO14443-3 layer
*
*
* An usage example is provided here: \ref exampleRfalNfca.c
* \example exampleRfalNfca.c
*
*
* \addtogroup RFAL
* @{
*
* \addtogroup RFAL-AL
* \brief RFAL Abstraction Layer
* @{
*
* \addtogroup NFC-A
* \brief RFAL NFC-A Module
* @{
*
*/
#ifndef RFAL_NFCA_H
#define RFAL_NFCA_H
/*
******************************************************************************
* INCLUDES
******************************************************************************
*/
#include "platform.h"
#include "st_errno.h"
#include "rfal_rf.h"
#include "rfal_t1t.h"
/*
******************************************************************************
* GLOBAL DEFINES
******************************************************************************
*/
#define RFAL_NFCA_CASCADE_1_UID_LEN 4U /*!< UID length of cascade level 1 only tag */
#define RFAL_NFCA_CASCADE_2_UID_LEN 7U /*!< UID length of cascade level 2 only tag */
#define RFAL_NFCA_CASCADE_3_UID_LEN 10U /*!< UID length of cascade level 3 only tag */
#define RFAL_NFCA_SENS_RES_PLATFORM_MASK 0x0FU /*!< SENS_RES (ATQA) platform configuration mask Digital 1.1 Table 10 */
#define RFAL_NFCA_SENS_RES_PLATFORM_T1T 0x0CU /*!< SENS_RES (ATQA) T1T platform configuration Digital 1.1 Table 10 */
#define RFAL_NFCA_SEL_RES_CONF_MASK 0x60U /*!< SEL_RES (SAK) platform configuration mask Digital 1.1 Table 19 */
#define RFAL_NFCA_SEL_RES_CONF_T2T 0x00U /*!< SEL_RES (SAK) T2T configuration Digital 1.1 Table 19 */
#define RFAL_NFCA_SEL_RES_CONF_T4T 0x20U /*!< SEL_RES (SAK) T4T configuration Digital 1.1 Table 19 */
#define RFAL_NFCA_SEL_RES_CONF_NFCDEP 0x40U /*!< SEL_RES (SAK) NFC-DEP configuration Digital 1.1 Table 19 */
#define RFAL_NFCA_SEL_RES_CONF_T4T_NFCDEP 0x60U /*!< SEL_RES (SAK) T4T and NFC-DEP configuration Digital 1.1 Table 19 */
/*! NFC-A minimum FDT(listen) = ((n * 128 + (84)) / fc) with n_min = 9 Digital 1.1 6.10.1
* = (1236)/fc
* Relax with 3etu: (3*128)/fc as with multiple NFC-A cards, response may take longer (JCOP cards)
* = (1236 + 384)/fc = 1620 / fc */
#define RFAL_NFCA_FDTMIN 1620U
/*
******************************************************************************
* GLOBAL MACROS
******************************************************************************
*/
/*! Checks if device is a T1T given its SENS_RES */
#define rfalNfcaIsSensResT1T( sensRes ) ((((rfalNfcaSensRes*)(sensRes))->platformInfo & RFAL_NFCA_SENS_RES_PLATFORM_MASK) == RFAL_NFCA_SENS_RES_PLATFORM_T1T )
/*! Checks if device is a T2T given its SENS_RES */
#define rfalNfcaIsSelResT2T( selRes ) ((((rfalNfcaSelRes*)(selRes))->sak & RFAL_NFCA_SEL_RES_CONF_MASK) == RFAL_NFCA_SEL_RES_CONF_T2T )
/*! Checks if device is a T4T given its SENS_RES */
#define rfalNfcaIsSelResT4T( selRes ) ((((rfalNfcaSelRes*)(selRes))->sak & RFAL_NFCA_SEL_RES_CONF_MASK) == RFAL_NFCA_SEL_RES_CONF_T4T )
/*! Checks if device supports NFC-DEP protocol given its SENS_RES */
#define rfalNfcaIsSelResNFCDEP( selRes ) ((((rfalNfcaSelRes*)(selRes))->sak & RFAL_NFCA_SEL_RES_CONF_MASK) == RFAL_NFCA_SEL_RES_CONF_NFCDEP )
/*! Checks if device supports ISO-DEP and NFC-DEP protocol given its SENS_RES */
#define rfalNfcaIsSelResT4TNFCDEP( selRes ) ((((rfalNfcaSelRes*)(selRes))->sak & RFAL_NFCA_SEL_RES_CONF_MASK) == RFAL_NFCA_SEL_RES_CONF_T4T_NFCDEP )
/*! Checks if a NFC-A listener device supports multiple protocols (ISO-DEP and NFC-DEP) */
#define rfalNfcaLisDevIsMultiProto( lisDev ) (((rfalNfcaListenDevice*)(lisDev))->type == RFAL_NFCA_T4T_NFCDEP )
/*
******************************************************************************
* GLOBAL TYPES
******************************************************************************
*/
/*! NFC-A Listen device types */
typedef enum {
RFAL_NFCA_T1T = 0x01, /* Device configured for T1T Digital 1.1 Table 9 */
RFAL_NFCA_T2T = 0x00, /* Device configured for T2T Digital 1.1 Table 19 */
RFAL_NFCA_T4T = 0x20, /* Device configured for T4T Digital 1.1 Table 19 */
RFAL_NFCA_NFCDEP = 0x40, /* Device configured for NFC-DEP Digital 1.1 Table 19 */
RFAL_NFCA_T4T_NFCDEP = 0x60 /* Device configured for NFC-DEP and T4T Digital 1.1 Table 19 */
} rfalNfcaListenDeviceType;
/*! SENS_RES (ATQA) format Digital 1.1 6.6.3 & Table 7 */
typedef struct
{
uint8_t anticollisionInfo; /*!< SENS_RES Anticollision Information */
uint8_t platformInfo; /*!< SENS_RES Platform Information */
} rfalNfcaSensRes;
/*! SDD_REQ (Anticollision) format Digital 1.1 6.7.1 & Table 11 */
typedef struct
{
uint8_t selCmd; /*!< SDD_REQ SEL_CMD: cascade Level */
uint8_t selPar; /*!< SDD_REQ SEL_PAR: Byte Count[4b] | Bit Count[4b] (NVB: Number of Valid Bits)*/
} rfalNfcaSddReq;
/*! SDD_RES (UID CLn) format Digital 1.1 6.7.2 & Table 15 */
typedef struct
{
uint8_t nfcid1[RFAL_NFCA_CASCADE_1_UID_LEN]; /*!< NFCID1 cascade level NFCID */
uint8_t bcc; /*!< BCC Exclusive-OR over first 4 bytes of SDD_RES */
} rfalNfcaSddRes;
/*! SEL_REQ (Select) format Digital 1.1 6.8.1 & Table 17 */
typedef struct
{
uint8_t selCmd; /*!< SDD_REQ SEL_CMD: cascade Level */
uint8_t selPar; /*!< SDD_REQ SEL_PAR: Byte Count[4b] | Bit Count[4b] (NVB: Number of Valid Bits)*/
uint8_t nfcid1[RFAL_NFCA_CASCADE_1_UID_LEN]; /*!< NFCID1 data */
uint8_t bcc; /*!< Checksum calculated as exclusive-OR over the 4 bytes of NFCID1 CLn */
} rfalNfcaSelReq;
/*! SEL_RES (SAK) format Digital 1.1 6.8.2 & Table 19 */
typedef struct
{
uint8_t sak; /*!< Select Acknowledge */
} rfalNfcaSelRes;
/*! NFC-A listener device (PICC) struct */
typedef struct
{
rfalNfcaListenDeviceType type; /*!< NFC-A Listen device type */
rfalNfcaSensRes sensRes; /*!< SENS_RES (ATQA) */
rfalNfcaSelRes selRes; /*!< SEL_RES (SAK) */
uint8_t nfcId1Len; /*!< NFCID1 Length */
uint8_t nfcId1[RFAL_NFCA_CASCADE_3_UID_LEN]; /*!< NFCID1 (UID) */
#ifdef RFAL_FEATURE_T1T
rfalT1TRidRes ridRes; /*!< RID_RES */
#endif /* RFAL_FEATURE_T1T */
bool isSleep; /*!< Device sleeping flag */
} rfalNfcaListenDevice;
/*
******************************************************************************
* GLOBAL FUNCTION PROTOTYPES
******************************************************************************
*/
/*!
*****************************************************************************
* \brief Initialize NFC-A Poller mode
*
* This methods configures RFAL RF layer to perform as a
* NFC-A Poller/RW (ISO14443A PCD) including all default timings and bit rate
* to 106 kbps
*
* \return ERR_WRONG_STATE : RFAL not initialized or mode not set
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalNfcaPollerInitialize( void );
/*!
*****************************************************************************
* \brief NFC-A Poller Check Presence
*
* This method checks if a NFC-A Listen device (PICC) is present on the field
* by sending an ALL_REQ (WUPA) or SENS_REQ (REQA)
*
* \param[in] cmd : Indicate if to send an ALL_REQ or a SENS_REQ
* \param[out] sensRes : If received, the SENS_RES
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_RF_COLLISION : Collision detected one or more device in the field
* \return ERR_PAR : Parity error detected, one or more device in the field
* \return ERR_CRC : CRC error detected, one or more device in the field
* \return ERR_FRAMING : Framing error detected, one or more device in the field
* \return ERR_PROTO : Protocol error detected, one or more device in the field
* \return ERR_TIMEOUT : Timeout error, no listener device detected
* \return ERR_NONE : No error, one or more device in the field
*****************************************************************************
*/
ReturnCode rfalNfcaPollerCheckPresence( rfal14443AShortFrameCmd cmd, rfalNfcaSensRes *sensRes );
/*!
*****************************************************************************
* \brief NFC-A Poller Select
*
* This method selects a NFC-A Listener device (PICC)
*
* \param[in] nfcid1 : Listener device NFCID1 to be selected
* \param[in] nfcidLen : Length of the NFCID1 to be selected
* \param[out] selRes : pointer to place the SEL_RES
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_TIMEOUT : Timeout error
* \return ERR_PAR : Parity error detected
* \return ERR_CRC : CRC error detected
* \return ERR_FRAMING : Framing error detected
* \return ERR_PROTO : Protocol error detected
* \return ERR_NONE : No error, SEL_RES received
*****************************************************************************
*/
ReturnCode rfalNfcaPollerSelect( const uint8_t *nfcid1, uint8_t nfcidLen, rfalNfcaSelRes *selRes );
/*!
*****************************************************************************
* \brief NFC-A Poller Sleep
*
* This method sends a SLP_REQ (HLTA)
* No response is expected afterwards Digital 1.1 6.9.2.1
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalNfcaPollerSleep( void );
/*!
*****************************************************************************
* \brief NFC-A Technology Detection
*
* This method performs NFC-A Technology Detection as defined in the spec
* given in the compliance mode
*
* \param[in] compMode : compliance mode to be performed
* \param[out] sensRes : location to store the SENS_RES, if received
*
* When compMode is set to ISO compliance a SLP_REQ (HLTA) is not sent
* after detection. When set to EMV a ALL_REQ (WUPA) is sent instead of
* a SENS_REQ (REQA)
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_NONE : No error, one or more device in the field
*****************************************************************************
*/
ReturnCode rfalNfcaPollerTechnologyDetection( rfalComplianceMode compMode, rfalNfcaSensRes *sensRes );
/*!
*****************************************************************************
* \brief NFC-A Poller Collision Resolution
*
* Collision resolution for one NFC-A Listener device/card (PICC) as
* defined in Activity 2.1 9.3.4
*
* This method executes anti collision loop and select the device with higher NFCID1
*
* When devLimit = 0 it is configured to perform collision detection only. Once a collision
* is detected the collision resolution is aborted immidiatly. If only one device is found
* with no collisions, it will properly resolved.
*
* \param[in] devLimit : device limit value (CON_DEVICES_LIMIT)
* \param[out] collPending : pointer to collision pending flag (INT_COLL_PEND)
* \param[out] selRes : location to store the last Select Response from listener device (PICC)
* \param[out] nfcId1 : location to store the NFCID1 (UID), ensure RFAL_NFCA_CASCADE_3_UID_LEN
* \param[out] nfcId1Len : pointer to length of NFCID1 (UID)
*
* \return ERR_WRONG_STATE : RFAL not initialized or mode not set
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_PROTO : Card length invalid
* \return ERR_IGNORE : conDevLimit is 0 and there is a collision
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalNfcaPollerSingleCollisionResolution( uint8_t devLimit, bool *collPending, rfalNfcaSelRes *selRes, uint8_t *nfcId1, uint8_t *nfcId1Len );
/*!
*****************************************************************************
* \brief NFC-A Poller Full Collision Resolution
*
* Performs a full Collision resolution as defined in Activity 2.1 9.3.4
*
* \param[in] compMode : compliance mode to be performed
* \param[in] devLimit : device limit value, and size nfcaDevList
* \param[out] nfcaDevList : NFC-A listener device info
* \param[out] devCnt : Devices found counter
*
* When compMode is set to ISO compliance it assumes that the device is
* not sleeping and therefore no ALL_REQ (WUPA) is sent at the beginning.
* When compMode is set to NFC compliance an additional ALL_REQ (WUPA) is sent
* at the beginning.
*
*
* When devLimit = 0 it is configured to perform collision detection only. Once a collision
* is detected the collision resolution is aborted immidiatly. If only one device is found
* with no collisions, it will properly resolved.
*
*
* \return ERR_WRONG_STATE : RFAL not initialized or mode not set
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalNfcaPollerFullCollisionResolution( rfalComplianceMode compMode, uint8_t devLimit, rfalNfcaListenDevice *nfcaDevList, uint8_t *devCnt );
/*!
*****************************************************************************
* \brief NFC-A Poller Full Collision Resolution with Sleep
*
* Performs a full Collision resolution similar to rfalNfcaPollerFullCollisionResolution
* but an additional SLP_REQ (HLTA) -> SENS_RES (REQA) is sent regardless if there
* was a collision.
* This proprietary behaviour ensures proper activation of certain devices that suffer
* from influence of Type B commands as foreseen in ISO14443-3 5.2.3 or were somehow
* not detected by the first round of collision resolution
*
* \param[in] devLimit : device limit value, and size nfcaDevList
* \param[out] nfcaDevList : NFC-A listener device info
* \param[out] devCnt : Devices found counter
*
*
* \return ERR_WRONG_STATE : RFAL not initialized or mode not set
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalNfcaPollerSleepFullCollisionResolution( uint8_t devLimit, rfalNfcaListenDevice *nfcaDevList, uint8_t *devCnt );
/*!
*****************************************************************************
* \brief NFC-A Poller Start Full Collision Resolution
*
* This method starts the full Collision resolution as defined
* in Activity 1.0 or 1.1 9.3.4
*
* \param[in] compMode : compliance mode to be performed
* \param[in] devLimit : device limit value, and size nfcaDevList
* \param[out] nfcaDevList : NFC-A listener device info
* \param[out] devCnt : Devices found counter
*
* When compMode is set to ISO compliance it assumes that the device is
* not sleeping and therefore no ALL_REQ (WUPA) is sent at the beginning.
* When compMode is set to NFC compliance an additional ALL_REQ (WUPA) is sent at
* the beginning.
*
*
* When devLimit = 0 it is configured to perform collision detection only. Once a collision
* is detected the collision resolution is aborted immidiatly. If only one device is found
* with no collisions, it will properly resolved.
*
*
* \return ERR_WRONG_STATE : RFAL not initialized or mode not set
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalNfcaPollerStartFullCollisionResolution( rfalComplianceMode compMode, uint8_t devLimit, rfalNfcaListenDevice *nfcaDevList, uint8_t *devCnt );
/*!
*****************************************************************************
* \brief NFC-A Get Full Collision Resolution Status
*
* Returns the Collision Resolution status
*
* \return ERR_BUSY : Operation is ongoing
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_TIMEOUT : Timeout error
* \return ERR_PAR : Parity error detected
* \return ERR_CRC : CRC error detected
* \return ERR_FRAMING : Framing error detected
* \return ERR_PROTO : Protocol error detected
* \return ERR_NONE : No error, activation successful
*****************************************************************************
*/
ReturnCode rfalNfcaPollerGetFullCollisionResolutionStatus( void );
/*!
*****************************************************************************
* \brief NFC-A Listener is SLP_REQ
*
* Checks if the given buffer contains valid NFC-A SLP_REQ (HALT)
*
* \param[in] buf: buffer containing data
* \param[in] bufLen: length of the data in buffer to be checked
*
* \return true if data in buf contains a SLP_REQ ; false otherwise
*****************************************************************************
*/
bool rfalNfcaListenerIsSleepReq( const uint8_t *buf, uint16_t bufLen );
#endif /* RFAL_NFCA_H */
/**
* @}
*
* @}
*
* @}
*/

View File

@@ -1,398 +1,398 @@
/******************************************************************************
* \attention
*
* <h2><center>&copy; COPYRIGHT 2020 STMicroelectronics</center></h2>
*
* Licensed under ST MYLIBERTY SOFTWARE LICENSE AGREEMENT (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* www.st.com/myliberty
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
* AND SPECIFICALLY DISCLAIMING THE IMPLIED WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/*
* PROJECT: ST25R391x firmware
* Revision:
* LANGUAGE: ISO C99
*/
/*! \file rfal_nfcb.h
*
* \author Gustavo Patricio
*
* \brief Implementation of NFC-B (ISO14443B) helpers
*
* It provides a NFC-B Poller (ISO14443B PCD) interface and
* also provides some NFC-B Listener (ISO14443B PICC) helpers
*
* The definitions and helpers methods provided by this module are only
* up to ISO14443-3 layer (excluding ATTRIB)
*
*
* \addtogroup RFAL
* @{
*
* \addtogroup RFAL-AL
* \brief RFAL Abstraction Layer
* @{
*
* \addtogroup NFC-B
* \brief RFAL NFC-B Module
* @{
*
*/
#ifndef RFAL_NFCB_H
#define RFAL_NFCB_H
/*
******************************************************************************
* INCLUDES
******************************************************************************
*/
#include "platform.h"
#include "st_errno.h"
#include "rfal_rf.h"
/*
******************************************************************************
* GLOBAL DEFINES
******************************************************************************
*/
#define RFAL_NFCB_FWTSENSB 7680U /*!< NFC-B FWT(SENSB) Digital 2.0 B.3 */
#define RFAL_NFCB_DFWT 49152U /*!< NFC-B dFWT Delta 2.0 7.9.1.3 & B.3 */
#define RFAL_NFCB_DTPOLL_10 rfalConvMsTo1fc(20) /*!< NFC-B Delta Tb Poll Digital 1.0 A.2 */
#define RFAL_NFCB_DTPOLL_20 rfalConvMsTo1fc(17) /*!< NFC-B Delta Tb Poll Digital 2.1 B.3 */
#define RFAL_NFCB_AFI 0x00U /*!< NFC-B default Application Family Digital 1.1 7.6.1.1 */
#define RFAL_NFCB_PARAM 0x00U /*!< NFC-B default SENSB_REQ PARAM */
#define RFAL_NFCB_CRC_LEN 2U /*!< NFC-B CRC length and CRC_B(AID) Digital 1.1 Table 28 */
#define RFAL_NFCB_NFCID0_LEN 4U /*!< Length of NFC-B NFCID0 */
#define RFAL_NFCB_CMD_LEN 1U /*!< Length of NFC-B Command */
#define RFAL_NFCB_SENSB_RES_LEN 12U /*!< Standard length of SENSB_RES without SFGI byte */
#define RFAL_NFCB_SENSB_RES_EXT_LEN 13U /*!< Extended length of SENSB_RES with SFGI byte */
#define RFAL_NFCB_SENSB_REQ_ADV_FEATURE 0x20U /*!< Bit mask for Advance Feature in SENSB_REQ */
#define RFAL_NFCB_SENSB_RES_FSCI_MASK 0x0FU /*!< Bit mask for FSCI value in SENSB_RES */
#define RFAL_NFCB_SENSB_RES_FSCI_SHIFT 4U /*!< Shift for FSCI value in SENSB_RES */
#define RFAL_NFCB_SENSB_RES_PROTO_RFU_MASK 0x08U /*!< Bit mask for Protocol Type RFU in SENSB_RES */
#define RFAL_NFCB_SENSB_RES_PROTO_TR2_MASK 0x03U /*!< Bit mask for Protocol Type TR2 in SENSB_RES */
#define RFAL_NFCB_SENSB_RES_PROTO_TR2_SHIFT 1U /*!< Shift for Protocol Type TR2 in SENSB_RES */
#define RFAL_NFCB_SENSB_RES_PROTO_ISO_MASK 0x01U /*!< Bit mask Protocol Type ISO14443 Compliant in SENSB_RES */
#define RFAL_NFCB_SENSB_RES_FWI_MASK 0x0FU /*!< Bit mask for FWI value in SENSB_RES */
#define RFAL_NFCB_SENSB_RES_FWI_SHIFT 4U /*!< Bit mask for FWI value in SENSB_RES */
#define RFAL_NFCB_SENSB_RES_ADC_MASK 0x0CU /*!< Bit mask for ADC value in SENSB_RES */
#define RFAL_NFCB_SENSB_RES_ADC_ADV_FEATURE_MASK 0x08U /*!< Bit mask for ADC.Advanced Proto Features in SENSB_RES */
#define RFAL_NFCB_SENSB_RES_ADC_PROPRIETARY_MASK 0x04U /*!< Bit mask for ADC.Proprietary Application in SENSB_RES */
#define RFAL_NFCB_SENSB_RES_FO_DID_MASK 0x01U /*!< Bit mask for DID in SENSB_RES */
#define RFAL_NFCB_SENSB_RES_FO_NAD_MASK 0x02U /*!< Bit mask for DID in SENSB_RES */
#define RFAL_NFCB_SENSB_RES_FO_MASK 0x03U /*!< Bit mask for FO value in SENSB_RES (NAD and DID) */
#define RFAL_NFCB_SENSB_RES_SFGI_MASK 0x0FU /*!< Bit mask for SFGI in SENSB_RES */
#define RFAL_NFCB_SENSB_RES_SFGI_SHIFT 4U /*!< Shift for SFGI in SENSB_RES */
/*
******************************************************************************
* GLOBAL MACROS
******************************************************************************
*/
/*! Get device's FSCI given its SENSB_RES Digital 1.1 7.6.2 */
#define rfalNfcbGetFSCI( sensbRes ) ((((rfalNfcbSensbRes*)(sensbRes))->protInfo.FsciProType >> RFAL_NFCB_SENSB_RES_FSCI_SHIFT) & RFAL_NFCB_SENSB_RES_FSCI_MASK )
/*! Checks if the given NFC-B device indicates ISO-DEP support */
#define rfalNfcbIsIsoDepSupported( dev ) ( (((rfalNfcbListenDevice*)(dev))->sensbRes.protInfo.FsciProType & RFAL_NFCB_SENSB_RES_PROTO_ISO_MASK) != 0U )
/*
******************************************************************************
* GLOBAL TYPES
******************************************************************************
*/
/*! SENSB_REQ and ALLB_REQ param Digital 1.1 7.6.1 */
typedef enum
{
RFAL_NFCB_SENS_CMD_ALLB_REQ = 0x08, /*!< ALLB_REQ (WUPB) */
RFAL_NFCB_SENS_CMD_SENSB_REQ = 0x00 /*!< SENSB_REQ (REQB) */
} rfalNfcbSensCmd;
/*! Number of Slots (NI) codes used for NFC-B anti collision Digital 1.1 Table 26 */
typedef enum
{
RFAL_NFCB_SLOT_NUM_1 = 0, /*!< N=0 : 1 slot */
RFAL_NFCB_SLOT_NUM_2 = 1, /*!< N=1 : 2 slots */
RFAL_NFCB_SLOT_NUM_4 = 2, /*!< N=2 : 4 slots */
RFAL_NFCB_SLOT_NUM_8 = 3, /*!< N=3 : 8 slots */
RFAL_NFCB_SLOT_NUM_16 = 4 /*!< N=4 : 16 slots */
}rfalNfcbSlots;
/*! SENSB_RES (ATQB) Application Data Format Digital 1.1 Table 28 */
typedef struct
{
uint8_t AFI; /*!< Application Family Identifier */
uint8_t CRC_B[RFAL_NFCB_CRC_LEN]; /*!< CRC_B of AID */
uint8_t numApps; /*!< Number of Applications */
} rfalNfcbSensbResAppData;
/*! SENSB_RES Protocol Info format Digital 1.1 Table 29 */
typedef struct
{
uint8_t BRC; /*!< Bit Rate Capability */
uint8_t FsciProType; /*!< Frame Size Card Integer [4b] | Protocol Type[4 bits] */
uint8_t FwiAdcFo; /*!< Frame Waiting Integer [4b] | Application Data Coding [2b] | Frame Options [2b] */
uint8_t SFGI; /*!< Optional: Start-Up Frame Guard Time Integer[4b] | RFU [4b] */
} rfalNfcbSensbResProtocolInfo;
/*! SENSB_RES format Digital 1.1 7.6.2 */
typedef struct
{
uint8_t cmd; /*!< SENSB_RES: 50h */
uint8_t nfcid0[RFAL_NFCB_NFCID0_LEN]; /*!< NFC Identifier (PUPI)*/
rfalNfcbSensbResAppData appData; /*!< Application Data */
rfalNfcbSensbResProtocolInfo protInfo; /*!< Protocol Information */
} rfalNfcbSensbRes;
/*! NFC-B listener device (PICC) struct */
typedef struct
{
uint8_t sensbResLen; /*!< SENSB_RES length */
rfalNfcbSensbRes sensbRes; /*!< SENSB_RES */
bool isSleep; /*!< Device sleeping flag */
}rfalNfcbListenDevice;
/*
******************************************************************************
* GLOBAL FUNCTION PROTOTYPES
******************************************************************************
*/
/*!
*****************************************************************************
* \brief Initialize NFC-B Poller mode
*
* This methods configures RFAL RF layer to perform as a
* NFC-B Poller/RW (ISO14443B PCD) including all default timings
*
* It sets NFC-B parameters (AFI, PARAM) to default values
*
* \return ERR_WRONG_STATE : RFAL not initialized or mode not set
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalNfcbPollerInitialize( void );
/*!
*****************************************************************************
* \brief Set NFC-B Poller parameters
*
* This methods configures RFAL RF layer to perform as a
* NFCA Poller/RW (ISO14443A PCD) including all default timings
*
* Additionally configures NFC-B specific parameters to be used on the
* following communications
*
* \param[in] AFI : Application Family Identifier to be used
* \param[in] PARAM : PARAM to be used, it announces whether Advanced
* Features or Extended SENSB_RES is supported
*
* \return ERR_WRONG_STATE : RFAL not initialized or mode not set
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalNfcbPollerInitializeWithParams( uint8_t AFI, uint8_t PARAM );
/*!
*****************************************************************************
* \brief NFC-B Poller Check Presence
*
* This method checks if a NFC-B Listen device (PICC) is present on the field
* by sending an ALLB_REQ (WUPB) or SENSB_REQ (REQB)
*
* \param[in] cmd : Indicate if to send an ALL_REQ or a SENS_REQ
* \param[in] slots : The number of slots to be announced
* \param[out] sensbRes : If received, the SENSB_RES
* \param[out] sensbResLen : If received, the SENSB_RES length
*
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_TIMEOUT : Timeout error, no listener device detected
* \return ERR_RF_COLLISION : Collision detected one or more device in the field
* \return ERR_PAR : Parity error detected, one or more device in the field
* \return ERR_CRC : CRC error detected, one or more device in the field
* \return ERR_FRAMING : Framing error detected, one or more device in the field
* \return ERR_PROTO : Protocol error detected, invalid SENSB_RES received
* \return ERR_NONE : No error, SENSB_RES received
*****************************************************************************
*/
ReturnCode rfalNfcbPollerCheckPresence( rfalNfcbSensCmd cmd, rfalNfcbSlots slots, rfalNfcbSensbRes *sensbRes, uint8_t *sensbResLen );
/*!
*****************************************************************************
* \brief NFC-B Poller Sleep
*
* This function is used to send the SLPB_REQ (HLTB) command to put the PICC with
* the given NFCID0 to state HALT so that they do not reply to further SENSB_REQ
* commands (only to ALLB_REQ)
*
* \param[in] nfcid0 : NFCID of the device to be put to Sleep
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalNfcbPollerSleep( const uint8_t* nfcid0 );
/*!
*****************************************************************************
* \brief NFC-B Poller Slot Marker
*
* This method selects a NFC-B Slot marker frame
*
* \param[in] slotCode : Slot Code [1-15]
* \param[out] sensbRes : If received, the SENSB_RES
* \param[out] sensbResLen : If received, the SENSB_RES length
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_TIMEOUT : Timeout error
* \return ERR_PAR : Parity error detected
* \return ERR_CRC : CRC error detected
* \return ERR_FRAMING : Framing error detected
* \return ERR_PROTO : Protocol error detected
* \return ERR_NONE : No error, SEL_RES received
*****************************************************************************
*/
ReturnCode rfalNfcbPollerSlotMarker( uint8_t slotCode, rfalNfcbSensbRes *sensbRes, uint8_t *sensbResLen );
/*!
*****************************************************************************
* \brief NFC-B Technology Detection
*
* This method performs NFC-B Technology Detection as defined in the spec
* given in the compliance mode
*
* \param[in] compMode : compliance mode to be performed
* \param[out] sensbRes : location to store the SENSB_RES, if received
* \param[out] sensbResLen : length of the SENSB_RES, if received
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_NONE : No error, one or more device in the field
*****************************************************************************
*/
ReturnCode rfalNfcbPollerTechnologyDetection( rfalComplianceMode compMode, rfalNfcbSensbRes *sensbRes, uint8_t *sensbResLen );
/*!
*****************************************************************************
* \brief NFC-B Poller Collision Resolution
*
* NFC-B Collision resolution Listener device/card (PICC) as
* defined in Activity 1.1 9.3.5
*
* This function is used to perform collision resolution for detection in case
* of multiple NFC Forum Devices with Technology B detected.
* Target with valid SENSB_RES will be stored in devInfo and nfcbDevCount incremented.
*
* \param[in] compMode : compliance mode to be performed
* \param[in] devLimit : device limit value, and size nfcbDevList
* \param[out] nfcbDevList : NFC-B listener device info
* \param[out] devCnt : devices found counter
*
* \return ERR_WRONG_STATE : RFAL not initialized or mode not set
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_PROTO : Protocol error detected
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalNfcbPollerCollisionResolution( rfalComplianceMode compMode, uint8_t devLimit, rfalNfcbListenDevice *nfcbDevList, uint8_t *devCnt );
/*!
*****************************************************************************
* \brief NFC-B Poller Collision Resolution Slotted
*
* NFC-B Collision resolution Listener device/card (PICC). The sequence can
* be configured to be according to NFC Forum Activity 1.1 9.3.5, ISO10373
* or EMVCo
*
* This function is used to perform collision resolution for detection in case
* of multiple NFC Forum Devices with Technology B are detected.
* Target with valid SENSB_RES will be stored in devInfo and nfcbDevCount incremented.
*
* This method provides the means to perform a collision resolution loop with specific
* initial and end number of slots. This allows to user to start the loop already with
* greater number of slots, and or limit the end number of slots. At the end a flag
* indicating whether there were collisions pending is returned.
*
* If RFAL_COMPLIANCE_MODE_ISO is used \a initSlots must be set to RFAL_NFCB_SLOT_NUM_1
*
*
* \param[in] compMode : compliance mode to be performed
* \param[in] devLimit : device limit value, and size nfcbDevList
* \param[in] initSlots : number of slots to open initially
* \param[in] endSlots : number of slots when to stop collision resolution
* \param[out] nfcbDevList : NFC-B listener device info
* \param[out] devCnt : devices found counter
* \param[out] colPending : flag indicating whether collision are still pending
*
* \return ERR_WRONG_STATE : RFAL not initialized or mode not set
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_PROTO : Protocol error detected
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalNfcbPollerSlottedCollisionResolution( rfalComplianceMode compMode, uint8_t devLimit, rfalNfcbSlots initSlots, rfalNfcbSlots endSlots, rfalNfcbListenDevice *nfcbDevList, uint8_t *devCnt, bool *colPending );
/*!
*****************************************************************************
* \brief NFC-B TR2 code to FDT
*
* Converts the TR2 code as defined in Digital 1.1 Table 33 Minimum
* TR2 Coding to Frame Delay Time (FDT) in 1/Fc
*
* \param[in] tr2Code : TR2 code as defined in Digital 1.1 Table 33
*
* \return FDT in 1/Fc
*****************************************************************************
*/
uint32_t rfalNfcbTR2ToFDT( uint8_t tr2Code );
#endif /* RFAL_NFCB_H */
/**
* @}
*
* @}
*
* @}
*/
/******************************************************************************
* \attention
*
* <h2><center>&copy; COPYRIGHT 2020 STMicroelectronics</center></h2>
*
* Licensed under ST MYLIBERTY SOFTWARE LICENSE AGREEMENT (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* www.st.com/myliberty
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
* AND SPECIFICALLY DISCLAIMING THE IMPLIED WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/*
* PROJECT: ST25R391x firmware
* Revision:
* LANGUAGE: ISO C99
*/
/*! \file rfal_nfcb.h
*
* \author Gustavo Patricio
*
* \brief Implementation of NFC-B (ISO14443B) helpers
*
* It provides a NFC-B Poller (ISO14443B PCD) interface and
* also provides some NFC-B Listener (ISO14443B PICC) helpers
*
* The definitions and helpers methods provided by this module are only
* up to ISO14443-3 layer (excluding ATTRIB)
*
*
* \addtogroup RFAL
* @{
*
* \addtogroup RFAL-AL
* \brief RFAL Abstraction Layer
* @{
*
* \addtogroup NFC-B
* \brief RFAL NFC-B Module
* @{
*
*/
#ifndef RFAL_NFCB_H
#define RFAL_NFCB_H
/*
******************************************************************************
* INCLUDES
******************************************************************************
*/
#include "platform.h"
#include "st_errno.h"
#include "rfal_rf.h"
/*
******************************************************************************
* GLOBAL DEFINES
******************************************************************************
*/
#define RFAL_NFCB_FWTSENSB 7680U /*!< NFC-B FWT(SENSB) Digital 2.0 B.3 */
#define RFAL_NFCB_DFWT 49152U /*!< NFC-B dFWT Delta 2.0 7.9.1.3 & B.3 */
#define RFAL_NFCB_DTPOLL_10 rfalConvMsTo1fc(20) /*!< NFC-B Delta Tb Poll Digital 1.0 A.2 */
#define RFAL_NFCB_DTPOLL_20 rfalConvMsTo1fc(17) /*!< NFC-B Delta Tb Poll Digital 2.1 B.3 */
#define RFAL_NFCB_AFI 0x00U /*!< NFC-B default Application Family Digital 1.1 7.6.1.1 */
#define RFAL_NFCB_PARAM 0x00U /*!< NFC-B default SENSB_REQ PARAM */
#define RFAL_NFCB_CRC_LEN 2U /*!< NFC-B CRC length and CRC_B(AID) Digital 1.1 Table 28 */
#define RFAL_NFCB_NFCID0_LEN 4U /*!< Length of NFC-B NFCID0 */
#define RFAL_NFCB_CMD_LEN 1U /*!< Length of NFC-B Command */
#define RFAL_NFCB_SENSB_RES_LEN 12U /*!< Standard length of SENSB_RES without SFGI byte */
#define RFAL_NFCB_SENSB_RES_EXT_LEN 13U /*!< Extended length of SENSB_RES with SFGI byte */
#define RFAL_NFCB_SENSB_REQ_ADV_FEATURE 0x20U /*!< Bit mask for Advance Feature in SENSB_REQ */
#define RFAL_NFCB_SENSB_RES_FSCI_MASK 0x0FU /*!< Bit mask for FSCI value in SENSB_RES */
#define RFAL_NFCB_SENSB_RES_FSCI_SHIFT 4U /*!< Shift for FSCI value in SENSB_RES */
#define RFAL_NFCB_SENSB_RES_PROTO_RFU_MASK 0x08U /*!< Bit mask for Protocol Type RFU in SENSB_RES */
#define RFAL_NFCB_SENSB_RES_PROTO_TR2_MASK 0x03U /*!< Bit mask for Protocol Type TR2 in SENSB_RES */
#define RFAL_NFCB_SENSB_RES_PROTO_TR2_SHIFT 1U /*!< Shift for Protocol Type TR2 in SENSB_RES */
#define RFAL_NFCB_SENSB_RES_PROTO_ISO_MASK 0x01U /*!< Bit mask Protocol Type ISO14443 Compliant in SENSB_RES */
#define RFAL_NFCB_SENSB_RES_FWI_MASK 0x0FU /*!< Bit mask for FWI value in SENSB_RES */
#define RFAL_NFCB_SENSB_RES_FWI_SHIFT 4U /*!< Bit mask for FWI value in SENSB_RES */
#define RFAL_NFCB_SENSB_RES_ADC_MASK 0x0CU /*!< Bit mask for ADC value in SENSB_RES */
#define RFAL_NFCB_SENSB_RES_ADC_ADV_FEATURE_MASK 0x08U /*!< Bit mask for ADC.Advanced Proto Features in SENSB_RES */
#define RFAL_NFCB_SENSB_RES_ADC_PROPRIETARY_MASK 0x04U /*!< Bit mask for ADC.Proprietary Application in SENSB_RES */
#define RFAL_NFCB_SENSB_RES_FO_DID_MASK 0x01U /*!< Bit mask for DID in SENSB_RES */
#define RFAL_NFCB_SENSB_RES_FO_NAD_MASK 0x02U /*!< Bit mask for DID in SENSB_RES */
#define RFAL_NFCB_SENSB_RES_FO_MASK 0x03U /*!< Bit mask for FO value in SENSB_RES (NAD and DID) */
#define RFAL_NFCB_SENSB_RES_SFGI_MASK 0x0FU /*!< Bit mask for SFGI in SENSB_RES */
#define RFAL_NFCB_SENSB_RES_SFGI_SHIFT 4U /*!< Shift for SFGI in SENSB_RES */
/*
******************************************************************************
* GLOBAL MACROS
******************************************************************************
*/
/*! Get device's FSCI given its SENSB_RES Digital 1.1 7.6.2 */
#define rfalNfcbGetFSCI( sensbRes ) ((((rfalNfcbSensbRes*)(sensbRes))->protInfo.FsciProType >> RFAL_NFCB_SENSB_RES_FSCI_SHIFT) & RFAL_NFCB_SENSB_RES_FSCI_MASK )
/*! Checks if the given NFC-B device indicates ISO-DEP support */
#define rfalNfcbIsIsoDepSupported( dev ) ( (((rfalNfcbListenDevice*)(dev))->sensbRes.protInfo.FsciProType & RFAL_NFCB_SENSB_RES_PROTO_ISO_MASK) != 0U )
/*
******************************************************************************
* GLOBAL TYPES
******************************************************************************
*/
/*! SENSB_REQ and ALLB_REQ param Digital 1.1 7.6.1 */
typedef enum
{
RFAL_NFCB_SENS_CMD_ALLB_REQ = 0x08, /*!< ALLB_REQ (WUPB) */
RFAL_NFCB_SENS_CMD_SENSB_REQ = 0x00 /*!< SENSB_REQ (REQB) */
} rfalNfcbSensCmd;
/*! Number of Slots (NI) codes used for NFC-B anti collision Digital 1.1 Table 26 */
typedef enum
{
RFAL_NFCB_SLOT_NUM_1 = 0, /*!< N=0 : 1 slot */
RFAL_NFCB_SLOT_NUM_2 = 1, /*!< N=1 : 2 slots */
RFAL_NFCB_SLOT_NUM_4 = 2, /*!< N=2 : 4 slots */
RFAL_NFCB_SLOT_NUM_8 = 3, /*!< N=3 : 8 slots */
RFAL_NFCB_SLOT_NUM_16 = 4 /*!< N=4 : 16 slots */
}rfalNfcbSlots;
/*! SENSB_RES (ATQB) Application Data Format Digital 1.1 Table 28 */
typedef struct
{
uint8_t AFI; /*!< Application Family Identifier */
uint8_t CRC_B[RFAL_NFCB_CRC_LEN]; /*!< CRC_B of AID */
uint8_t numApps; /*!< Number of Applications */
} rfalNfcbSensbResAppData;
/*! SENSB_RES Protocol Info format Digital 1.1 Table 29 */
typedef struct
{
uint8_t BRC; /*!< Bit Rate Capability */
uint8_t FsciProType; /*!< Frame Size Card Integer [4b] | Protocol Type[4 bits] */
uint8_t FwiAdcFo; /*!< Frame Waiting Integer [4b] | Application Data Coding [2b] | Frame Options [2b] */
uint8_t SFGI; /*!< Optional: Start-Up Frame Guard Time Integer[4b] | RFU [4b] */
} rfalNfcbSensbResProtocolInfo;
/*! SENSB_RES format Digital 1.1 7.6.2 */
typedef struct
{
uint8_t cmd; /*!< SENSB_RES: 50h */
uint8_t nfcid0[RFAL_NFCB_NFCID0_LEN]; /*!< NFC Identifier (PUPI)*/
rfalNfcbSensbResAppData appData; /*!< Application Data */
rfalNfcbSensbResProtocolInfo protInfo; /*!< Protocol Information */
} rfalNfcbSensbRes;
/*! NFC-B listener device (PICC) struct */
typedef struct
{
uint8_t sensbResLen; /*!< SENSB_RES length */
rfalNfcbSensbRes sensbRes; /*!< SENSB_RES */
bool isSleep; /*!< Device sleeping flag */
}rfalNfcbListenDevice;
/*
******************************************************************************
* GLOBAL FUNCTION PROTOTYPES
******************************************************************************
*/
/*!
*****************************************************************************
* \brief Initialize NFC-B Poller mode
*
* This methods configures RFAL RF layer to perform as a
* NFC-B Poller/RW (ISO14443B PCD) including all default timings
*
* It sets NFC-B parameters (AFI, PARAM) to default values
*
* \return ERR_WRONG_STATE : RFAL not initialized or mode not set
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalNfcbPollerInitialize( void );
/*!
*****************************************************************************
* \brief Set NFC-B Poller parameters
*
* This methods configures RFAL RF layer to perform as a
* NFCA Poller/RW (ISO14443A PCD) including all default timings
*
* Additionally configures NFC-B specific parameters to be used on the
* following communications
*
* \param[in] AFI : Application Family Identifier to be used
* \param[in] PARAM : PARAM to be used, it announces whether Advanced
* Features or Extended SENSB_RES is supported
*
* \return ERR_WRONG_STATE : RFAL not initialized or mode not set
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalNfcbPollerInitializeWithParams( uint8_t AFI, uint8_t PARAM );
/*!
*****************************************************************************
* \brief NFC-B Poller Check Presence
*
* This method checks if a NFC-B Listen device (PICC) is present on the field
* by sending an ALLB_REQ (WUPB) or SENSB_REQ (REQB)
*
* \param[in] cmd : Indicate if to send an ALL_REQ or a SENS_REQ
* \param[in] slots : The number of slots to be announced
* \param[out] sensbRes : If received, the SENSB_RES
* \param[out] sensbResLen : If received, the SENSB_RES length
*
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_TIMEOUT : Timeout error, no listener device detected
* \return ERR_RF_COLLISION : Collision detected one or more device in the field
* \return ERR_PAR : Parity error detected, one or more device in the field
* \return ERR_CRC : CRC error detected, one or more device in the field
* \return ERR_FRAMING : Framing error detected, one or more device in the field
* \return ERR_PROTO : Protocol error detected, invalid SENSB_RES received
* \return ERR_NONE : No error, SENSB_RES received
*****************************************************************************
*/
ReturnCode rfalNfcbPollerCheckPresence( rfalNfcbSensCmd cmd, rfalNfcbSlots slots, rfalNfcbSensbRes *sensbRes, uint8_t *sensbResLen );
/*!
*****************************************************************************
* \brief NFC-B Poller Sleep
*
* This function is used to send the SLPB_REQ (HLTB) command to put the PICC with
* the given NFCID0 to state HALT so that they do not reply to further SENSB_REQ
* commands (only to ALLB_REQ)
*
* \param[in] nfcid0 : NFCID of the device to be put to Sleep
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalNfcbPollerSleep( const uint8_t* nfcid0 );
/*!
*****************************************************************************
* \brief NFC-B Poller Slot Marker
*
* This method selects a NFC-B Slot marker frame
*
* \param[in] slotCode : Slot Code [1-15]
* \param[out] sensbRes : If received, the SENSB_RES
* \param[out] sensbResLen : If received, the SENSB_RES length
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_TIMEOUT : Timeout error
* \return ERR_PAR : Parity error detected
* \return ERR_CRC : CRC error detected
* \return ERR_FRAMING : Framing error detected
* \return ERR_PROTO : Protocol error detected
* \return ERR_NONE : No error, SEL_RES received
*****************************************************************************
*/
ReturnCode rfalNfcbPollerSlotMarker( uint8_t slotCode, rfalNfcbSensbRes *sensbRes, uint8_t *sensbResLen );
/*!
*****************************************************************************
* \brief NFC-B Technology Detection
*
* This method performs NFC-B Technology Detection as defined in the spec
* given in the compliance mode
*
* \param[in] compMode : compliance mode to be performed
* \param[out] sensbRes : location to store the SENSB_RES, if received
* \param[out] sensbResLen : length of the SENSB_RES, if received
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_NONE : No error, one or more device in the field
*****************************************************************************
*/
ReturnCode rfalNfcbPollerTechnologyDetection( rfalComplianceMode compMode, rfalNfcbSensbRes *sensbRes, uint8_t *sensbResLen );
/*!
*****************************************************************************
* \brief NFC-B Poller Collision Resolution
*
* NFC-B Collision resolution Listener device/card (PICC) as
* defined in Activity 1.1 9.3.5
*
* This function is used to perform collision resolution for detection in case
* of multiple NFC Forum Devices with Technology B detected.
* Target with valid SENSB_RES will be stored in devInfo and nfcbDevCount incremented.
*
* \param[in] compMode : compliance mode to be performed
* \param[in] devLimit : device limit value, and size nfcbDevList
* \param[out] nfcbDevList : NFC-B listener device info
* \param[out] devCnt : devices found counter
*
* \return ERR_WRONG_STATE : RFAL not initialized or mode not set
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_PROTO : Protocol error detected
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalNfcbPollerCollisionResolution( rfalComplianceMode compMode, uint8_t devLimit, rfalNfcbListenDevice *nfcbDevList, uint8_t *devCnt );
/*!
*****************************************************************************
* \brief NFC-B Poller Collision Resolution Slotted
*
* NFC-B Collision resolution Listener device/card (PICC). The sequence can
* be configured to be according to NFC Forum Activity 1.1 9.3.5, ISO10373
* or EMVCo
*
* This function is used to perform collision resolution for detection in case
* of multiple NFC Forum Devices with Technology B are detected.
* Target with valid SENSB_RES will be stored in devInfo and nfcbDevCount incremented.
*
* This method provides the means to perform a collision resolution loop with specific
* initial and end number of slots. This allows to user to start the loop already with
* greater number of slots, and or limit the end number of slots. At the end a flag
* indicating whether there were collisions pending is returned.
*
* If RFAL_COMPLIANCE_MODE_ISO is used \a initSlots must be set to RFAL_NFCB_SLOT_NUM_1
*
*
* \param[in] compMode : compliance mode to be performed
* \param[in] devLimit : device limit value, and size nfcbDevList
* \param[in] initSlots : number of slots to open initially
* \param[in] endSlots : number of slots when to stop collision resolution
* \param[out] nfcbDevList : NFC-B listener device info
* \param[out] devCnt : devices found counter
* \param[out] colPending : flag indicating whether collision are still pending
*
* \return ERR_WRONG_STATE : RFAL not initialized or mode not set
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_PROTO : Protocol error detected
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalNfcbPollerSlottedCollisionResolution( rfalComplianceMode compMode, uint8_t devLimit, rfalNfcbSlots initSlots, rfalNfcbSlots endSlots, rfalNfcbListenDevice *nfcbDevList, uint8_t *devCnt, bool *colPending );
/*!
*****************************************************************************
* \brief NFC-B TR2 code to FDT
*
* Converts the TR2 code as defined in Digital 1.1 Table 33 Minimum
* TR2 Coding to Frame Delay Time (FDT) in 1/Fc
*
* \param[in] tr2Code : TR2 code as defined in Digital 1.1 Table 33
*
* \return FDT in 1/Fc
*****************************************************************************
*/
uint32_t rfalNfcbTR2ToFDT( uint8_t tr2Code );
#endif /* RFAL_NFCB_H */
/**
* @}
*
* @}
*
* @}
*/

View File

@@ -1,370 +1,370 @@
/******************************************************************************
* \attention
*
* <h2><center>&copy; COPYRIGHT 2020 STMicroelectronics</center></h2>
*
* Licensed under ST MYLIBERTY SOFTWARE LICENSE AGREEMENT (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* www.st.com/myliberty
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
* AND SPECIFICALLY DISCLAIMING THE IMPLIED WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/*
* PROJECT: ST25R391x firmware
* Revision:
* LANGUAGE: ISO C99
*/
/*! \file rfal_nfcf.h
*
* \author Gustavo Patricio
*
* \brief Implementation of NFC-F Poller (FeliCa PCD) device
*
* The definitions and helpers methods provided by this module are
* aligned with NFC-F (FeliCa - JIS X6319-4)
*
*
* \addtogroup RFAL
* @{
*
* \addtogroup RFAL-AL
* \brief RFAL Abstraction Layer
* @{
*
* \addtogroup NFC-F
* \brief RFAL NFC-F Module
* @{
*
*/
#ifndef RFAL_NFCF_H
#define RFAL_NFCF_H
/*
******************************************************************************
* INCLUDES
******************************************************************************
*/
#include "platform.h"
#include "st_errno.h"
#include "rfal_rf.h"
/*
******************************************************************************
* GLOBAL DEFINES
******************************************************************************
*/
#define RFAL_NFCF_NFCID2_LEN 8U /*!< NFCID2 (FeliCa IDm) length */
#define RFAL_NFCF_SENSF_RES_LEN_MIN 16U /*!< SENSF_RES minimum length */
#define RFAL_NFCF_SENSF_RES_LEN_MAX 18U /*!< SENSF_RES maximum length */
#define RFAL_NFCF_SENSF_RES_PAD0_LEN 2U /*!< SENSF_RES PAD0 length */
#define RFAL_NFCF_SENSF_RES_PAD1_LEN 2U /*!< SENSF_RES PAD1 length */
#define RFAL_NFCF_SENSF_RES_RD_LEN 2U /*!< SENSF_RES Request Data length */
#define RFAL_NFCF_SENSF_RES_BYTE1 1U /*!< SENSF_RES first byte value */
#define RFAL_NFCF_SENSF_SC_LEN 2U /*!< Felica SENSF_REQ System Code length */
#define RFAL_NFCF_SENSF_PARAMS_SC1_POS 0U /*!< System Code byte1 position in the SENSF_REQ */
#define RFAL_NFCF_SENSF_PARAMS_SC2_POS 1U /*!< System Code byte2 position in the SENSF_REQ */
#define RFAL_NFCF_SENSF_PARAMS_RC_POS 2U /*!< Request Code position in the SENSF_REQ */
#define RFAL_NFCF_SENSF_PARAMS_TSN_POS 3U /*!< Time Slot Number position in the SENSF_REQ */
#define RFAL_NFCF_POLL_MAXCARDS 16U /*!< Max number slots/cards 16 */
#define RFAL_NFCF_CMD_POS 0U /*!< Command/Responce code length */
#define RFAL_NFCF_CMD_LEN 1U /*!< Command/Responce code length */
#define RFAL_NFCF_LENGTH_LEN 1U /*!< LEN field length */
#define RFAL_NFCF_HEADER_LEN (RFAL_NFCF_LENGTH_LEN + RFAL_NFCF_CMD_LEN) /*!< Header length*/
#define RFAL_NFCF_SENSF_NFCID2_BYTE1_POS 0U /*!< NFCID2 byte1 position */
#define RFAL_NFCF_SENSF_NFCID2_BYTE2_POS 1U /*!< NFCID2 byte2 position */
#define RFAL_NFCF_SENSF_NFCID2_PROT_TYPE_LEN 2U /*!< NFCID2 length for byte 1 and byte 2 indicating NFC-DEP or T3T support */
#define RFAL_NFCF_SENSF_NFCID2_BYTE1_NFCDEP 0x01U /*!< NFCID2 byte1 NFC-DEP support Digital 1.0 Table 44 */
#define RFAL_NFCF_SENSF_NFCID2_BYTE2_NFCDEP 0xFEU /*!< NFCID2 byte2 NFC-DEP support Digital 1.0 Table 44 */
#define RFAL_NFCF_SYSTEMCODE 0xFFFFU /*!< SENSF_RES Default System Code Digital 1.0 6.6.1.1 */
#define RFAL_NFCF_BLOCK_LEN 16U /*!< NFCF T3T Block size T3T 1.0 4.1 */
#define RFAL_NFCF_CHECKUPDATE_RES_ST1_POS 9U /*!< Check|Update Res Status Flag 1 position T3T 1.0 Table 8 */
#define RFAL_NFCF_CHECKUPDATE_RES_ST2_POS 10U /*!< Check|Update Res Status Flag 2 position T3T 1.0 Table 8 */
#define RFAL_NFCF_CHECKUPDATE_RES_NOB_POS 11U /*!< Check|Update Res Number of Blocks position T3T 1.0 Table 8 */
#define RFAL_NFCF_STATUS_FLAG_SUCCESS 0x00U /*!< Check response Number of Blocks position T3T 1.0 Table 11 */
#define RFAL_NFCF_STATUS_FLAG_ERROR 0xFFU /*!< Check response Number of Blocks position T3T 1.0 Table 11 */
#define RFAL_NFCF_BLOCKLISTELEM_LEN 0x80U /*!< Block List Element Length bit (2|3 bytes) T3T 1.0 5.6.1 */
#define RFAL_NFCF_SERVICECODE_RDONLY 0x000BU /*!< NDEF Service Code as Read-Only T3T 1.0 7.2.1 */
#define RFAL_NFCF_SERVICECODE_RDWR 0x0009U /*!< NDEF Service Code as Read and Write T3T 1.0 7.2.1 */
/*! NFC-F Felica command set JIS X6319-4 9.1 */
enum
{
RFAL_NFCF_CMD_POLLING = 0x00, /*!< SENSF_REQ (Felica Poll/REQC command to identify a card ) */
RFAL_NFCF_CMD_POLLING_RES = 0x01, /*!< SENSF_RES (Felica Poll/REQC command response ) */
RFAL_NFCF_CMD_REQUEST_SERVICE = 0x02, /*!< verify the existence of Area and Service */
RFAL_NFCF_CMD_REQUEST_RESPONSE = 0x04, /*!< verify the existence of a card */
RFAL_NFCF_CMD_READ_WITHOUT_ENCRYPTION = 0x06, /*!< read Block Data from a Service that requires no authentication */
RFAL_NFCF_CMD_READ_WITHOUT_ENCRYPTION_RES = 0x07, /*!< read Block Data response from a Service with no authentication */
RFAL_NFCF_CMD_WRITE_WITHOUT_ENCRYPTION = 0x08, /*!< write Block Data to a Service that requires no authentication */
RFAL_NFCF_CMD_WRITE_WITHOUT_ENCRYPTION_RES = 0x09, /*!< write Block Data response to a Service with no authentication */
RFAL_NFCF_CMD_REQUEST_SYSTEM_CODE = 0x0c, /*!< acquire the System Code registered to a card */
RFAL_NFCF_CMD_AUTHENTICATION1 = 0x10, /*!< authenticate a card */
RFAL_NFCF_CMD_AUTHENTICATION2 = 0x12, /*!< allow a card to authenticate a Reader/Writer */
RFAL_NFCF_CMD_READ = 0x14, /*!< read Block Data from a Service that requires authentication */
RFAL_NFCF_CMD_WRITE = 0x16, /*!< write Block Data to a Service that requires authentication */
};
/*
******************************************************************************
* GLOBAL MACROS
******************************************************************************
*/
/*! Checks if the given NFC-F device indicates NFC-DEP support */
#define rfalNfcfIsNfcDepSupported( dev ) ( (((rfalNfcfListenDevice*)(dev))->sensfRes.NFCID2[RFAL_NFCF_SENSF_NFCID2_BYTE1_POS] == RFAL_NFCF_SENSF_NFCID2_BYTE1_NFCDEP) && \
(((rfalNfcfListenDevice*)(dev))->sensfRes.NFCID2[RFAL_NFCF_SENSF_NFCID2_BYTE2_POS] == RFAL_NFCF_SENSF_NFCID2_BYTE2_NFCDEP) )
/*
******************************************************************************
* GLOBAL TYPES
******************************************************************************
*/
/*! NFC-F SENSF_RES format Digital 1.1 8.6.2 */
typedef struct
{
uint8_t CMD; /*!< Command Code: 01h */
uint8_t NFCID2[RFAL_NFCF_NFCID2_LEN]; /*!< NFCID2 */
uint8_t PAD0[RFAL_NFCF_SENSF_RES_PAD0_LEN]; /*!< PAD0 */
uint8_t PAD1[RFAL_NFCF_SENSF_RES_PAD1_LEN]; /*!< PAD1 */
uint8_t MRTIcheck; /*!< MRTIcheck */
uint8_t MRTIupdate; /*!< MRTIupdate */
uint8_t PAD2; /*!< PAD2 */
uint8_t RD[RFAL_NFCF_SENSF_RES_RD_LEN]; /*!< Request Data */
} rfalNfcfSensfRes;
/*! NFC-F poller device (PCD) struct */
typedef struct
{
uint8_t NFCID2[RFAL_NFCF_NFCID2_LEN]; /*!< NFCID2 */
} rfalNfcfPollDevice;
/*! NFC-F listener device (PICC) struct */
typedef struct
{
uint8_t sensfResLen; /*!< SENF_RES length */
rfalNfcfSensfRes sensfRes; /*!< SENF_RES */
} rfalNfcfListenDevice;
typedef uint16_t rfalNfcfServ; /*!< NFC-F Service Code */
/*! NFC-F Block List Element (2 or 3 bytes element) T3T 1.0 5.6.1 */
typedef struct
{
uint8_t conf; /*!< Access Mode | Serv Code List Order */
uint16_t blockNum; /*!< Block Number */
}rfalNfcfBlockListElem;
/*! Check Update Service list and Block list parameter */
typedef struct
{
uint8_t numServ; /*!< Number of Services */
rfalNfcfServ *servList; /*!< Service Code List */
uint8_t numBlock; /*!< Number of Blocks */
rfalNfcfBlockListElem *blockList; /*!< Block Number List */
}rfalNfcfServBlockListParam;
/*
******************************************************************************
* GLOBAL FUNCTION PROTOTYPES
******************************************************************************
*/
/*!
*****************************************************************************
* \brief Initialize NFC-F Poller mode
*
* This methods configures RFAL RF layer to perform as a
* NFC-F Poller/RW (FeliCa PCD) including all default timings
*
* \param[in] bitRate : NFC-F bitrate to be initialize (212 or 424)
*
* \return ERR_WRONG_STATE : RFAL not initialized or mode not set
* \return ERR_PARAM : Incorrect bitrate
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalNfcfPollerInitialize( rfalBitRate bitRate );
/*!
*****************************************************************************
* \brief NFC-F Poller Check Presence
*
* This function sends a Poll/SENSF command according to NFC Activity spec
* It detects if a NCF-F device is within range
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_CRC : CRC error detected
* \return ERR_FRAMING : Framing error detected
* \return ERR_PROTO : Protocol error detected
* \return ERR_TIMEOUT : Timeout error, no listener device detected
* \return ERR_NONE : No error and some NFC-F device was detected
*
*****************************************************************************
*/
ReturnCode rfalNfcfPollerCheckPresence( void );
/*!
*****************************************************************************
* \brief NFC-F Poller Poll
*
* This function sends to all PICCs in field the POLL command with the given
* number of slots.
*
* \param[in] slots : the number of slots to be performed
* \param[in] sysCode : as given in FeliCa poll command
* \param[in] reqCode : FeliCa communication parameters
* \param[out] cardList : Parameter of type rfalFeliCaPollRes which will hold the cards found
* \param[out] devCnt : actual number of cards found
* \param[out] collisions : number of collisions encountered
*
* \warning the list cardList has to be as big as the number of slots for the Poll
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_CRC : CRC error detected
* \return ERR_FRAMING : Framing error detected
* \return ERR_PROTO : Protocol error detected
* \return ERR_TIMEOUT : Timeout error, no listener device detected
* \return ERR_NONE : No error and some NFC-F device was detected
*
*****************************************************************************
*/
ReturnCode rfalNfcfPollerPoll( rfalFeliCaPollSlots slots, uint16_t sysCode, uint8_t reqCode, rfalFeliCaPollRes *cardList, uint8_t *devCnt, uint8_t *collisions );
/*!
*****************************************************************************
* \brief NFC-F Poller Full Collision Resolution
*
* Performs a full Collision resolution as defined in Activity 1.1 9.3.4
*
* \param[in] compMode : compliance mode to be performed
* \param[in] devLimit : device limit value, and size nfcaDevList
* \param[out] nfcfDevList : NFC-F listener devices list
* \param[out] devCnt : Devices found counter
*
* \return ERR_WRONG_STATE : RFAL not initialized or mode not set
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalNfcfPollerCollisionResolution( rfalComplianceMode compMode, uint8_t devLimit, rfalNfcfListenDevice *nfcfDevList, uint8_t *devCnt );
/*!
*****************************************************************************
* \brief NFC-F Poller Check/Read
*
* It computes a Check / Read command accoring to T3T 1.0 and JIS X6319-4 and
* sends it to PICC. If sucessfully, the rxBuf will contain the the number of
* blocks in the first byte followed by the blocks data.
*
* \param[in] nfcid2 : nfcid2 of the device
* \param[in] servBlock : parameter containing the list of Services and
* Blocks to be addressed by this command
* \param[out] rxBuf : buffer to place check/read data
* \param[in] rxBufLen : size of the rxBuf
* \param[out] rcvdLen : length of data placed in rxBuf
*
* \return ERR_WRONG_STATE : RFAL not initialized or mode not set
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_REQUEST : The request was executed with error
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalNfcfPollerCheck( const uint8_t* nfcid2, const rfalNfcfServBlockListParam *servBlock, uint8_t *rxBuf, uint16_t rxBufLen, uint16_t *rcvdLen );
/*!
*****************************************************************************
* \brief NFC-F Poller Update/Write
*
* It computes a Update / Write command accoring to T3T 1.0 and JIS X6319-4 and
* sends it to PICC.
*
* \param[in] nfcid2 : nfcid2 of the device
* \param[in] servBlock : parameter containing the list of Services and
* Blocks to be addressed by this command
* \param[in] txBuf : buffer where the request will be composed
* \param[in] txBufLen : size of txBuf
* \param[in] blockData : data to written on the given block(s)
* \param[out] rxBuf : buffer to place check/read data
* \param[in] rxBufLen : size of the rxBuf
*
* \return ERR_WRONG_STATE : RFAL not initialized or mode not set
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_REQUEST : The request was executed with error
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalNfcfPollerUpdate( const uint8_t* nfcid2, const rfalNfcfServBlockListParam *servBlock, uint8_t *txBuf, uint16_t txBufLen, const uint8_t *blockData, uint8_t *rxBuf, uint16_t rxBufLen);
/*!
*****************************************************************************
* \brief NFC-F Listener is T3T Request
*
* This method checks if the given data is a valid T3T command (Read or Write)
* and in case a valid request has been received it may output the request's NFCID2
*
* \param[in] buf : buffer holding Initiator's received command
* \param[in] bufLen : length of received command in bytes
* \param[out] nfcid2 : pointer to where the NFCID2 may be outputed,
* nfcid2 has NFCF_SENSF_NFCID2_LEN as length
* Pass NULL if output parameter not desired
*
* \return true : Valid T3T command (Read or Write) received
* \return false : Invalid protocol request
*
*****************************************************************************
*/
bool rfalNfcfListenerIsT3TReq( const uint8_t* buf, uint16_t bufLen, uint8_t* nfcid2 );
#endif /* RFAL_NFCF_H */
/**
* @}
*
* @}
*
* @}
*/
/******************************************************************************
* \attention
*
* <h2><center>&copy; COPYRIGHT 2020 STMicroelectronics</center></h2>
*
* Licensed under ST MYLIBERTY SOFTWARE LICENSE AGREEMENT (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* www.st.com/myliberty
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
* AND SPECIFICALLY DISCLAIMING THE IMPLIED WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/*
* PROJECT: ST25R391x firmware
* Revision:
* LANGUAGE: ISO C99
*/
/*! \file rfal_nfcf.h
*
* \author Gustavo Patricio
*
* \brief Implementation of NFC-F Poller (FeliCa PCD) device
*
* The definitions and helpers methods provided by this module are
* aligned with NFC-F (FeliCa - JIS X6319-4)
*
*
* \addtogroup RFAL
* @{
*
* \addtogroup RFAL-AL
* \brief RFAL Abstraction Layer
* @{
*
* \addtogroup NFC-F
* \brief RFAL NFC-F Module
* @{
*
*/
#ifndef RFAL_NFCF_H
#define RFAL_NFCF_H
/*
******************************************************************************
* INCLUDES
******************************************************************************
*/
#include "platform.h"
#include "st_errno.h"
#include "rfal_rf.h"
/*
******************************************************************************
* GLOBAL DEFINES
******************************************************************************
*/
#define RFAL_NFCF_NFCID2_LEN 8U /*!< NFCID2 (FeliCa IDm) length */
#define RFAL_NFCF_SENSF_RES_LEN_MIN 16U /*!< SENSF_RES minimum length */
#define RFAL_NFCF_SENSF_RES_LEN_MAX 18U /*!< SENSF_RES maximum length */
#define RFAL_NFCF_SENSF_RES_PAD0_LEN 2U /*!< SENSF_RES PAD0 length */
#define RFAL_NFCF_SENSF_RES_PAD1_LEN 2U /*!< SENSF_RES PAD1 length */
#define RFAL_NFCF_SENSF_RES_RD_LEN 2U /*!< SENSF_RES Request Data length */
#define RFAL_NFCF_SENSF_RES_BYTE1 1U /*!< SENSF_RES first byte value */
#define RFAL_NFCF_SENSF_SC_LEN 2U /*!< Felica SENSF_REQ System Code length */
#define RFAL_NFCF_SENSF_PARAMS_SC1_POS 0U /*!< System Code byte1 position in the SENSF_REQ */
#define RFAL_NFCF_SENSF_PARAMS_SC2_POS 1U /*!< System Code byte2 position in the SENSF_REQ */
#define RFAL_NFCF_SENSF_PARAMS_RC_POS 2U /*!< Request Code position in the SENSF_REQ */
#define RFAL_NFCF_SENSF_PARAMS_TSN_POS 3U /*!< Time Slot Number position in the SENSF_REQ */
#define RFAL_NFCF_POLL_MAXCARDS 16U /*!< Max number slots/cards 16 */
#define RFAL_NFCF_CMD_POS 0U /*!< Command/Responce code length */
#define RFAL_NFCF_CMD_LEN 1U /*!< Command/Responce code length */
#define RFAL_NFCF_LENGTH_LEN 1U /*!< LEN field length */
#define RFAL_NFCF_HEADER_LEN (RFAL_NFCF_LENGTH_LEN + RFAL_NFCF_CMD_LEN) /*!< Header length*/
#define RFAL_NFCF_SENSF_NFCID2_BYTE1_POS 0U /*!< NFCID2 byte1 position */
#define RFAL_NFCF_SENSF_NFCID2_BYTE2_POS 1U /*!< NFCID2 byte2 position */
#define RFAL_NFCF_SENSF_NFCID2_PROT_TYPE_LEN 2U /*!< NFCID2 length for byte 1 and byte 2 indicating NFC-DEP or T3T support */
#define RFAL_NFCF_SENSF_NFCID2_BYTE1_NFCDEP 0x01U /*!< NFCID2 byte1 NFC-DEP support Digital 1.0 Table 44 */
#define RFAL_NFCF_SENSF_NFCID2_BYTE2_NFCDEP 0xFEU /*!< NFCID2 byte2 NFC-DEP support Digital 1.0 Table 44 */
#define RFAL_NFCF_SYSTEMCODE 0xFFFFU /*!< SENSF_RES Default System Code Digital 1.0 6.6.1.1 */
#define RFAL_NFCF_BLOCK_LEN 16U /*!< NFCF T3T Block size T3T 1.0 4.1 */
#define RFAL_NFCF_CHECKUPDATE_RES_ST1_POS 9U /*!< Check|Update Res Status Flag 1 position T3T 1.0 Table 8 */
#define RFAL_NFCF_CHECKUPDATE_RES_ST2_POS 10U /*!< Check|Update Res Status Flag 2 position T3T 1.0 Table 8 */
#define RFAL_NFCF_CHECKUPDATE_RES_NOB_POS 11U /*!< Check|Update Res Number of Blocks position T3T 1.0 Table 8 */
#define RFAL_NFCF_STATUS_FLAG_SUCCESS 0x00U /*!< Check response Number of Blocks position T3T 1.0 Table 11 */
#define RFAL_NFCF_STATUS_FLAG_ERROR 0xFFU /*!< Check response Number of Blocks position T3T 1.0 Table 11 */
#define RFAL_NFCF_BLOCKLISTELEM_LEN 0x80U /*!< Block List Element Length bit (2|3 bytes) T3T 1.0 5.6.1 */
#define RFAL_NFCF_SERVICECODE_RDONLY 0x000BU /*!< NDEF Service Code as Read-Only T3T 1.0 7.2.1 */
#define RFAL_NFCF_SERVICECODE_RDWR 0x0009U /*!< NDEF Service Code as Read and Write T3T 1.0 7.2.1 */
/*! NFC-F Felica command set JIS X6319-4 9.1 */
enum
{
RFAL_NFCF_CMD_POLLING = 0x00, /*!< SENSF_REQ (Felica Poll/REQC command to identify a card ) */
RFAL_NFCF_CMD_POLLING_RES = 0x01, /*!< SENSF_RES (Felica Poll/REQC command response ) */
RFAL_NFCF_CMD_REQUEST_SERVICE = 0x02, /*!< verify the existence of Area and Service */
RFAL_NFCF_CMD_REQUEST_RESPONSE = 0x04, /*!< verify the existence of a card */
RFAL_NFCF_CMD_READ_WITHOUT_ENCRYPTION = 0x06, /*!< read Block Data from a Service that requires no authentication */
RFAL_NFCF_CMD_READ_WITHOUT_ENCRYPTION_RES = 0x07, /*!< read Block Data response from a Service with no authentication */
RFAL_NFCF_CMD_WRITE_WITHOUT_ENCRYPTION = 0x08, /*!< write Block Data to a Service that requires no authentication */
RFAL_NFCF_CMD_WRITE_WITHOUT_ENCRYPTION_RES = 0x09, /*!< write Block Data response to a Service with no authentication */
RFAL_NFCF_CMD_REQUEST_SYSTEM_CODE = 0x0c, /*!< acquire the System Code registered to a card */
RFAL_NFCF_CMD_AUTHENTICATION1 = 0x10, /*!< authenticate a card */
RFAL_NFCF_CMD_AUTHENTICATION2 = 0x12, /*!< allow a card to authenticate a Reader/Writer */
RFAL_NFCF_CMD_READ = 0x14, /*!< read Block Data from a Service that requires authentication */
RFAL_NFCF_CMD_WRITE = 0x16, /*!< write Block Data to a Service that requires authentication */
};
/*
******************************************************************************
* GLOBAL MACROS
******************************************************************************
*/
/*! Checks if the given NFC-F device indicates NFC-DEP support */
#define rfalNfcfIsNfcDepSupported( dev ) ( (((rfalNfcfListenDevice*)(dev))->sensfRes.NFCID2[RFAL_NFCF_SENSF_NFCID2_BYTE1_POS] == RFAL_NFCF_SENSF_NFCID2_BYTE1_NFCDEP) && \
(((rfalNfcfListenDevice*)(dev))->sensfRes.NFCID2[RFAL_NFCF_SENSF_NFCID2_BYTE2_POS] == RFAL_NFCF_SENSF_NFCID2_BYTE2_NFCDEP) )
/*
******************************************************************************
* GLOBAL TYPES
******************************************************************************
*/
/*! NFC-F SENSF_RES format Digital 1.1 8.6.2 */
typedef struct
{
uint8_t CMD; /*!< Command Code: 01h */
uint8_t NFCID2[RFAL_NFCF_NFCID2_LEN]; /*!< NFCID2 */
uint8_t PAD0[RFAL_NFCF_SENSF_RES_PAD0_LEN]; /*!< PAD0 */
uint8_t PAD1[RFAL_NFCF_SENSF_RES_PAD1_LEN]; /*!< PAD1 */
uint8_t MRTIcheck; /*!< MRTIcheck */
uint8_t MRTIupdate; /*!< MRTIupdate */
uint8_t PAD2; /*!< PAD2 */
uint8_t RD[RFAL_NFCF_SENSF_RES_RD_LEN]; /*!< Request Data */
} rfalNfcfSensfRes;
/*! NFC-F poller device (PCD) struct */
typedef struct
{
uint8_t NFCID2[RFAL_NFCF_NFCID2_LEN]; /*!< NFCID2 */
} rfalNfcfPollDevice;
/*! NFC-F listener device (PICC) struct */
typedef struct
{
uint8_t sensfResLen; /*!< SENF_RES length */
rfalNfcfSensfRes sensfRes; /*!< SENF_RES */
} rfalNfcfListenDevice;
typedef uint16_t rfalNfcfServ; /*!< NFC-F Service Code */
/*! NFC-F Block List Element (2 or 3 bytes element) T3T 1.0 5.6.1 */
typedef struct
{
uint8_t conf; /*!< Access Mode | Serv Code List Order */
uint16_t blockNum; /*!< Block Number */
}rfalNfcfBlockListElem;
/*! Check Update Service list and Block list parameter */
typedef struct
{
uint8_t numServ; /*!< Number of Services */
rfalNfcfServ *servList; /*!< Service Code List */
uint8_t numBlock; /*!< Number of Blocks */
rfalNfcfBlockListElem *blockList; /*!< Block Number List */
}rfalNfcfServBlockListParam;
/*
******************************************************************************
* GLOBAL FUNCTION PROTOTYPES
******************************************************************************
*/
/*!
*****************************************************************************
* \brief Initialize NFC-F Poller mode
*
* This methods configures RFAL RF layer to perform as a
* NFC-F Poller/RW (FeliCa PCD) including all default timings
*
* \param[in] bitRate : NFC-F bitrate to be initialize (212 or 424)
*
* \return ERR_WRONG_STATE : RFAL not initialized or mode not set
* \return ERR_PARAM : Incorrect bitrate
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalNfcfPollerInitialize( rfalBitRate bitRate );
/*!
*****************************************************************************
* \brief NFC-F Poller Check Presence
*
* This function sends a Poll/SENSF command according to NFC Activity spec
* It detects if a NCF-F device is within range
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_CRC : CRC error detected
* \return ERR_FRAMING : Framing error detected
* \return ERR_PROTO : Protocol error detected
* \return ERR_TIMEOUT : Timeout error, no listener device detected
* \return ERR_NONE : No error and some NFC-F device was detected
*
*****************************************************************************
*/
ReturnCode rfalNfcfPollerCheckPresence( void );
/*!
*****************************************************************************
* \brief NFC-F Poller Poll
*
* This function sends to all PICCs in field the POLL command with the given
* number of slots.
*
* \param[in] slots : the number of slots to be performed
* \param[in] sysCode : as given in FeliCa poll command
* \param[in] reqCode : FeliCa communication parameters
* \param[out] cardList : Parameter of type rfalFeliCaPollRes which will hold the cards found
* \param[out] devCnt : actual number of cards found
* \param[out] collisions : number of collisions encountered
*
* \warning the list cardList has to be as big as the number of slots for the Poll
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_CRC : CRC error detected
* \return ERR_FRAMING : Framing error detected
* \return ERR_PROTO : Protocol error detected
* \return ERR_TIMEOUT : Timeout error, no listener device detected
* \return ERR_NONE : No error and some NFC-F device was detected
*
*****************************************************************************
*/
ReturnCode rfalNfcfPollerPoll( rfalFeliCaPollSlots slots, uint16_t sysCode, uint8_t reqCode, rfalFeliCaPollRes *cardList, uint8_t *devCnt, uint8_t *collisions );
/*!
*****************************************************************************
* \brief NFC-F Poller Full Collision Resolution
*
* Performs a full Collision resolution as defined in Activity 1.1 9.3.4
*
* \param[in] compMode : compliance mode to be performed
* \param[in] devLimit : device limit value, and size nfcaDevList
* \param[out] nfcfDevList : NFC-F listener devices list
* \param[out] devCnt : Devices found counter
*
* \return ERR_WRONG_STATE : RFAL not initialized or mode not set
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalNfcfPollerCollisionResolution( rfalComplianceMode compMode, uint8_t devLimit, rfalNfcfListenDevice *nfcfDevList, uint8_t *devCnt );
/*!
*****************************************************************************
* \brief NFC-F Poller Check/Read
*
* It computes a Check / Read command accoring to T3T 1.0 and JIS X6319-4 and
* sends it to PICC. If sucessfully, the rxBuf will contain the the number of
* blocks in the first byte followed by the blocks data.
*
* \param[in] nfcid2 : nfcid2 of the device
* \param[in] servBlock : parameter containing the list of Services and
* Blocks to be addressed by this command
* \param[out] rxBuf : buffer to place check/read data
* \param[in] rxBufLen : size of the rxBuf
* \param[out] rcvdLen : length of data placed in rxBuf
*
* \return ERR_WRONG_STATE : RFAL not initialized or mode not set
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_REQUEST : The request was executed with error
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalNfcfPollerCheck( const uint8_t* nfcid2, const rfalNfcfServBlockListParam *servBlock, uint8_t *rxBuf, uint16_t rxBufLen, uint16_t *rcvdLen );
/*!
*****************************************************************************
* \brief NFC-F Poller Update/Write
*
* It computes a Update / Write command accoring to T3T 1.0 and JIS X6319-4 and
* sends it to PICC.
*
* \param[in] nfcid2 : nfcid2 of the device
* \param[in] servBlock : parameter containing the list of Services and
* Blocks to be addressed by this command
* \param[in] txBuf : buffer where the request will be composed
* \param[in] txBufLen : size of txBuf
* \param[in] blockData : data to written on the given block(s)
* \param[out] rxBuf : buffer to place check/read data
* \param[in] rxBufLen : size of the rxBuf
*
* \return ERR_WRONG_STATE : RFAL not initialized or mode not set
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_REQUEST : The request was executed with error
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalNfcfPollerUpdate( const uint8_t* nfcid2, const rfalNfcfServBlockListParam *servBlock, uint8_t *txBuf, uint16_t txBufLen, const uint8_t *blockData, uint8_t *rxBuf, uint16_t rxBufLen);
/*!
*****************************************************************************
* \brief NFC-F Listener is T3T Request
*
* This method checks if the given data is a valid T3T command (Read or Write)
* and in case a valid request has been received it may output the request's NFCID2
*
* \param[in] buf : buffer holding Initiator's received command
* \param[in] bufLen : length of received command in bytes
* \param[out] nfcid2 : pointer to where the NFCID2 may be outputed,
* nfcid2 has NFCF_SENSF_NFCID2_LEN as length
* Pass NULL if output parameter not desired
*
* \return true : Valid T3T command (Read or Write) received
* \return false : Invalid protocol request
*
*****************************************************************************
*/
bool rfalNfcfListenerIsT3TReq( const uint8_t* buf, uint16_t bufLen, uint8_t* nfcid2 );
#endif /* RFAL_NFCF_H */
/**
* @}
*
* @}
*
* @}
*/

File diff suppressed because it is too large Load Diff

View File

@@ -1,355 +1,355 @@
/******************************************************************************
* \attention
*
* <h2><center>&copy; COPYRIGHT 2020 STMicroelectronics</center></h2>
*
* Licensed under ST MYLIBERTY SOFTWARE LICENSE AGREEMENT (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* www.st.com/myliberty
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
* AND SPECIFICALLY DISCLAIMING THE IMPLIED WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/*
* PROJECT: ST25R391x firmware
* Revision:
* LANGUAGE: ISO C99
*/
/*! \file rfal_st25tb.h
*
* \author Gustavo Patricio
*
* \brief Implementation of ST25TB interface
*
*
* \addtogroup RFAL
* @{
*
* \addtogroup RFAL-AL
* \brief RFAL Abstraction Layer
* @{
*
* \addtogroup ST25TB
* \brief RFAL ST25TB Module
* @{
*
*/
#ifndef RFAL_ST25TB_H
#define RFAL_ST25TB_H
/*
******************************************************************************
* INCLUDES
******************************************************************************
*/
#include "platform.h"
#include "st_errno.h"
#include "rfal_rf.h"
#include "rfal_nfcb.h"
/*
******************************************************************************
* GLOBAL DEFINES
******************************************************************************
*/
#define RFAL_ST25TB_CHIP_ID_LEN 1U /*!< ST25TB chip ID length */
#define RFAL_ST25TB_CRC_LEN 2U /*!< ST25TB CRC length */
#define RFAL_ST25TB_UID_LEN 8U /*!< ST25TB Unique ID length */
#define RFAL_ST25TB_BLOCK_LEN 4U /*!< ST25TB Data Block length */
/*
******************************************************************************
* GLOBAL MACROS
******************************************************************************
*/
/*
******************************************************************************
* GLOBAL TYPES
******************************************************************************
*/
typedef uint8_t rfalSt25tbUID[RFAL_ST25TB_UID_LEN]; /*!< ST25TB UID type */
typedef uint8_t rfalSt25tbBlock[RFAL_ST25TB_BLOCK_LEN]; /*!< ST25TB Block type */
/*! ST25TB listener device (PICC) struct */
typedef struct
{
uint8_t chipID; /*!< Device's session Chip ID */
rfalSt25tbUID UID; /*!< Device's UID */
bool isDeselected; /*!< Device deselect flag */
}rfalSt25tbListenDevice;
/*
******************************************************************************
* GLOBAL FUNCTION PROTOTYPES
******************************************************************************
*/
/*!
*****************************************************************************
* \brief Initialize ST25TB Poller mode
*
* This methods configures RFAL RF layer to perform as a
* ST25TB Poller/RW including all default timings
*
* \return ERR_WRONG_STATE : RFAL not initialized or mode not set
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalSt25tbPollerInitialize( void );
/*!
*****************************************************************************
* \brief ST25TB Poller Check Presence
*
* This method checks if a ST25TB Listen device (PICC) is present on the field
* by sending an Initiate command
*
* \param[out] chipId : if successfully retrieved, the device's chip ID
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_TIMEOUT : Timeout error, no listener device detected
* \return ERR_RF_COLLISION : Collision detected one or more device in the field
* \return ERR_PROTO : Protocol error detected
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalSt25tbPollerCheckPresence( uint8_t *chipId );
/*!
*****************************************************************************
* \brief ST25TB Poller Collision Resolution
*
* This method performs ST25TB Collision resolution, selects the each device,
* retrieves its UID and then deselects.
* In case only one device is identified the ST25TB device is left in select
* state.
*
* \param[in] devLimit : device limit value, and size st25tbDevList
* \param[out] st25tbDevList : ST35TB listener device info
* \param[out] devCnt : Devices found counter
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_TIMEOUT : Timeout error, no listener device detected
* \return ERR_RF_COLLISION : Collision detected one or more device in the field
* \return ERR_PROTO : Protocol error detected
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalSt25tbPollerCollisionResolution( uint8_t devLimit, rfalSt25tbListenDevice *st25tbDevList, uint8_t *devCnt );
/*!
*****************************************************************************
* \brief ST25TB Poller Initiate
*
* This method sends an Initiate command
*
* If a single device responds the chip ID will be retrieved
*
* \param[out] chipId : chip ID of the device
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_TIMEOUT : Timeout error, no listener device detected
* \return ERR_PROTO : Protocol error detected
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalSt25tbPollerInitiate( uint8_t *chipId );
/*!
*****************************************************************************
* \brief ST25TB Poller Pcall
*
* This method sends a Pcall command
* If successful the device's chip ID will be retrieved
*
* \param[out] chipId : Chip ID of the device
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_TIMEOUT : Timeout error, no listener device detected
* \return ERR_PROTO : Protocol error detected
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalSt25tbPollerPcall( uint8_t *chipId );
/*!
*****************************************************************************
* \brief ST25TB Poller Slot Marker
*
* This method sends a Slot Marker
*
* If a single device responds the chip ID will be retrieved
*
* \param[in] slotNum : Slot Number
* \param[out] chipIdRes : Chip ID of the device
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_TIMEOUT : Timeout error, no listener device detected
* \return ERR_PROTO : Protocol error detected
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalSt25tbPollerSlotMarker( uint8_t slotNum, uint8_t *chipIdRes );
/*!
*****************************************************************************
* \brief ST25TB Poller Select
*
* This method sends a ST25TB Select command with the given chip ID.
*
* If the device is already in Selected state and receives an incorrect chip
* ID, it goes into Deselected state
*
* \param[in] chipId : chip ID of the device to be selected
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_TIMEOUT : Timeout error, no listener device detected
* \return ERR_PROTO : Protocol error detected
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalSt25tbPollerSelect( uint8_t chipId );
/*!
*****************************************************************************
* \brief ST25TB Get UID
*
* This method sends a Get_UID command
*
* If a single device responds the chip UID will be retrieved
*
* \param[out] UID : UID of the found device
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_TIMEOUT : Timeout error, no listener device detected
* \return ERR_PROTO : Protocol error detected
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalSt25tbPollerGetUID( rfalSt25tbUID *UID );
/*!
*****************************************************************************
* \brief ST25TB Poller Read Block
*
* This method reads a block of the ST25TB
*
* \param[in] blockAddress : address of the block to be read
* \param[out] blockData : location to place the data read from block
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_TIMEOUT : Timeout error, no listener device detected
* \return ERR_PROTO : Protocol error detected
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalSt25tbPollerReadBlock( uint8_t blockAddress, rfalSt25tbBlock *blockData );
/*!
*****************************************************************************
* \brief ST25TB Poller Write Block
*
* This method writes a block of the ST25TB
*
* \param[in] blockAddress : address of the block to be written
* \param[in] blockData : data to be written on the block
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_TIMEOUT : Timeout error, no listener device detected
* \return ERR_PROTO : Protocol error detected
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalSt25tbPollerWriteBlock( uint8_t blockAddress, const rfalSt25tbBlock *blockData );
/*!
*****************************************************************************
* \brief ST25TB Poller Completion
*
* This method sends a completion command to the ST25TB. After the
* completion the card no longer will reply to any command.
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_TIMEOUT : Timeout error, no listener device detected
* \return ERR_PROTO : Protocol error detected, invalid SENSB_RES received
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalSt25tbPollerCompletion( void );
/*!
*****************************************************************************
* \brief ST25TB Poller Reset to Inventory
*
* This method sends a Reset to Inventory command to the ST25TB.
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_TIMEOUT : Timeout error, no listener device detected
* \return ERR_PROTO : Protocol error detected, invalid SENSB_RES received
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalSt25tbPollerResetToInventory( void );
#endif /* RFAL_ST25TB_H */
/**
* @}
*
* @}
*
* @}
*/
/******************************************************************************
* \attention
*
* <h2><center>&copy; COPYRIGHT 2020 STMicroelectronics</center></h2>
*
* Licensed under ST MYLIBERTY SOFTWARE LICENSE AGREEMENT (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* www.st.com/myliberty
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
* AND SPECIFICALLY DISCLAIMING THE IMPLIED WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/*
* PROJECT: ST25R391x firmware
* Revision:
* LANGUAGE: ISO C99
*/
/*! \file rfal_st25tb.h
*
* \author Gustavo Patricio
*
* \brief Implementation of ST25TB interface
*
*
* \addtogroup RFAL
* @{
*
* \addtogroup RFAL-AL
* \brief RFAL Abstraction Layer
* @{
*
* \addtogroup ST25TB
* \brief RFAL ST25TB Module
* @{
*
*/
#ifndef RFAL_ST25TB_H
#define RFAL_ST25TB_H
/*
******************************************************************************
* INCLUDES
******************************************************************************
*/
#include "platform.h"
#include "st_errno.h"
#include "rfal_rf.h"
#include "rfal_nfcb.h"
/*
******************************************************************************
* GLOBAL DEFINES
******************************************************************************
*/
#define RFAL_ST25TB_CHIP_ID_LEN 1U /*!< ST25TB chip ID length */
#define RFAL_ST25TB_CRC_LEN 2U /*!< ST25TB CRC length */
#define RFAL_ST25TB_UID_LEN 8U /*!< ST25TB Unique ID length */
#define RFAL_ST25TB_BLOCK_LEN 4U /*!< ST25TB Data Block length */
/*
******************************************************************************
* GLOBAL MACROS
******************************************************************************
*/
/*
******************************************************************************
* GLOBAL TYPES
******************************************************************************
*/
typedef uint8_t rfalSt25tbUID[RFAL_ST25TB_UID_LEN]; /*!< ST25TB UID type */
typedef uint8_t rfalSt25tbBlock[RFAL_ST25TB_BLOCK_LEN]; /*!< ST25TB Block type */
/*! ST25TB listener device (PICC) struct */
typedef struct
{
uint8_t chipID; /*!< Device's session Chip ID */
rfalSt25tbUID UID; /*!< Device's UID */
bool isDeselected; /*!< Device deselect flag */
}rfalSt25tbListenDevice;
/*
******************************************************************************
* GLOBAL FUNCTION PROTOTYPES
******************************************************************************
*/
/*!
*****************************************************************************
* \brief Initialize ST25TB Poller mode
*
* This methods configures RFAL RF layer to perform as a
* ST25TB Poller/RW including all default timings
*
* \return ERR_WRONG_STATE : RFAL not initialized or mode not set
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalSt25tbPollerInitialize( void );
/*!
*****************************************************************************
* \brief ST25TB Poller Check Presence
*
* This method checks if a ST25TB Listen device (PICC) is present on the field
* by sending an Initiate command
*
* \param[out] chipId : if successfully retrieved, the device's chip ID
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_TIMEOUT : Timeout error, no listener device detected
* \return ERR_RF_COLLISION : Collision detected one or more device in the field
* \return ERR_PROTO : Protocol error detected
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalSt25tbPollerCheckPresence( uint8_t *chipId );
/*!
*****************************************************************************
* \brief ST25TB Poller Collision Resolution
*
* This method performs ST25TB Collision resolution, selects the each device,
* retrieves its UID and then deselects.
* In case only one device is identified the ST25TB device is left in select
* state.
*
* \param[in] devLimit : device limit value, and size st25tbDevList
* \param[out] st25tbDevList : ST35TB listener device info
* \param[out] devCnt : Devices found counter
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_TIMEOUT : Timeout error, no listener device detected
* \return ERR_RF_COLLISION : Collision detected one or more device in the field
* \return ERR_PROTO : Protocol error detected
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalSt25tbPollerCollisionResolution( uint8_t devLimit, rfalSt25tbListenDevice *st25tbDevList, uint8_t *devCnt );
/*!
*****************************************************************************
* \brief ST25TB Poller Initiate
*
* This method sends an Initiate command
*
* If a single device responds the chip ID will be retrieved
*
* \param[out] chipId : chip ID of the device
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_TIMEOUT : Timeout error, no listener device detected
* \return ERR_PROTO : Protocol error detected
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalSt25tbPollerInitiate( uint8_t *chipId );
/*!
*****************************************************************************
* \brief ST25TB Poller Pcall
*
* This method sends a Pcall command
* If successful the device's chip ID will be retrieved
*
* \param[out] chipId : Chip ID of the device
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_TIMEOUT : Timeout error, no listener device detected
* \return ERR_PROTO : Protocol error detected
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalSt25tbPollerPcall( uint8_t *chipId );
/*!
*****************************************************************************
* \brief ST25TB Poller Slot Marker
*
* This method sends a Slot Marker
*
* If a single device responds the chip ID will be retrieved
*
* \param[in] slotNum : Slot Number
* \param[out] chipIdRes : Chip ID of the device
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_TIMEOUT : Timeout error, no listener device detected
* \return ERR_PROTO : Protocol error detected
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalSt25tbPollerSlotMarker( uint8_t slotNum, uint8_t *chipIdRes );
/*!
*****************************************************************************
* \brief ST25TB Poller Select
*
* This method sends a ST25TB Select command with the given chip ID.
*
* If the device is already in Selected state and receives an incorrect chip
* ID, it goes into Deselected state
*
* \param[in] chipId : chip ID of the device to be selected
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_TIMEOUT : Timeout error, no listener device detected
* \return ERR_PROTO : Protocol error detected
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalSt25tbPollerSelect( uint8_t chipId );
/*!
*****************************************************************************
* \brief ST25TB Get UID
*
* This method sends a Get_UID command
*
* If a single device responds the chip UID will be retrieved
*
* \param[out] UID : UID of the found device
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_TIMEOUT : Timeout error, no listener device detected
* \return ERR_PROTO : Protocol error detected
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalSt25tbPollerGetUID( rfalSt25tbUID *UID );
/*!
*****************************************************************************
* \brief ST25TB Poller Read Block
*
* This method reads a block of the ST25TB
*
* \param[in] blockAddress : address of the block to be read
* \param[out] blockData : location to place the data read from block
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_TIMEOUT : Timeout error, no listener device detected
* \return ERR_PROTO : Protocol error detected
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalSt25tbPollerReadBlock( uint8_t blockAddress, rfalSt25tbBlock *blockData );
/*!
*****************************************************************************
* \brief ST25TB Poller Write Block
*
* This method writes a block of the ST25TB
*
* \param[in] blockAddress : address of the block to be written
* \param[in] blockData : data to be written on the block
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_TIMEOUT : Timeout error, no listener device detected
* \return ERR_PROTO : Protocol error detected
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalSt25tbPollerWriteBlock( uint8_t blockAddress, const rfalSt25tbBlock *blockData );
/*!
*****************************************************************************
* \brief ST25TB Poller Completion
*
* This method sends a completion command to the ST25TB. After the
* completion the card no longer will reply to any command.
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_TIMEOUT : Timeout error, no listener device detected
* \return ERR_PROTO : Protocol error detected, invalid SENSB_RES received
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalSt25tbPollerCompletion( void );
/*!
*****************************************************************************
* \brief ST25TB Poller Reset to Inventory
*
* This method sends a Reset to Inventory command to the ST25TB.
*
* \return ERR_WRONG_STATE : RFAL not initialized or incorrect mode
* \return ERR_PARAM : Invalid parameters
* \return ERR_IO : Generic internal error
* \return ERR_TIMEOUT : Timeout error, no listener device detected
* \return ERR_PROTO : Protocol error detected, invalid SENSB_RES received
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalSt25tbPollerResetToInventory( void );
#endif /* RFAL_ST25TB_H */
/**
* @}
*
* @}
*
* @}
*/

File diff suppressed because it is too large Load Diff

View File

@@ -1,187 +1,187 @@
/******************************************************************************
* \attention
*
* <h2><center>&copy; COPYRIGHT 2020 STMicroelectronics</center></h2>
*
* Licensed under ST MYLIBERTY SOFTWARE LICENSE AGREEMENT (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* www.st.com/myliberty
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
* AND SPECIFICALLY DISCLAIMING THE IMPLIED WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/*
* PROJECT: ST25R391x firmware
* Revision:
* LANGUAGE: ISO C99
*/
/*! \file rfal_t1t.h
*
* \author Gustavo Patricio
*
* \brief Provides NFC-A T1T convenience methods and definitions
*
* This module provides an interface to perform as a NFC-A Reader/Writer
* to handle a Type 1 Tag T1T (Topaz)
*
*
* \addtogroup RFAL
* @{
*
* \addtogroup RFAL-AL
* \brief RFAL Abstraction Layer
* @{
*
* \addtogroup T1T
* \brief RFAL T1T Module
* @{
*
*/
#ifndef RFAL_T1T_H
#define RFAL_T1T_H
/*
******************************************************************************
* INCLUDES
******************************************************************************
*/
#include "platform.h"
#include "st_errno.h"
#include "rfal_rf.h"
/*
******************************************************************************
* GLOBAL DEFINES
******************************************************************************
*/
#define RFAL_T1T_UID_LEN 4 /*!< T1T UID length of cascade level 1 only tag */
#define RFAL_T1T_HR_LENGTH 2 /*!< T1T HR(Header ROM) length */
#define RFAL_T1T_HR0_NDEF_MASK 0xF0 /*!< T1T HR0 NDEF capability mask T1T 1.2 2.2.2 */
#define RFAL_T1T_HR0_NDEF_SUPPORT 0x10 /*!< T1T HR0 NDEF capable value T1T 1.2 2.2.2 */
/*! NFC-A T1T (Topaz) command set */
typedef enum
{
RFAL_T1T_CMD_RID = 0x78, /*!< T1T Read UID */
RFAL_T1T_CMD_RALL = 0x00, /*!< T1T Read All */
RFAL_T1T_CMD_READ = 0x01, /*!< T1T Read */
RFAL_T1T_CMD_WRITE_E = 0x53, /*!< T1T Write with erase (single byte) */
RFAL_T1T_CMD_WRITE_NE = 0x1A /*!< T1T Write with no erase (single byte) */
} rfalT1Tcmds;
/*
******************************************************************************
* GLOBAL TYPES
******************************************************************************
*/
/*! NFC-A T1T (Topaz) RID_RES Digital 1.1 10.6.2 & Table 50 */
typedef struct
{
uint8_t hr0; /*!< T1T Header ROM: HR0 */
uint8_t hr1; /*!< T1T Header ROM: HR1 */
uint8_t uid[RFAL_T1T_UID_LEN]; /*!< T1T UID */
} rfalT1TRidRes;
/*
******************************************************************************
* GLOBAL FUNCTION PROTOTYPES
******************************************************************************
*/
/*!
*****************************************************************************
* \brief Initialize NFC-A T1T Poller mode
*
* This methods configures RFAL RF layer to perform as a
* NFC-A T1T Poller/RW (Topaz) including all default timings
*
* \return ERR_WRONG_STATE : RFAL not initialized or mode not set
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalT1TPollerInitialize( void );
/*!
*****************************************************************************
* \brief NFC-A T1T Poller RID
*
* This method reads the UID of a NFC-A T1T Listener device
*
*
* \param[out] ridRes : pointer to place the RID_RES
*
* \return ERR_WRONG_STATE : RFAL not initialized or mode not set
* \return ERR_PARAM : Invalid parameter
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalT1TPollerRid( rfalT1TRidRes *ridRes );
/*!
*****************************************************************************
* \brief NFC-A T1T Poller RALL
*
* This method send a Read All command to a NFC-A T1T Listener device
*
*
* \param[in] uid : the UID of the device to read data
* \param[out] rxBuf : pointer to place the read data
* \param[in] rxBufLen : size of rxBuf
* \param[out] rxRcvdLen : actual received data
*
* \return ERR_WRONG_STATE : RFAL not initialized or mode not set
* \return ERR_PARAM : Invalid parameter
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalT1TPollerRall( const uint8_t* uid, uint8_t* rxBuf, uint16_t rxBufLen, uint16_t *rxRcvdLen );
/*!
*****************************************************************************
* \brief NFC-A T1T Poller Write
*
* This method writes the given data on the address of a NFC-A T1T Listener device
*
*
* \param[in] uid : the UID of the device to read data
* \param[in] address : address to write the data
* \param[in] data : the data to be written
*
* \return ERR_WRONG_STATE : RFAL not initialized or mode not set
* \return ERR_PARAM : Invalid parameter
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalT1TPollerWrite( const uint8_t* uid, uint8_t address, uint8_t data );
#endif /* RFAL_T1T_H */
/**
* @}
*
* @}
*
* @}
*/
/******************************************************************************
* \attention
*
* <h2><center>&copy; COPYRIGHT 2020 STMicroelectronics</center></h2>
*
* Licensed under ST MYLIBERTY SOFTWARE LICENSE AGREEMENT (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* www.st.com/myliberty
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
* AND SPECIFICALLY DISCLAIMING THE IMPLIED WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/*
* PROJECT: ST25R391x firmware
* Revision:
* LANGUAGE: ISO C99
*/
/*! \file rfal_t1t.h
*
* \author Gustavo Patricio
*
* \brief Provides NFC-A T1T convenience methods and definitions
*
* This module provides an interface to perform as a NFC-A Reader/Writer
* to handle a Type 1 Tag T1T (Topaz)
*
*
* \addtogroup RFAL
* @{
*
* \addtogroup RFAL-AL
* \brief RFAL Abstraction Layer
* @{
*
* \addtogroup T1T
* \brief RFAL T1T Module
* @{
*
*/
#ifndef RFAL_T1T_H
#define RFAL_T1T_H
/*
******************************************************************************
* INCLUDES
******************************************************************************
*/
#include "platform.h"
#include "st_errno.h"
#include "rfal_rf.h"
/*
******************************************************************************
* GLOBAL DEFINES
******************************************************************************
*/
#define RFAL_T1T_UID_LEN 4 /*!< T1T UID length of cascade level 1 only tag */
#define RFAL_T1T_HR_LENGTH 2 /*!< T1T HR(Header ROM) length */
#define RFAL_T1T_HR0_NDEF_MASK 0xF0 /*!< T1T HR0 NDEF capability mask T1T 1.2 2.2.2 */
#define RFAL_T1T_HR0_NDEF_SUPPORT 0x10 /*!< T1T HR0 NDEF capable value T1T 1.2 2.2.2 */
/*! NFC-A T1T (Topaz) command set */
typedef enum
{
RFAL_T1T_CMD_RID = 0x78, /*!< T1T Read UID */
RFAL_T1T_CMD_RALL = 0x00, /*!< T1T Read All */
RFAL_T1T_CMD_READ = 0x01, /*!< T1T Read */
RFAL_T1T_CMD_WRITE_E = 0x53, /*!< T1T Write with erase (single byte) */
RFAL_T1T_CMD_WRITE_NE = 0x1A /*!< T1T Write with no erase (single byte) */
} rfalT1Tcmds;
/*
******************************************************************************
* GLOBAL TYPES
******************************************************************************
*/
/*! NFC-A T1T (Topaz) RID_RES Digital 1.1 10.6.2 & Table 50 */
typedef struct
{
uint8_t hr0; /*!< T1T Header ROM: HR0 */
uint8_t hr1; /*!< T1T Header ROM: HR1 */
uint8_t uid[RFAL_T1T_UID_LEN]; /*!< T1T UID */
} rfalT1TRidRes;
/*
******************************************************************************
* GLOBAL FUNCTION PROTOTYPES
******************************************************************************
*/
/*!
*****************************************************************************
* \brief Initialize NFC-A T1T Poller mode
*
* This methods configures RFAL RF layer to perform as a
* NFC-A T1T Poller/RW (Topaz) including all default timings
*
* \return ERR_WRONG_STATE : RFAL not initialized or mode not set
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalT1TPollerInitialize( void );
/*!
*****************************************************************************
* \brief NFC-A T1T Poller RID
*
* This method reads the UID of a NFC-A T1T Listener device
*
*
* \param[out] ridRes : pointer to place the RID_RES
*
* \return ERR_WRONG_STATE : RFAL not initialized or mode not set
* \return ERR_PARAM : Invalid parameter
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalT1TPollerRid( rfalT1TRidRes *ridRes );
/*!
*****************************************************************************
* \brief NFC-A T1T Poller RALL
*
* This method send a Read All command to a NFC-A T1T Listener device
*
*
* \param[in] uid : the UID of the device to read data
* \param[out] rxBuf : pointer to place the read data
* \param[in] rxBufLen : size of rxBuf
* \param[out] rxRcvdLen : actual received data
*
* \return ERR_WRONG_STATE : RFAL not initialized or mode not set
* \return ERR_PARAM : Invalid parameter
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalT1TPollerRall( const uint8_t* uid, uint8_t* rxBuf, uint16_t rxBufLen, uint16_t *rxRcvdLen );
/*!
*****************************************************************************
* \brief NFC-A T1T Poller Write
*
* This method writes the given data on the address of a NFC-A T1T Listener device
*
*
* \param[in] uid : the UID of the device to read data
* \param[in] address : address to write the data
* \param[in] data : the data to be written
*
* \return ERR_WRONG_STATE : RFAL not initialized or mode not set
* \return ERR_PARAM : Invalid parameter
* \return ERR_NONE : No error
*****************************************************************************
*/
ReturnCode rfalT1TPollerWrite( const uint8_t* uid, uint8_t address, uint8_t data );
#endif /* RFAL_T1T_H */
/**
* @}
*
* @}
*
* @}
*/

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,220 +1,220 @@
/******************************************************************************
* \attention
*
* <h2><center>&copy; COPYRIGHT 2020 STMicroelectronics</center></h2>
*
* Licensed under ST MYLIBERTY SOFTWARE LICENSE AGREEMENT (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* www.st.com/myliberty
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
* AND SPECIFICALLY DISCLAIMING THE IMPLIED WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/*
* PROJECT: ST25R391x firmware
* Revision:
* LANGUAGE: ISO C99
*/
/*! \file rfal_t1t.c
*
* \author Gustavo Patricio
*
* \brief Provides NFC-A T1T convenience methods and definitions
*
* This module provides an interface to perform as a NFC-A Reader/Writer
* to handle a Type 1 Tag T1T (Topaz)
*
*/
/*
******************************************************************************
* INCLUDES
******************************************************************************
*/
#include "rfal_t1t.h"
#include "utils.h"
/*
******************************************************************************
* ENABLE SWITCH
******************************************************************************
*/
#ifndef RFAL_FEATURE_T1T
#define RFAL_FEATURE_T1T false /* T1T module configuration missing. Disabled by default */
#endif
#if RFAL_FEATURE_T1T
/*
******************************************************************************
* GLOBAL DEFINES
******************************************************************************
*/
#define RFAL_T1T_DRD_READ (1236U*2U) /*!< DRD for Reads with n=9 => 1236/fc ~= 91 us T1T 1.2 4.4.2 */
#define RFAL_T1T_DRD_WRITE 36052U /*!< DRD for Write with n=281 => 36052/fc ~= 2659 us T1T 1.2 4.4.2 */
#define RFAL_T1T_DRD_WRITE_E 70996U /*!< DRD for Write/Erase with n=554 => 70996/fc ~= 5236 us T1T 1.2 4.4.2 */
#define RFAL_T1T_RID_RES_HR0_VAL 0x10U /*!< HR0 indicating NDEF support Digital 2.0 (Candidate) 11.6.2.1 */
#define RFAL_T1T_RID_RES_HR0_MASK 0xF0U /*!< HR0 most significant nibble mask */
/*
******************************************************************************
* GLOBAL TYPES
******************************************************************************
*/
/*! NFC-A T1T (Topaz) RID_REQ Digital 1.1 10.6.1 & Table 49 */
typedef struct
{
uint8_t cmd; /*!< T1T cmd: RID */
uint8_t add; /*!< ADD: undefined value */
uint8_t data; /*!< DATA: undefined value */
uint8_t uid[RFAL_T1T_UID_LEN]; /*!< UID-echo: undefined value */
} rfalT1TRidReq;
/*! NFC-A T1T (Topaz) RALL_REQ T1T 1.2 Table 4 */
typedef struct
{
uint8_t cmd; /*!< T1T cmd: RALL */
uint8_t add1; /*!< ADD: 0x00 */
uint8_t add0; /*!< ADD: 0x00 */
uint8_t uid[RFAL_T1T_UID_LEN]; /*!< UID */
} rfalT1TRallReq;
/*! NFC-A T1T (Topaz) WRITE_REQ T1T 1.2 Table 4 */
typedef struct
{
uint8_t cmd; /*!< T1T cmd: RALL */
uint8_t add; /*!< ADD */
uint8_t data; /*!< DAT */
uint8_t uid[RFAL_T1T_UID_LEN]; /*!< UID */
} rfalT1TWriteReq;
/*! NFC-A T1T (Topaz) WRITE_RES T1T 1.2 Table 4 */
typedef struct
{
uint8_t add; /*!< ADD */
uint8_t data; /*!< DAT */
} rfalT1TWriteRes;
/*
******************************************************************************
* LOCAL FUNCTION PROTOTYPES
******************************************************************************
*/
/*
******************************************************************************
* GLOBAL FUNCTIONS
******************************************************************************
*/
ReturnCode rfalT1TPollerInitialize( void )
{
ReturnCode ret;
EXIT_ON_ERR(ret, rfalSetMode( RFAL_MODE_POLL_NFCA_T1T, RFAL_BR_106, RFAL_BR_106 ) );
rfalSetErrorHandling( RFAL_ERRORHANDLING_NFC );
rfalSetGT( RFAL_GT_NONE ); /* T1T should only be initialized after NFC-A mode, therefore the GT has been fulfilled */
rfalSetFDTListen( RFAL_FDT_LISTEN_NFCA_POLLER ); /* T1T uses NFC-A FDT Listen with n=9 Digital 1.1 10.7.2 */
rfalSetFDTPoll( RFAL_FDT_POLL_NFCA_T1T_POLLER );
return ERR_NONE;
}
/*******************************************************************************/
ReturnCode rfalT1TPollerRid( rfalT1TRidRes *ridRes )
{
ReturnCode ret;
rfalT1TRidReq ridReq;
uint16_t rcvdLen;
if( ridRes == NULL )
{
return ERR_PARAM;
}
/* Compute RID command and set Undefined Values to 0x00 Digital 1.1 10.6.1 */
ST_MEMSET( &ridReq, 0x00, sizeof(rfalT1TRidReq) );
ridReq.cmd = (uint8_t)RFAL_T1T_CMD_RID;
EXIT_ON_ERR( ret, rfalTransceiveBlockingTxRx( (uint8_t*)&ridReq, sizeof(rfalT1TRidReq), (uint8_t*)ridRes, sizeof(rfalT1TRidRes), &rcvdLen, RFAL_TXRX_FLAGS_DEFAULT, RFAL_T1T_DRD_READ ) );
/* Check expected RID response length and the HR0 Digital 2.0 (Candidate) 11.6.2.1 */
if( (rcvdLen != sizeof(rfalT1TRidRes)) || ((ridRes->hr0 & RFAL_T1T_RID_RES_HR0_MASK) != RFAL_T1T_RID_RES_HR0_VAL) )
{
return ERR_PROTO;
}
return ERR_NONE;
}
/*******************************************************************************/
ReturnCode rfalT1TPollerRall( const uint8_t* uid, uint8_t* rxBuf, uint16_t rxBufLen, uint16_t *rxRcvdLen )
{
rfalT1TRallReq rallReq;
if( (rxBuf == NULL) || (uid == NULL) || (rxRcvdLen == NULL) )
{
return ERR_PARAM;
}
/* Compute RALL command and set Add to 0x00 */
ST_MEMSET( &rallReq, 0x00, sizeof(rfalT1TRallReq) );
rallReq.cmd = (uint8_t)RFAL_T1T_CMD_RALL;
ST_MEMCPY(rallReq.uid, uid, RFAL_T1T_UID_LEN);
return rfalTransceiveBlockingTxRx( (uint8_t*)&rallReq, sizeof(rfalT1TRallReq), (uint8_t*)rxBuf, rxBufLen, rxRcvdLen, RFAL_TXRX_FLAGS_DEFAULT, RFAL_T1T_DRD_READ );
}
/*******************************************************************************/
ReturnCode rfalT1TPollerWrite( const uint8_t* uid, uint8_t address, uint8_t data )
{
rfalT1TWriteReq writeReq;
rfalT1TWriteRes writeRes;
uint16_t rxRcvdLen;
ReturnCode err;
if( uid == NULL )
{
return ERR_PARAM;
}
writeReq.cmd = (uint8_t)RFAL_T1T_CMD_WRITE_E;
writeReq.add = address;
writeReq.data = data;
ST_MEMCPY(writeReq.uid, uid, RFAL_T1T_UID_LEN);
err = rfalTransceiveBlockingTxRx( (uint8_t*)&writeReq, sizeof(rfalT1TWriteReq), (uint8_t*)&writeRes, sizeof(rfalT1TWriteRes), &rxRcvdLen, RFAL_TXRX_FLAGS_DEFAULT, RFAL_T1T_DRD_WRITE_E );
if( err == ERR_NONE )
{
if( (writeReq.add != writeRes.add) || (writeReq.data != writeRes.data) || (rxRcvdLen != sizeof(rfalT1TWriteRes)) )
{
return ERR_PROTO;
}
}
return err;
}
#endif /* RFAL_FEATURE_T1T */
/******************************************************************************
* \attention
*
* <h2><center>&copy; COPYRIGHT 2020 STMicroelectronics</center></h2>
*
* Licensed under ST MYLIBERTY SOFTWARE LICENSE AGREEMENT (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* www.st.com/myliberty
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
* AND SPECIFICALLY DISCLAIMING THE IMPLIED WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/*
* PROJECT: ST25R391x firmware
* Revision:
* LANGUAGE: ISO C99
*/
/*! \file rfal_t1t.c
*
* \author Gustavo Patricio
*
* \brief Provides NFC-A T1T convenience methods and definitions
*
* This module provides an interface to perform as a NFC-A Reader/Writer
* to handle a Type 1 Tag T1T (Topaz)
*
*/
/*
******************************************************************************
* INCLUDES
******************************************************************************
*/
#include "rfal_t1t.h"
#include "utils.h"
/*
******************************************************************************
* ENABLE SWITCH
******************************************************************************
*/
#ifndef RFAL_FEATURE_T1T
#define RFAL_FEATURE_T1T false /* T1T module configuration missing. Disabled by default */
#endif
#if RFAL_FEATURE_T1T
/*
******************************************************************************
* GLOBAL DEFINES
******************************************************************************
*/
#define RFAL_T1T_DRD_READ (1236U*2U) /*!< DRD for Reads with n=9 => 1236/fc ~= 91 us T1T 1.2 4.4.2 */
#define RFAL_T1T_DRD_WRITE 36052U /*!< DRD for Write with n=281 => 36052/fc ~= 2659 us T1T 1.2 4.4.2 */
#define RFAL_T1T_DRD_WRITE_E 70996U /*!< DRD for Write/Erase with n=554 => 70996/fc ~= 5236 us T1T 1.2 4.4.2 */
#define RFAL_T1T_RID_RES_HR0_VAL 0x10U /*!< HR0 indicating NDEF support Digital 2.0 (Candidate) 11.6.2.1 */
#define RFAL_T1T_RID_RES_HR0_MASK 0xF0U /*!< HR0 most significant nibble mask */
/*
******************************************************************************
* GLOBAL TYPES
******************************************************************************
*/
/*! NFC-A T1T (Topaz) RID_REQ Digital 1.1 10.6.1 & Table 49 */
typedef struct
{
uint8_t cmd; /*!< T1T cmd: RID */
uint8_t add; /*!< ADD: undefined value */
uint8_t data; /*!< DATA: undefined value */
uint8_t uid[RFAL_T1T_UID_LEN]; /*!< UID-echo: undefined value */
} rfalT1TRidReq;
/*! NFC-A T1T (Topaz) RALL_REQ T1T 1.2 Table 4 */
typedef struct
{
uint8_t cmd; /*!< T1T cmd: RALL */
uint8_t add1; /*!< ADD: 0x00 */
uint8_t add0; /*!< ADD: 0x00 */
uint8_t uid[RFAL_T1T_UID_LEN]; /*!< UID */
} rfalT1TRallReq;
/*! NFC-A T1T (Topaz) WRITE_REQ T1T 1.2 Table 4 */
typedef struct
{
uint8_t cmd; /*!< T1T cmd: RALL */
uint8_t add; /*!< ADD */
uint8_t data; /*!< DAT */
uint8_t uid[RFAL_T1T_UID_LEN]; /*!< UID */
} rfalT1TWriteReq;
/*! NFC-A T1T (Topaz) WRITE_RES T1T 1.2 Table 4 */
typedef struct
{
uint8_t add; /*!< ADD */
uint8_t data; /*!< DAT */
} rfalT1TWriteRes;
/*
******************************************************************************
* LOCAL FUNCTION PROTOTYPES
******************************************************************************
*/
/*
******************************************************************************
* GLOBAL FUNCTIONS
******************************************************************************
*/
ReturnCode rfalT1TPollerInitialize( void )
{
ReturnCode ret;
EXIT_ON_ERR(ret, rfalSetMode( RFAL_MODE_POLL_NFCA_T1T, RFAL_BR_106, RFAL_BR_106 ) );
rfalSetErrorHandling( RFAL_ERRORHANDLING_NFC );
rfalSetGT( RFAL_GT_NONE ); /* T1T should only be initialized after NFC-A mode, therefore the GT has been fulfilled */
rfalSetFDTListen( RFAL_FDT_LISTEN_NFCA_POLLER ); /* T1T uses NFC-A FDT Listen with n=9 Digital 1.1 10.7.2 */
rfalSetFDTPoll( RFAL_FDT_POLL_NFCA_T1T_POLLER );
return ERR_NONE;
}
/*******************************************************************************/
ReturnCode rfalT1TPollerRid( rfalT1TRidRes *ridRes )
{
ReturnCode ret;
rfalT1TRidReq ridReq;
uint16_t rcvdLen;
if( ridRes == NULL )
{
return ERR_PARAM;
}
/* Compute RID command and set Undefined Values to 0x00 Digital 1.1 10.6.1 */
ST_MEMSET( &ridReq, 0x00, sizeof(rfalT1TRidReq) );
ridReq.cmd = (uint8_t)RFAL_T1T_CMD_RID;
EXIT_ON_ERR( ret, rfalTransceiveBlockingTxRx( (uint8_t*)&ridReq, sizeof(rfalT1TRidReq), (uint8_t*)ridRes, sizeof(rfalT1TRidRes), &rcvdLen, RFAL_TXRX_FLAGS_DEFAULT, RFAL_T1T_DRD_READ ) );
/* Check expected RID response length and the HR0 Digital 2.0 (Candidate) 11.6.2.1 */
if( (rcvdLen != sizeof(rfalT1TRidRes)) || ((ridRes->hr0 & RFAL_T1T_RID_RES_HR0_MASK) != RFAL_T1T_RID_RES_HR0_VAL) )
{
return ERR_PROTO;
}
return ERR_NONE;
}
/*******************************************************************************/
ReturnCode rfalT1TPollerRall( const uint8_t* uid, uint8_t* rxBuf, uint16_t rxBufLen, uint16_t *rxRcvdLen )
{
rfalT1TRallReq rallReq;
if( (rxBuf == NULL) || (uid == NULL) || (rxRcvdLen == NULL) )
{
return ERR_PARAM;
}
/* Compute RALL command and set Add to 0x00 */
ST_MEMSET( &rallReq, 0x00, sizeof(rfalT1TRallReq) );
rallReq.cmd = (uint8_t)RFAL_T1T_CMD_RALL;
ST_MEMCPY(rallReq.uid, uid, RFAL_T1T_UID_LEN);
return rfalTransceiveBlockingTxRx( (uint8_t*)&rallReq, sizeof(rfalT1TRallReq), (uint8_t*)rxBuf, rxBufLen, rxRcvdLen, RFAL_TXRX_FLAGS_DEFAULT, RFAL_T1T_DRD_READ );
}
/*******************************************************************************/
ReturnCode rfalT1TPollerWrite( const uint8_t* uid, uint8_t address, uint8_t data )
{
rfalT1TWriteReq writeReq;
rfalT1TWriteRes writeRes;
uint16_t rxRcvdLen;
ReturnCode err;
if( uid == NULL )
{
return ERR_PARAM;
}
writeReq.cmd = (uint8_t)RFAL_T1T_CMD_WRITE_E;
writeReq.add = address;
writeReq.data = data;
ST_MEMCPY(writeReq.uid, uid, RFAL_T1T_UID_LEN);
err = rfalTransceiveBlockingTxRx( (uint8_t*)&writeReq, sizeof(rfalT1TWriteReq), (uint8_t*)&writeRes, sizeof(rfalT1TWriteRes), &rxRcvdLen, RFAL_TXRX_FLAGS_DEFAULT, RFAL_T1T_DRD_WRITE_E );
if( err == ERR_NONE )
{
if( (writeReq.add != writeRes.add) || (writeReq.data != writeRes.data) || (rxRcvdLen != sizeof(rfalT1TWriteRes)) )
{
return ERR_PROTO;
}
}
return err;
}
#endif /* RFAL_FEATURE_T1T */

File diff suppressed because it is too large Load Diff

View File

@@ -1,63 +1,63 @@
/******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2020 STMicroelectronics</center></h2>
*
* Licensed under ST MYLIBERTY SOFTWARE LICENSE AGREEMENT (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/myliberty
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
* AND SPECIFICALLY DISCLAIMING THE IMPLIED WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/*
* PROJECT: ST25R391x firmware
* $Revision: $
* LANGUAGE: ISO C99
*/
/*! \file
*
* \author Martin Zechleitner
*
* \brief RF Dynamic Power Table default values
*/
#ifndef ST25R3916_DPO_H
#define ST25R3916_DPO_H
/*
******************************************************************************
* INCLUDES
******************************************************************************
*/
#include "rfal_dpo.h"
/*
******************************************************************************
* GLOBAL DATA TYPES
******************************************************************************
*/
/*! Default DPO table */
const uint8_t rfalDpoDefaultSettings [] = {
0x00, 255, 200,
0x01, 210, 150,
0x02, 160, 100,
0x03, 110, 50,
};
#endif /* ST25R3916_DPO_H */
/******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2020 STMicroelectronics</center></h2>
*
* Licensed under ST MYLIBERTY SOFTWARE LICENSE AGREEMENT (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/myliberty
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
* AND SPECIFICALLY DISCLAIMING THE IMPLIED WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/*
* PROJECT: ST25R391x firmware
* $Revision: $
* LANGUAGE: ISO C99
*/
/*! \file
*
* \author Martin Zechleitner
*
* \brief RF Dynamic Power Table default values
*/
#ifndef ST25R3916_DPO_H
#define ST25R3916_DPO_H
/*
******************************************************************************
* INCLUDES
******************************************************************************
*/
#include "rfal_dpo.h"
/*
******************************************************************************
* GLOBAL DATA TYPES
******************************************************************************
*/
/*! Default DPO table */
const uint8_t rfalDpoDefaultSettings [] = {
0x00, 255, 200,
0x01, 210, 150,
0x02, 160, 100,
0x03, 110, 50,
};
#endif /* ST25R3916_DPO_H */

View File

@@ -1,113 +1,113 @@
/******************************************************************************
* \attention
*
* <h2><center>&copy; COPYRIGHT 2020 STMicroelectronics</center></h2>
*
* Licensed under ST MYLIBERTY SOFTWARE LICENSE AGREEMENT (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* www.st.com/myliberty
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
* AND SPECIFICALLY DISCLAIMING THE IMPLIED WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/*
* PROJECT: ST25R391x firmware
* Revision:
* LANGUAGE: ISO C99
*/
/*! \file
*
* \author Gustavo Patricio
*
* \brief RFAL Features/Capabilities Definition for ST25R3916
*/
#ifndef RFAL_FEATURES_H
#define RFAL_FEATURES_H
/*
******************************************************************************
* INCLUDES
******************************************************************************
*/
#include "platform.h"
/*
******************************************************************************
* GLOBAL DEFINES
******************************************************************************
*/
#define RFAL_SUPPORT_MODE_POLL_NFCA true /*!< RFAL Poll NFCA mode support switch */
#define RFAL_SUPPORT_MODE_POLL_NFCB true /*!< RFAL Poll NFCB mode support switch */
#define RFAL_SUPPORT_MODE_POLL_NFCF true /*!< RFAL Poll NFCF mode support switch */
#define RFAL_SUPPORT_MODE_POLL_NFCV true /*!< RFAL Poll NFCV mode support switch */
#define RFAL_SUPPORT_MODE_POLL_ACTIVE_P2P true /*!< RFAL Poll AP2P mode support switch */
#define RFAL_SUPPORT_MODE_LISTEN_NFCA true /*!< RFAL Listen NFCA mode support switch */
#define RFAL_SUPPORT_MODE_LISTEN_NFCB false /*!< RFAL Listen NFCB mode support switch */
#define RFAL_SUPPORT_MODE_LISTEN_NFCF true /*!< RFAL Listen NFCF mode support switch */
#define RFAL_SUPPORT_MODE_LISTEN_ACTIVE_P2P true /*!< RFAL Listen AP2P mode support switch */
/*******************************************************************************/
/*! RFAL supported Card Emulation (CE) */
#define RFAL_SUPPORT_CE ( RFAL_SUPPORT_MODE_LISTEN_NFCA || RFAL_SUPPORT_MODE_LISTEN_NFCB || RFAL_SUPPORT_MODE_LISTEN_NFCF )
/*! RFAL supported Reader/Writer (RW) */
#define RFAL_SUPPORT_RW ( RFAL_SUPPORT_MODE_POLL_NFCA || RFAL_SUPPORT_MODE_POLL_NFCB || RFAL_SUPPORT_MODE_POLL_NFCF || RFAL_SUPPORT_MODE_POLL_NFCV )
/*! RFAL support for Active P2P (AP2P) */
#define RFAL_SUPPORT_AP2P ( RFAL_SUPPORT_MODE_POLL_ACTIVE_P2P || RFAL_SUPPORT_MODE_LISTEN_ACTIVE_P2P )
/*******************************************************************************/
#define RFAL_SUPPORT_BR_RW_106 true /*!< RFAL RW 106 Bit Rate support switch */
#define RFAL_SUPPORT_BR_RW_212 true /*!< RFAL RW 212 Bit Rate support switch */
#define RFAL_SUPPORT_BR_RW_424 true /*!< RFAL RW 424 Bit Rate support switch */
#define RFAL_SUPPORT_BR_RW_848 true /*!< RFAL RW 848 Bit Rate support switch */
#define RFAL_SUPPORT_BR_RW_1695 false /*!< RFAL RW 1695 Bit Rate support switch */
#define RFAL_SUPPORT_BR_RW_3390 false /*!< RFAL RW 3390 Bit Rate support switch */
#define RFAL_SUPPORT_BR_RW_6780 false /*!< RFAL RW 6780 Bit Rate support switch */
#define RFAL_SUPPORT_BR_RW_13560 false /*!< RFAL RW 6780 Bit Rate support switch */
/*******************************************************************************/
#define RFAL_SUPPORT_BR_AP2P_106 true /*!< RFAL AP2P 106 Bit Rate support switch */
#define RFAL_SUPPORT_BR_AP2P_212 true /*!< RFAL AP2P 212 Bit Rate support switch */
#define RFAL_SUPPORT_BR_AP2P_424 true /*!< RFAL AP2P 424 Bit Rate support switch */
#define RFAL_SUPPORT_BR_AP2P_848 false /*!< RFAL AP2P 848 Bit Rate support switch */
/*******************************************************************************/
#define RFAL_SUPPORT_BR_CE_A_106 true /*!< RFAL CE A 106 Bit Rate support switch */
#define RFAL_SUPPORT_BR_CE_A_212 false /*!< RFAL CE A 212 Bit Rate support switch */
#define RFAL_SUPPORT_BR_CE_A_424 false /*!< RFAL CE A 424 Bit Rate support switch */
#define RFAL_SUPPORT_BR_CE_A_848 false /*!< RFAL CE A 848 Bit Rate support switch */
/*******************************************************************************/
#define RFAL_SUPPORT_BR_CE_B_106 false /*!< RFAL CE B 106 Bit Rate support switch */
#define RFAL_SUPPORT_BR_CE_B_212 false /*!< RFAL CE B 212 Bit Rate support switch */
#define RFAL_SUPPORT_BR_CE_B_424 false /*!< RFAL CE B 424 Bit Rate support switch */
#define RFAL_SUPPORT_BR_CE_B_848 false /*!< RFAL CE B 848 Bit Rate support switch */
/*******************************************************************************/
#define RFAL_SUPPORT_BR_CE_F_212 true /*!< RFAL CE F 212 Bit Rate support switch */
#define RFAL_SUPPORT_BR_CE_F_424 true /*!< RFAL CE F 424 Bit Rate support switch */
#endif /* RFAL_FEATURES_H */
/******************************************************************************
* \attention
*
* <h2><center>&copy; COPYRIGHT 2020 STMicroelectronics</center></h2>
*
* Licensed under ST MYLIBERTY SOFTWARE LICENSE AGREEMENT (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* www.st.com/myliberty
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
* AND SPECIFICALLY DISCLAIMING THE IMPLIED WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/*
* PROJECT: ST25R391x firmware
* Revision:
* LANGUAGE: ISO C99
*/
/*! \file
*
* \author Gustavo Patricio
*
* \brief RFAL Features/Capabilities Definition for ST25R3916
*/
#ifndef RFAL_FEATURES_H
#define RFAL_FEATURES_H
/*
******************************************************************************
* INCLUDES
******************************************************************************
*/
#include "platform.h"
/*
******************************************************************************
* GLOBAL DEFINES
******************************************************************************
*/
#define RFAL_SUPPORT_MODE_POLL_NFCA true /*!< RFAL Poll NFCA mode support switch */
#define RFAL_SUPPORT_MODE_POLL_NFCB true /*!< RFAL Poll NFCB mode support switch */
#define RFAL_SUPPORT_MODE_POLL_NFCF true /*!< RFAL Poll NFCF mode support switch */
#define RFAL_SUPPORT_MODE_POLL_NFCV true /*!< RFAL Poll NFCV mode support switch */
#define RFAL_SUPPORT_MODE_POLL_ACTIVE_P2P true /*!< RFAL Poll AP2P mode support switch */
#define RFAL_SUPPORT_MODE_LISTEN_NFCA true /*!< RFAL Listen NFCA mode support switch */
#define RFAL_SUPPORT_MODE_LISTEN_NFCB false /*!< RFAL Listen NFCB mode support switch */
#define RFAL_SUPPORT_MODE_LISTEN_NFCF true /*!< RFAL Listen NFCF mode support switch */
#define RFAL_SUPPORT_MODE_LISTEN_ACTIVE_P2P true /*!< RFAL Listen AP2P mode support switch */
/*******************************************************************************/
/*! RFAL supported Card Emulation (CE) */
#define RFAL_SUPPORT_CE ( RFAL_SUPPORT_MODE_LISTEN_NFCA || RFAL_SUPPORT_MODE_LISTEN_NFCB || RFAL_SUPPORT_MODE_LISTEN_NFCF )
/*! RFAL supported Reader/Writer (RW) */
#define RFAL_SUPPORT_RW ( RFAL_SUPPORT_MODE_POLL_NFCA || RFAL_SUPPORT_MODE_POLL_NFCB || RFAL_SUPPORT_MODE_POLL_NFCF || RFAL_SUPPORT_MODE_POLL_NFCV )
/*! RFAL support for Active P2P (AP2P) */
#define RFAL_SUPPORT_AP2P ( RFAL_SUPPORT_MODE_POLL_ACTIVE_P2P || RFAL_SUPPORT_MODE_LISTEN_ACTIVE_P2P )
/*******************************************************************************/
#define RFAL_SUPPORT_BR_RW_106 true /*!< RFAL RW 106 Bit Rate support switch */
#define RFAL_SUPPORT_BR_RW_212 true /*!< RFAL RW 212 Bit Rate support switch */
#define RFAL_SUPPORT_BR_RW_424 true /*!< RFAL RW 424 Bit Rate support switch */
#define RFAL_SUPPORT_BR_RW_848 true /*!< RFAL RW 848 Bit Rate support switch */
#define RFAL_SUPPORT_BR_RW_1695 false /*!< RFAL RW 1695 Bit Rate support switch */
#define RFAL_SUPPORT_BR_RW_3390 false /*!< RFAL RW 3390 Bit Rate support switch */
#define RFAL_SUPPORT_BR_RW_6780 false /*!< RFAL RW 6780 Bit Rate support switch */
#define RFAL_SUPPORT_BR_RW_13560 false /*!< RFAL RW 6780 Bit Rate support switch */
/*******************************************************************************/
#define RFAL_SUPPORT_BR_AP2P_106 true /*!< RFAL AP2P 106 Bit Rate support switch */
#define RFAL_SUPPORT_BR_AP2P_212 true /*!< RFAL AP2P 212 Bit Rate support switch */
#define RFAL_SUPPORT_BR_AP2P_424 true /*!< RFAL AP2P 424 Bit Rate support switch */
#define RFAL_SUPPORT_BR_AP2P_848 false /*!< RFAL AP2P 848 Bit Rate support switch */
/*******************************************************************************/
#define RFAL_SUPPORT_BR_CE_A_106 true /*!< RFAL CE A 106 Bit Rate support switch */
#define RFAL_SUPPORT_BR_CE_A_212 false /*!< RFAL CE A 212 Bit Rate support switch */
#define RFAL_SUPPORT_BR_CE_A_424 false /*!< RFAL CE A 424 Bit Rate support switch */
#define RFAL_SUPPORT_BR_CE_A_848 false /*!< RFAL CE A 848 Bit Rate support switch */
/*******************************************************************************/
#define RFAL_SUPPORT_BR_CE_B_106 false /*!< RFAL CE B 106 Bit Rate support switch */
#define RFAL_SUPPORT_BR_CE_B_212 false /*!< RFAL CE B 212 Bit Rate support switch */
#define RFAL_SUPPORT_BR_CE_B_424 false /*!< RFAL CE B 424 Bit Rate support switch */
#define RFAL_SUPPORT_BR_CE_B_848 false /*!< RFAL CE B 848 Bit Rate support switch */
/*******************************************************************************/
#define RFAL_SUPPORT_BR_CE_F_212 true /*!< RFAL CE F 212 Bit Rate support switch */
#define RFAL_SUPPORT_BR_CE_F_424 true /*!< RFAL CE F 424 Bit Rate support switch */
#endif /* RFAL_FEATURES_H */

View File

@@ -1,228 +1,228 @@
#include "subghz_protocol_came.h"
#include "subghz_protocol_common.h"
/*
* Help
* https://phreakerclub.com/447
*
*/
struct SubGhzProtocolCame {
SubGhzProtocolCommon common;
};
typedef enum {
CameDecoderStepReset = 0,
CameDecoderStepFoundStartBit,
CameDecoderStepSaveDuration,
CameDecoderStepCheckDuration,
} CameDecoderStep;
SubGhzProtocolCame* subghz_protocol_came_alloc() {
SubGhzProtocolCame* instance = furi_alloc(sizeof(SubGhzProtocolCame));
instance->common.name = "CAME";
instance->common.code_min_count_bit_for_found = 12;
instance->common.te_short = 320;
instance->common.te_long = 640;
instance->common.te_delta = 150;
instance->common.type_protocol = SubGhzProtocolCommonTypeStatic;
instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_protocol_came_to_str;
instance->common.to_save_string =
(SubGhzProtocolCommonGetStrSave)subghz_protocol_came_to_save_str;
instance->common.to_load_protocol_from_file =
(SubGhzProtocolCommonLoadFromFile)subghz_protocol_came_to_load_protocol_from_file;
instance->common.to_load_protocol =
(SubGhzProtocolCommonLoadFromRAW)subghz_decoder_came_to_load_protocol;
instance->common.get_upload_protocol =
(SubGhzProtocolCommonEncoderGetUpLoad)subghz_protocol_came_send_key;
return instance;
}
void subghz_protocol_came_free(SubGhzProtocolCame* instance) {
furi_assert(instance);
free(instance);
}
bool subghz_protocol_came_send_key(
SubGhzProtocolCame* instance,
SubGhzProtocolCommonEncoder* encoder) {
furi_assert(instance);
furi_assert(encoder);
size_t index = 0;
encoder->size_upload = (instance->common.code_last_count_bit * 2) + 2;
if(encoder->size_upload > SUBGHZ_ENCODER_UPLOAD_MAX_SIZE) return false;
//Send header
encoder->upload[index++] =
level_duration_make(false, (uint32_t)instance->common.te_short * 36);
//Send start bit
encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_short);
//Send key data
for(uint8_t i = instance->common.code_last_count_bit; i > 0; i--) {
if(bit_read(instance->common.code_last_found, i - 1)) {
//send bit 1
encoder->upload[index++] =
level_duration_make(false, (uint32_t)instance->common.te_long);
encoder->upload[index++] =
level_duration_make(true, (uint32_t)instance->common.te_short);
} else {
//send bit 0
encoder->upload[index++] =
level_duration_make(false, (uint32_t)instance->common.te_short);
encoder->upload[index++] =
level_duration_make(true, (uint32_t)instance->common.te_long);
}
}
return true;
}
void subghz_protocol_came_reset(SubGhzProtocolCame* instance) {
instance->common.parser_step = CameDecoderStepReset;
}
void subghz_protocol_came_parse(SubGhzProtocolCame* instance, bool level, uint32_t duration) {
switch(instance->common.parser_step) {
case CameDecoderStepReset:
if((!level) && (DURATION_DIFF(duration, instance->common.te_short * 51) <
instance->common.te_delta * 51)) { //Need protocol 36 te_short
//Found header CAME
instance->common.parser_step = CameDecoderStepFoundStartBit;
} else {
instance->common.parser_step = CameDecoderStepReset;
}
break;
case CameDecoderStepFoundStartBit:
if(!level) {
break;
} else if(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta) {
//Found start bit CAME
instance->common.parser_step = CameDecoderStepSaveDuration;
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
} else {
instance->common.parser_step = CameDecoderStepReset;
}
break;
case CameDecoderStepSaveDuration:
if(!level) { //save interval
if(duration >= (instance->common.te_short * 4)) {
instance->common.parser_step = CameDecoderStepFoundStartBit;
if(instance->common.code_count_bit >=
instance->common.code_min_count_bit_for_found) {
instance->common.serial = 0x0;
instance->common.btn = 0x0;
instance->common.code_last_found = instance->common.code_found;
instance->common.code_last_count_bit = instance->common.code_count_bit;
if(instance->common.callback)
instance->common.callback(
(SubGhzProtocolCommon*)instance, instance->common.context);
}
break;
}
instance->common.te_last = duration;
instance->common.parser_step = CameDecoderStepCheckDuration;
} else {
instance->common.parser_step = CameDecoderStepReset;
}
break;
case CameDecoderStepCheckDuration:
if(level) {
if((DURATION_DIFF(instance->common.te_last, instance->common.te_short) <
instance->common.te_delta) &&
(DURATION_DIFF(duration, instance->common.te_long) < instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 0);
instance->common.parser_step = CameDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->common.te_last, instance->common.te_long) <
instance->common.te_delta) &&
(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 1);
instance->common.parser_step = CameDecoderStepSaveDuration;
} else
instance->common.parser_step = CameDecoderStepReset;
} else {
instance->common.parser_step = CameDecoderStepReset;
}
break;
}
}
void subghz_protocol_came_to_str(SubGhzProtocolCame* instance, string_t output) {
uint32_t code_found_lo = instance->common.code_last_found & 0x00000000ffffffff;
uint64_t code_found_reverse = subghz_protocol_common_reverse_key(
instance->common.code_last_found, instance->common.code_last_count_bit);
uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff;
string_cat_printf(
output,
"%s %dbit\r\n"
"Key:0x%08lX\r\n"
"Yek:0x%08lX\r\n",
instance->common.name,
instance->common.code_last_count_bit,
code_found_lo,
code_found_reverse_lo);
}
void subghz_protocol_came_to_save_str(SubGhzProtocolCame* instance, string_t output) {
string_printf(
output,
"Protocol: %s\n"
"Bit: %d\n"
"Key: %08lX\n",
instance->common.name,
instance->common.code_last_count_bit,
(uint32_t)(instance->common.code_last_found & 0x00000000ffffffff));
}
bool subghz_protocol_came_to_load_protocol_from_file(
FileWorker* file_worker,
SubGhzProtocolCame* instance) {
bool loaded = false;
string_t temp_str;
string_init(temp_str);
int res = 0;
int data = 0;
do {
// Read and parse bit data from 2nd line
if(!file_worker_read_until(file_worker, temp_str, '\n')) {
break;
}
res = sscanf(string_get_cstr(temp_str), "Bit: %d\n", &data);
if(res != 1) {
break;
}
instance->common.code_last_count_bit = (uint8_t)data;
// Read and parse key data from 3nd line
if(!file_worker_read_until(file_worker, temp_str, '\n')) {
break;
}
uint32_t temp_key = 0;
res = sscanf(string_get_cstr(temp_str), "Key: %08lX\n", &temp_key);
if(res != 1) {
break;
}
instance->common.code_last_found = (uint64_t)temp_key;
loaded = true;
} while(0);
string_clear(temp_str);
return loaded;
}
void subghz_decoder_came_to_load_protocol(SubGhzProtocolCame* instance, void* context) {
furi_assert(context);
furi_assert(instance);
SubGhzProtocolCommonLoad* data = context;
instance->common.code_last_found = data->code_found;
instance->common.code_last_count_bit = data->code_count_bit;
}
#include "subghz_protocol_came.h"
#include "subghz_protocol_common.h"
/*
* Help
* https://phreakerclub.com/447
*
*/
struct SubGhzProtocolCame {
SubGhzProtocolCommon common;
};
typedef enum {
CameDecoderStepReset = 0,
CameDecoderStepFoundStartBit,
CameDecoderStepSaveDuration,
CameDecoderStepCheckDuration,
} CameDecoderStep;
SubGhzProtocolCame* subghz_protocol_came_alloc() {
SubGhzProtocolCame* instance = furi_alloc(sizeof(SubGhzProtocolCame));
instance->common.name = "CAME";
instance->common.code_min_count_bit_for_found = 12;
instance->common.te_short = 320;
instance->common.te_long = 640;
instance->common.te_delta = 150;
instance->common.type_protocol = SubGhzProtocolCommonTypeStatic;
instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_protocol_came_to_str;
instance->common.to_save_string =
(SubGhzProtocolCommonGetStrSave)subghz_protocol_came_to_save_str;
instance->common.to_load_protocol_from_file =
(SubGhzProtocolCommonLoadFromFile)subghz_protocol_came_to_load_protocol_from_file;
instance->common.to_load_protocol =
(SubGhzProtocolCommonLoadFromRAW)subghz_decoder_came_to_load_protocol;
instance->common.get_upload_protocol =
(SubGhzProtocolCommonEncoderGetUpLoad)subghz_protocol_came_send_key;
return instance;
}
void subghz_protocol_came_free(SubGhzProtocolCame* instance) {
furi_assert(instance);
free(instance);
}
bool subghz_protocol_came_send_key(
SubGhzProtocolCame* instance,
SubGhzProtocolCommonEncoder* encoder) {
furi_assert(instance);
furi_assert(encoder);
size_t index = 0;
encoder->size_upload = (instance->common.code_last_count_bit * 2) + 2;
if(encoder->size_upload > SUBGHZ_ENCODER_UPLOAD_MAX_SIZE) return false;
//Send header
encoder->upload[index++] =
level_duration_make(false, (uint32_t)instance->common.te_short * 36);
//Send start bit
encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_short);
//Send key data
for(uint8_t i = instance->common.code_last_count_bit; i > 0; i--) {
if(bit_read(instance->common.code_last_found, i - 1)) {
//send bit 1
encoder->upload[index++] =
level_duration_make(false, (uint32_t)instance->common.te_long);
encoder->upload[index++] =
level_duration_make(true, (uint32_t)instance->common.te_short);
} else {
//send bit 0
encoder->upload[index++] =
level_duration_make(false, (uint32_t)instance->common.te_short);
encoder->upload[index++] =
level_duration_make(true, (uint32_t)instance->common.te_long);
}
}
return true;
}
void subghz_protocol_came_reset(SubGhzProtocolCame* instance) {
instance->common.parser_step = CameDecoderStepReset;
}
void subghz_protocol_came_parse(SubGhzProtocolCame* instance, bool level, uint32_t duration) {
switch(instance->common.parser_step) {
case CameDecoderStepReset:
if((!level) && (DURATION_DIFF(duration, instance->common.te_short * 51) <
instance->common.te_delta * 51)) { //Need protocol 36 te_short
//Found header CAME
instance->common.parser_step = CameDecoderStepFoundStartBit;
} else {
instance->common.parser_step = CameDecoderStepReset;
}
break;
case CameDecoderStepFoundStartBit:
if(!level) {
break;
} else if(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta) {
//Found start bit CAME
instance->common.parser_step = CameDecoderStepSaveDuration;
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
} else {
instance->common.parser_step = CameDecoderStepReset;
}
break;
case CameDecoderStepSaveDuration:
if(!level) { //save interval
if(duration >= (instance->common.te_short * 4)) {
instance->common.parser_step = CameDecoderStepFoundStartBit;
if(instance->common.code_count_bit >=
instance->common.code_min_count_bit_for_found) {
instance->common.serial = 0x0;
instance->common.btn = 0x0;
instance->common.code_last_found = instance->common.code_found;
instance->common.code_last_count_bit = instance->common.code_count_bit;
if(instance->common.callback)
instance->common.callback(
(SubGhzProtocolCommon*)instance, instance->common.context);
}
break;
}
instance->common.te_last = duration;
instance->common.parser_step = CameDecoderStepCheckDuration;
} else {
instance->common.parser_step = CameDecoderStepReset;
}
break;
case CameDecoderStepCheckDuration:
if(level) {
if((DURATION_DIFF(instance->common.te_last, instance->common.te_short) <
instance->common.te_delta) &&
(DURATION_DIFF(duration, instance->common.te_long) < instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 0);
instance->common.parser_step = CameDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->common.te_last, instance->common.te_long) <
instance->common.te_delta) &&
(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 1);
instance->common.parser_step = CameDecoderStepSaveDuration;
} else
instance->common.parser_step = CameDecoderStepReset;
} else {
instance->common.parser_step = CameDecoderStepReset;
}
break;
}
}
void subghz_protocol_came_to_str(SubGhzProtocolCame* instance, string_t output) {
uint32_t code_found_lo = instance->common.code_last_found & 0x00000000ffffffff;
uint64_t code_found_reverse = subghz_protocol_common_reverse_key(
instance->common.code_last_found, instance->common.code_last_count_bit);
uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff;
string_cat_printf(
output,
"%s %dbit\r\n"
"Key:0x%08lX\r\n"
"Yek:0x%08lX\r\n",
instance->common.name,
instance->common.code_last_count_bit,
code_found_lo,
code_found_reverse_lo);
}
void subghz_protocol_came_to_save_str(SubGhzProtocolCame* instance, string_t output) {
string_printf(
output,
"Protocol: %s\n"
"Bit: %d\n"
"Key: %08lX\n",
instance->common.name,
instance->common.code_last_count_bit,
(uint32_t)(instance->common.code_last_found & 0x00000000ffffffff));
}
bool subghz_protocol_came_to_load_protocol_from_file(
FileWorker* file_worker,
SubGhzProtocolCame* instance) {
bool loaded = false;
string_t temp_str;
string_init(temp_str);
int res = 0;
int data = 0;
do {
// Read and parse bit data from 2nd line
if(!file_worker_read_until(file_worker, temp_str, '\n')) {
break;
}
res = sscanf(string_get_cstr(temp_str), "Bit: %d\n", &data);
if(res != 1) {
break;
}
instance->common.code_last_count_bit = (uint8_t)data;
// Read and parse key data from 3nd line
if(!file_worker_read_until(file_worker, temp_str, '\n')) {
break;
}
uint32_t temp_key = 0;
res = sscanf(string_get_cstr(temp_str), "Key: %08lX\n", &temp_key);
if(res != 1) {
break;
}
instance->common.code_last_found = (uint64_t)temp_key;
loaded = true;
} while(0);
string_clear(temp_str);
return loaded;
}
void subghz_decoder_came_to_load_protocol(SubGhzProtocolCame* instance, void* context) {
furi_assert(context);
furi_assert(instance);
SubGhzProtocolCommonLoad* data = context;
instance->common.code_last_found = data->code_found;
instance->common.code_last_count_bit = data->code_count_bit;
}

View File

@@ -1,70 +1,70 @@
#pragma once
#include "subghz_protocol_common.h"
typedef struct SubGhzProtocolCame SubGhzProtocolCame;
/** Allocate SubGhzProtocolCame
*
* @return SubGhzProtocolCame*
*/
SubGhzProtocolCame* subghz_protocol_came_alloc();
/** Free SubGhzProtocolCame
*
* @param instance
*/
void subghz_protocol_came_free(SubGhzProtocolCame* instance);
/** Get upload protocol
*
* @param instance - SubGhzProtocolCame instance
* @param encoder - SubGhzProtocolCommonEncoder encoder
* @return bool
*/
bool subghz_protocol_came_send_key(
SubGhzProtocolCame* instance,
SubGhzProtocolCommonEncoder* encoder);
/** Reset internal state
* @param instance - SubGhzProtocolCame instance
*/
void subghz_protocol_came_reset(SubGhzProtocolCame* instance);
/** Parse accepted duration
*
* @param instance - SubGhzProtocolCame instance
* @param data - LevelDuration level_duration
*/
void subghz_protocol_came_parse(SubGhzProtocolCame* instance, bool level, uint32_t duration);
/** Outputting information from the parser
*
* @param instance - SubGhzProtocolCame* instance
* @param output - output string
*/
void subghz_protocol_came_to_str(SubGhzProtocolCame* instance, string_t output);
/** Get a string to save the protocol
*
* @param instance - SubGhzProtocolCame instance
* @param output - the resulting string
*/
void subghz_protocol_came_to_save_str(SubGhzProtocolCame* instance, string_t output);
/** Loading protocol from file
*
* @param file_worker - FileWorker file_worker
* @param instance - SubGhzProtocolCame instance
* @return bool
*/
bool subghz_protocol_came_to_load_protocol_from_file(
FileWorker* file_worker,
SubGhzProtocolCame* instance);
/** Loading protocol from bin data
*
* @param instance - SubGhzProtocolCame instance
* @param context - SubGhzProtocolCommonLoad context
*/
#pragma once
#include "subghz_protocol_common.h"
typedef struct SubGhzProtocolCame SubGhzProtocolCame;
/** Allocate SubGhzProtocolCame
*
* @return SubGhzProtocolCame*
*/
SubGhzProtocolCame* subghz_protocol_came_alloc();
/** Free SubGhzProtocolCame
*
* @param instance
*/
void subghz_protocol_came_free(SubGhzProtocolCame* instance);
/** Get upload protocol
*
* @param instance - SubGhzProtocolCame instance
* @param encoder - SubGhzProtocolCommonEncoder encoder
* @return bool
*/
bool subghz_protocol_came_send_key(
SubGhzProtocolCame* instance,
SubGhzProtocolCommonEncoder* encoder);
/** Reset internal state
* @param instance - SubGhzProtocolCame instance
*/
void subghz_protocol_came_reset(SubGhzProtocolCame* instance);
/** Parse accepted duration
*
* @param instance - SubGhzProtocolCame instance
* @param data - LevelDuration level_duration
*/
void subghz_protocol_came_parse(SubGhzProtocolCame* instance, bool level, uint32_t duration);
/** Outputting information from the parser
*
* @param instance - SubGhzProtocolCame* instance
* @param output - output string
*/
void subghz_protocol_came_to_str(SubGhzProtocolCame* instance, string_t output);
/** Get a string to save the protocol
*
* @param instance - SubGhzProtocolCame instance
* @param output - the resulting string
*/
void subghz_protocol_came_to_save_str(SubGhzProtocolCame* instance, string_t output);
/** Loading protocol from file
*
* @param file_worker - FileWorker file_worker
* @param instance - SubGhzProtocolCame instance
* @return bool
*/
bool subghz_protocol_came_to_load_protocol_from_file(
FileWorker* file_worker,
SubGhzProtocolCame* instance);
/** Loading protocol from bin data
*
* @param instance - SubGhzProtocolCame instance
* @param context - SubGhzProtocolCommonLoad context
*/
void subghz_decoder_came_to_load_protocol(SubGhzProtocolCame* instance, void* context);

View File

@@ -1,4 +1,4 @@
/*
* https://phreakerclub.com/616
*/
/*
* https://phreakerclub.com/616
*/

View File

@@ -1,139 +1,139 @@
#include "subghz_protocol_common.h"
#include <stdio.h>
#include <lib/toolbox/hex.h>
SubGhzProtocolCommonEncoder* subghz_protocol_encoder_common_alloc() {
SubGhzProtocolCommonEncoder* instance = furi_alloc(sizeof(SubGhzProtocolCommonEncoder));
instance->upload = furi_alloc(SUBGHZ_ENCODER_UPLOAD_MAX_SIZE * sizeof(LevelDuration));
instance->start = true;
instance->repeat = 10; //default number of repeat
return instance;
}
void subghz_protocol_encoder_common_free(SubGhzProtocolCommonEncoder* instance) {
furi_assert(instance);
free(instance->upload);
free(instance);
}
size_t subghz_encoder_common_get_repeat_left(SubGhzProtocolCommonEncoder* instance) {
furi_assert(instance);
return instance->repeat;
}
LevelDuration subghz_protocol_encoder_common_yield(void* context) {
SubGhzProtocolCommonEncoder* instance = context;
if(instance->repeat == 0){
return level_duration_reset();
}
LevelDuration ret = instance->upload[instance->front];
if(++instance->front == instance->size_upload) {
instance->repeat--;
instance->front = 0;
}
return ret;
}
void subghz_protocol_common_add_bit(SubGhzProtocolCommon *common, uint8_t bit){
common->code_found = common->code_found << 1 | bit;
common->code_count_bit++;
}
bool subghz_protocol_common_check_interval(SubGhzProtocolCommon *common, uint32_t duration, uint16_t duration_check) {
if ((duration_check >= (duration - common->te_delta))&&(duration_check <= (duration + common->te_delta))){
return true;
} else {
return false;
}
}
uint64_t subghz_protocol_common_reverse_key(uint64_t key, uint8_t count_bit){
uint64_t key_reverse=0;
for(uint8_t i=0; i<count_bit; i++) {
key_reverse=key_reverse<<1|bit_read(key,i);
}
return key_reverse;
}
void subghz_protocol_common_set_callback(SubGhzProtocolCommon* common, SubGhzProtocolCommonCallback callback, void* context) {
common->callback = callback;
common->context = context;
}
void subghz_protocol_common_to_str(SubGhzProtocolCommon* instance, string_t output) {
if (instance->to_string) {
instance->to_string(instance, output);
} else {
uint32_t code_found_hi = instance->code_found >> 32;
uint32_t code_found_lo = instance->code_found & 0x00000000ffffffff;
uint64_t code_found_reverse = subghz_protocol_common_reverse_key(instance->code_found, instance->code_count_bit);
uint32_t code_found_reverse_hi = code_found_reverse>>32;
uint32_t code_found_reverse_lo = code_found_reverse&0x00000000ffffffff;
if (code_found_hi>0) {
string_cat_printf(
output,
"Protocol %s, %d Bit\r\n"
" KEY:0x%lX%08lX\r\n"
" YEK:0x%lX%08lX\r\n"
" SN:0x%05lX BTN:%02X\r\n",
instance->name,
instance->code_count_bit,
code_found_hi,
code_found_lo,
code_found_reverse_hi,
code_found_reverse_lo,
instance->serial,
instance->btn
);
} else {
string_cat_printf(
output,
"Protocol %s, %d Bit\r\n"
" KEY:0x%lX%lX\r\n"
" YEK:0x%lX%lX\r\n"
" SN:0x%05lX BTN:%02X\r\n",
instance->name,
instance->code_count_bit,
code_found_hi,
code_found_lo,
code_found_reverse_hi,
code_found_reverse_lo,
instance->serial,
instance->btn
);
}
}
}
bool subghz_protocol_common_read_hex(string_t str, uint8_t* buff, uint16_t len) {
string_strim(str);
uint8_t nibble_high = 0;
uint8_t nibble_low = 0;
bool parsed = true;
for(uint16_t i = 0; i < len; i++) {
if(hex_char_to_hex_nibble(string_get_char(str, 0), &nibble_high) &&
hex_char_to_hex_nibble(string_get_char(str, 1), &nibble_low)) {
buff[i] = (nibble_high << 4) | nibble_low;
if(string_size(str)>2){
string_right(str, 2);
}else if(i<len-1){
parsed = false;
break;
};
} else {
parsed = false;
break;
}
}
return parsed;
}
#include "subghz_protocol_common.h"
#include <stdio.h>
#include <lib/toolbox/hex.h>
SubGhzProtocolCommonEncoder* subghz_protocol_encoder_common_alloc() {
SubGhzProtocolCommonEncoder* instance = furi_alloc(sizeof(SubGhzProtocolCommonEncoder));
instance->upload = furi_alloc(SUBGHZ_ENCODER_UPLOAD_MAX_SIZE * sizeof(LevelDuration));
instance->start = true;
instance->repeat = 10; //default number of repeat
return instance;
}
void subghz_protocol_encoder_common_free(SubGhzProtocolCommonEncoder* instance) {
furi_assert(instance);
free(instance->upload);
free(instance);
}
size_t subghz_encoder_common_get_repeat_left(SubGhzProtocolCommonEncoder* instance) {
furi_assert(instance);
return instance->repeat;
}
LevelDuration subghz_protocol_encoder_common_yield(void* context) {
SubGhzProtocolCommonEncoder* instance = context;
if(instance->repeat == 0){
return level_duration_reset();
}
LevelDuration ret = instance->upload[instance->front];
if(++instance->front == instance->size_upload) {
instance->repeat--;
instance->front = 0;
}
return ret;
}
void subghz_protocol_common_add_bit(SubGhzProtocolCommon *common, uint8_t bit){
common->code_found = common->code_found << 1 | bit;
common->code_count_bit++;
}
bool subghz_protocol_common_check_interval(SubGhzProtocolCommon *common, uint32_t duration, uint16_t duration_check) {
if ((duration_check >= (duration - common->te_delta))&&(duration_check <= (duration + common->te_delta))){
return true;
} else {
return false;
}
}
uint64_t subghz_protocol_common_reverse_key(uint64_t key, uint8_t count_bit){
uint64_t key_reverse=0;
for(uint8_t i=0; i<count_bit; i++) {
key_reverse=key_reverse<<1|bit_read(key,i);
}
return key_reverse;
}
void subghz_protocol_common_set_callback(SubGhzProtocolCommon* common, SubGhzProtocolCommonCallback callback, void* context) {
common->callback = callback;
common->context = context;
}
void subghz_protocol_common_to_str(SubGhzProtocolCommon* instance, string_t output) {
if (instance->to_string) {
instance->to_string(instance, output);
} else {
uint32_t code_found_hi = instance->code_found >> 32;
uint32_t code_found_lo = instance->code_found & 0x00000000ffffffff;
uint64_t code_found_reverse = subghz_protocol_common_reverse_key(instance->code_found, instance->code_count_bit);
uint32_t code_found_reverse_hi = code_found_reverse>>32;
uint32_t code_found_reverse_lo = code_found_reverse&0x00000000ffffffff;
if (code_found_hi>0) {
string_cat_printf(
output,
"Protocol %s, %d Bit\r\n"
" KEY:0x%lX%08lX\r\n"
" YEK:0x%lX%08lX\r\n"
" SN:0x%05lX BTN:%02X\r\n",
instance->name,
instance->code_count_bit,
code_found_hi,
code_found_lo,
code_found_reverse_hi,
code_found_reverse_lo,
instance->serial,
instance->btn
);
} else {
string_cat_printf(
output,
"Protocol %s, %d Bit\r\n"
" KEY:0x%lX%lX\r\n"
" YEK:0x%lX%lX\r\n"
" SN:0x%05lX BTN:%02X\r\n",
instance->name,
instance->code_count_bit,
code_found_hi,
code_found_lo,
code_found_reverse_hi,
code_found_reverse_lo,
instance->serial,
instance->btn
);
}
}
}
bool subghz_protocol_common_read_hex(string_t str, uint8_t* buff, uint16_t len) {
string_strim(str);
uint8_t nibble_high = 0;
uint8_t nibble_low = 0;
bool parsed = true;
for(uint16_t i = 0; i < len; i++) {
if(hex_char_to_hex_nibble(string_get_char(str, 0), &nibble_high) &&
hex_char_to_hex_nibble(string_get_char(str, 1), &nibble_low)) {
buff[i] = (nibble_high << 4) | nibble_low;
if(string_size(str)>2){
string_right(str, 2);
}else if(i<len-1){
parsed = false;
break;
};
} else {
parsed = false;
break;
}
}
return parsed;
}

View File

@@ -1,177 +1,177 @@
#pragma once
#include <m-string.h>
#include <furi-hal.h>
#include <stdint.h>
#include "file-worker.h"
#define bit_read(value, bit) (((value) >> (bit)) & 0x01)
#define bit_set(value, bit) ((value) |= (1UL << (bit)))
#define bit_clear(value, bit) ((value) &= ~(1UL << (bit)))
#define bit_write(value, bit, bitvalue) (bitvalue ? bit_set(value, bit) : bit_clear(value, bit))
#define SUBGHZ_TX_PIN_HIGH()
#define SUBGHZ_TX_PIN_LOW()
#define DURATION_DIFF(x, y) ((x < y) ? (y - x) : (x - y))
#define SUBGHZ_APP_FOLDER "/any/subghz"
#define SUBGHZ_APP_PATH_FOLDER "/any/subghz/saved"
#define SUBGHZ_APP_EXTENSION ".sub"
#define SUBGHZ_ENCODER_UPLOAD_MAX_SIZE 2048
typedef enum {
SubGhzProtocolCommonTypeUnknown,
SubGhzProtocolCommonTypeStatic,
SubGhzProtocolCommonTypeDynamic,
} SubGhzProtocolCommonType;
typedef struct SubGhzProtocolCommon SubGhzProtocolCommon;
typedef struct SubGhzProtocolCommonEncoder SubGhzProtocolCommonEncoder;
typedef struct SubGhzProtocolCommonLoad SubGhzProtocolCommonLoad;
typedef void (*SubGhzProtocolCommonCallback)(SubGhzProtocolCommon* parser, void* context);
typedef void (*SubGhzProtocolCommonToStr)(SubGhzProtocolCommon* instance, string_t output);
//Get string to save
typedef void (*SubGhzProtocolCommonGetStrSave)(SubGhzProtocolCommon* instance, string_t output);
//Load protocol from file
typedef bool (
*SubGhzProtocolCommonLoadFromFile)(FileWorker* file_worker, SubGhzProtocolCommon* instance);
//Load protocol
typedef void (*SubGhzProtocolCommonLoadFromRAW)(SubGhzProtocolCommon* instance, void* context);
//Get upload encoder protocol
typedef bool (*SubGhzProtocolCommonEncoderGetUpLoad)(
SubGhzProtocolCommon* instance,
SubGhzProtocolCommonEncoder* encoder);
struct SubGhzProtocolCommon {
const char* name;
uint16_t te_long;
uint16_t te_short;
uint16_t te_delta;
uint8_t code_count_bit;
uint8_t code_last_count_bit;
uint64_t code_found;
uint64_t code_last_found;
uint8_t code_min_count_bit_for_found;
uint8_t btn;
uint8_t header_count;
SubGhzProtocolCommonType type_protocol;
uint32_t te_last;
uint32_t serial;
uint32_t parser_step;
uint16_t cnt;
/* Standard Callback for on rx complete event */
SubGhzProtocolCommonCallback callback;
void* context;
/* Dump To String */
SubGhzProtocolCommonToStr to_string;
/* Get string to save */
SubGhzProtocolCommonGetStrSave to_save_string;
/* Load protocol from file */
SubGhzProtocolCommonLoadFromFile to_load_protocol_from_file;
/* Load protocol from RAW data */
SubGhzProtocolCommonLoadFromRAW to_load_protocol;
/* Get upload encoder protocol */
SubGhzProtocolCommonEncoderGetUpLoad get_upload_protocol;
};
struct SubGhzProtocolCommonEncoder {
bool start;
size_t repeat;
size_t front;
size_t size_upload;
LevelDuration* upload;
};
struct SubGhzProtocolCommonLoad {
uint64_t code_found;
uint8_t code_count_bit;
uint32_t param1;
uint32_t param2;
uint32_t param3;
};
/** Allocate SubGhzProtocolCommonEncoder
*
* @return SubGhzProtocolCommonEncoder*
*/
SubGhzProtocolCommonEncoder* subghz_protocol_encoder_common_alloc();
/** Free SubGhzProtocolCommonEncoder
*
* @param instance
*/
void subghz_protocol_encoder_common_free(SubGhzProtocolCommonEncoder* instance);
/** Get count repeat left
*
* @param instance - SubGhzProtocolCommonEncoder instance
* @return count repeat left
*/
size_t subghz_encoder_common_get_repeat_left(SubGhzProtocolCommonEncoder* instance);
/** Get LevelDuration this encoder step
*
* @param context - SubGhzProtocolCommonEncoder context
* @return LevelDuration this step
*/
LevelDuration subghz_protocol_encoder_common_yield(void* context);
/** Add data bit to code_found
*
* @param common - SubGhzProtocolCommon common
* @param bit - add bit
*/
void subghz_protocol_common_add_bit(SubGhzProtocolCommon* common, uint8_t bit);
/** Checking that the duration is included in the interval
*
* @param common - SubGhzProtocolCommon common
* @param duration duration reference
* @param duration_check duration checked
* @return true on success
*/
bool subghz_protocol_common_check_interval(
SubGhzProtocolCommon* common,
uint32_t duration,
uint16_t duration_check);
/** Bit-by-bit data mirroring
*
* @param key - data to mirror
* @param count_bit number of data bits
* @return mirrored data
*/
uint64_t subghz_protocol_common_reverse_key(uint64_t key, uint8_t count_bit);
/** Callback protocol
*
* @param instance - SubGhzProtocolCommon* instance
* @param callback
* @param context
*/
void subghz_protocol_common_set_callback(
SubGhzProtocolCommon* instance,
SubGhzProtocolCommonCallback callback,
void* context);
/** outputting information from the parser
*
* @param instance - SubGhzProtocolCommon* instance
* @param output - output string
*/
void subghz_protocol_common_to_str(SubGhzProtocolCommon* instance, string_t output);
/** Converting a string to a HEX array
*
* @param str - string data
* @param buff - uint8_t* buff
* @param len - size buff
* @return bool
*/
bool subghz_protocol_common_read_hex(string_t str, uint8_t* buff, uint16_t len);
#pragma once
#include <m-string.h>
#include <furi-hal.h>
#include <stdint.h>
#include "file-worker.h"
#define bit_read(value, bit) (((value) >> (bit)) & 0x01)
#define bit_set(value, bit) ((value) |= (1UL << (bit)))
#define bit_clear(value, bit) ((value) &= ~(1UL << (bit)))
#define bit_write(value, bit, bitvalue) (bitvalue ? bit_set(value, bit) : bit_clear(value, bit))
#define SUBGHZ_TX_PIN_HIGH()
#define SUBGHZ_TX_PIN_LOW()
#define DURATION_DIFF(x, y) ((x < y) ? (y - x) : (x - y))
#define SUBGHZ_APP_FOLDER "/any/subghz"
#define SUBGHZ_APP_PATH_FOLDER "/any/subghz/saved"
#define SUBGHZ_APP_EXTENSION ".sub"
#define SUBGHZ_ENCODER_UPLOAD_MAX_SIZE 2048
typedef enum {
SubGhzProtocolCommonTypeUnknown,
SubGhzProtocolCommonTypeStatic,
SubGhzProtocolCommonTypeDynamic,
} SubGhzProtocolCommonType;
typedef struct SubGhzProtocolCommon SubGhzProtocolCommon;
typedef struct SubGhzProtocolCommonEncoder SubGhzProtocolCommonEncoder;
typedef struct SubGhzProtocolCommonLoad SubGhzProtocolCommonLoad;
typedef void (*SubGhzProtocolCommonCallback)(SubGhzProtocolCommon* parser, void* context);
typedef void (*SubGhzProtocolCommonToStr)(SubGhzProtocolCommon* instance, string_t output);
//Get string to save
typedef void (*SubGhzProtocolCommonGetStrSave)(SubGhzProtocolCommon* instance, string_t output);
//Load protocol from file
typedef bool (
*SubGhzProtocolCommonLoadFromFile)(FileWorker* file_worker, SubGhzProtocolCommon* instance);
//Load protocol
typedef void (*SubGhzProtocolCommonLoadFromRAW)(SubGhzProtocolCommon* instance, void* context);
//Get upload encoder protocol
typedef bool (*SubGhzProtocolCommonEncoderGetUpLoad)(
SubGhzProtocolCommon* instance,
SubGhzProtocolCommonEncoder* encoder);
struct SubGhzProtocolCommon {
const char* name;
uint16_t te_long;
uint16_t te_short;
uint16_t te_delta;
uint8_t code_count_bit;
uint8_t code_last_count_bit;
uint64_t code_found;
uint64_t code_last_found;
uint8_t code_min_count_bit_for_found;
uint8_t btn;
uint8_t header_count;
SubGhzProtocolCommonType type_protocol;
uint32_t te_last;
uint32_t serial;
uint32_t parser_step;
uint16_t cnt;
/* Standard Callback for on rx complete event */
SubGhzProtocolCommonCallback callback;
void* context;
/* Dump To String */
SubGhzProtocolCommonToStr to_string;
/* Get string to save */
SubGhzProtocolCommonGetStrSave to_save_string;
/* Load protocol from file */
SubGhzProtocolCommonLoadFromFile to_load_protocol_from_file;
/* Load protocol from RAW data */
SubGhzProtocolCommonLoadFromRAW to_load_protocol;
/* Get upload encoder protocol */
SubGhzProtocolCommonEncoderGetUpLoad get_upload_protocol;
};
struct SubGhzProtocolCommonEncoder {
bool start;
size_t repeat;
size_t front;
size_t size_upload;
LevelDuration* upload;
};
struct SubGhzProtocolCommonLoad {
uint64_t code_found;
uint8_t code_count_bit;
uint32_t param1;
uint32_t param2;
uint32_t param3;
};
/** Allocate SubGhzProtocolCommonEncoder
*
* @return SubGhzProtocolCommonEncoder*
*/
SubGhzProtocolCommonEncoder* subghz_protocol_encoder_common_alloc();
/** Free SubGhzProtocolCommonEncoder
*
* @param instance
*/
void subghz_protocol_encoder_common_free(SubGhzProtocolCommonEncoder* instance);
/** Get count repeat left
*
* @param instance - SubGhzProtocolCommonEncoder instance
* @return count repeat left
*/
size_t subghz_encoder_common_get_repeat_left(SubGhzProtocolCommonEncoder* instance);
/** Get LevelDuration this encoder step
*
* @param context - SubGhzProtocolCommonEncoder context
* @return LevelDuration this step
*/
LevelDuration subghz_protocol_encoder_common_yield(void* context);
/** Add data bit to code_found
*
* @param common - SubGhzProtocolCommon common
* @param bit - add bit
*/
void subghz_protocol_common_add_bit(SubGhzProtocolCommon* common, uint8_t bit);
/** Checking that the duration is included in the interval
*
* @param common - SubGhzProtocolCommon common
* @param duration duration reference
* @param duration_check duration checked
* @return true on success
*/
bool subghz_protocol_common_check_interval(
SubGhzProtocolCommon* common,
uint32_t duration,
uint16_t duration_check);
/** Bit-by-bit data mirroring
*
* @param key - data to mirror
* @param count_bit number of data bits
* @return mirrored data
*/
uint64_t subghz_protocol_common_reverse_key(uint64_t key, uint8_t count_bit);
/** Callback protocol
*
* @param instance - SubGhzProtocolCommon* instance
* @param callback
* @param context
*/
void subghz_protocol_common_set_callback(
SubGhzProtocolCommon* instance,
SubGhzProtocolCommonCallback callback,
void* context);
/** outputting information from the parser
*
* @param instance - SubGhzProtocolCommon* instance
* @param output - output string
*/
void subghz_protocol_common_to_str(SubGhzProtocolCommon* instance, string_t output);
/** Converting a string to a HEX array
*
* @param str - string data
* @param buff - uint8_t* buff
* @param len - size buff
* @return bool
*/
bool subghz_protocol_common_read_hex(string_t str, uint8_t* buff, uint16_t len);

View File

@@ -1,191 +1,191 @@
#include "subghz_protocol_faac_slh.h"
struct SubGhzProtocolFaacSLH {
SubGhzProtocolCommon common;
};
typedef enum {
FaacSLHDecoderStepReset = 0,
FaacSLHDecoderStepFoundPreambula,
FaacSLHDecoderStepSaveDuration,
FaacSLHDecoderStepCheckDuration,
} FaacSLHDecoderStep;
SubGhzProtocolFaacSLH* subghz_protocol_faac_slh_alloc(void) {
SubGhzProtocolFaacSLH* instance = furi_alloc(sizeof(SubGhzProtocolFaacSLH));
instance->common.name = "Faac SLH";
instance->common.code_min_count_bit_for_found = 64;
instance->common.te_short = 255;
instance->common.te_long = 595;
instance->common.te_delta = 100;
instance->common.type_protocol = SubGhzProtocolCommonTypeDynamic;
instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_protocol_faac_slh_to_str;
instance->common.to_load_protocol =
(SubGhzProtocolCommonLoadFromRAW)subghz_decoder_faac_slh_to_load_protocol;
return instance;
}
void subghz_protocol_faac_slh_free(SubGhzProtocolFaacSLH* instance) {
furi_assert(instance);
free(instance);
}
/** Send bit
*
* @param instance - SubGhzProtocolFaacSLH instance
* @param bit - bit
*/
void subghz_protocol_faac_slh_send_bit(SubGhzProtocolFaacSLH* instance, uint8_t bit) {
if(bit) {
//send bit 1
SUBGHZ_TX_PIN_HIGH();
delay_us(instance->common.te_long);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_short);
} else {
//send bit 0
SUBGHZ_TX_PIN_HIGH();
delay_us(instance->common.te_short);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_long);
}
}
void subghz_protocol_faac_slh_send_key(
SubGhzProtocolFaacSLH* instance,
uint64_t key,
uint8_t bit,
uint8_t repeat) {
while(repeat--) {
SUBGHZ_TX_PIN_HIGH();
//Send header
delay_us(instance->common.te_long * 2);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_long * 2);
//Send key data
for(uint8_t i = bit; i > 0; i--) {
subghz_protocol_faac_slh_send_bit(instance, bit_read(key, i - 1));
}
}
}
void subghz_protocol_faac_slh_reset(SubGhzProtocolFaacSLH* instance) {
instance->common.parser_step = FaacSLHDecoderStepReset;
}
/** Analysis of received data
*
* @param instance SubGhzProtocolFaacSLH instance
*/
void subghz_protocol_faac_slh_check_remote_controller(SubGhzProtocolFaacSLH* instance) {
uint64_t code_found_reverse = subghz_protocol_common_reverse_key(
instance->common.code_last_found, instance->common.code_last_count_bit);
uint32_t code_fix = code_found_reverse & 0xFFFFFFFF;
//uint32_t code_hop = (code_found_reverse >> 24) & 0xFFFFF;
instance->common.serial = code_fix & 0xFFFFFFF;
instance->common.btn = (code_fix >> 28) & 0x0F;
}
void subghz_protocol_faac_slh_parse(SubGhzProtocolFaacSLH* instance, bool level, uint32_t duration) {
switch(instance->common.parser_step) {
case FaacSLHDecoderStepReset:
if((level) && (DURATION_DIFF(duration, instance->common.te_long * 2) <
instance->common.te_delta * 3)) {
instance->common.parser_step = FaacSLHDecoderStepFoundPreambula;
} else {
instance->common.parser_step = FaacSLHDecoderStepReset;
}
break;
case FaacSLHDecoderStepFoundPreambula:
if((!level) && (DURATION_DIFF(duration, instance->common.te_long * 2) <
instance->common.te_delta * 3)) {
//Found Preambula
instance->common.parser_step = FaacSLHDecoderStepSaveDuration;
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
} else {
instance->common.parser_step = FaacSLHDecoderStepReset;
}
break;
case FaacSLHDecoderStepSaveDuration:
if(level) {
if(duration >= (instance->common.te_short * 3 + instance->common.te_delta)) {
instance->common.parser_step = FaacSLHDecoderStepFoundPreambula;
if(instance->common.code_count_bit >=
instance->common.code_min_count_bit_for_found) {
instance->common.code_last_found = instance->common.code_found;
instance->common.code_last_count_bit = instance->common.code_count_bit;
if(instance->common.callback)
instance->common.callback(
(SubGhzProtocolCommon*)instance, instance->common.context);
}
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
break;
} else {
instance->common.te_last = duration;
instance->common.parser_step = FaacSLHDecoderStepCheckDuration;
}
} else {
instance->common.parser_step = FaacSLHDecoderStepReset;
}
break;
case FaacSLHDecoderStepCheckDuration:
if(!level) {
if((DURATION_DIFF(instance->common.te_last, instance->common.te_short) <
instance->common.te_delta) &&
(DURATION_DIFF(duration, instance->common.te_long) < instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 0);
instance->common.parser_step = FaacSLHDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->common.te_last, instance->common.te_long) <
instance->common.te_delta) &&
(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 1);
instance->common.parser_step = FaacSLHDecoderStepSaveDuration;
} else {
instance->common.parser_step = FaacSLHDecoderStepReset;
}
} else {
instance->common.parser_step = FaacSLHDecoderStepReset;
}
break;
}
}
void subghz_protocol_faac_slh_to_str(SubGhzProtocolFaacSLH* instance, string_t output) {
subghz_protocol_faac_slh_check_remote_controller(instance);
uint64_t code_found_reverse = subghz_protocol_common_reverse_key(
instance->common.code_last_found, instance->common.code_last_count_bit);
uint32_t code_fix = code_found_reverse & 0xFFFFFFFF;
uint32_t code_hop = (code_found_reverse >> 32) & 0xFFFFFFFF;
string_cat_printf(
output,
"%s %dbit\r\n"
"Key:0x%lX%08lX\r\n"
"Fix:%08lX \r\n"
"Hop:%08lX \r\n"
"Sn:%07lX Btn:%lX\r\n",
instance->common.name,
instance->common.code_last_count_bit,
(uint32_t)(instance->common.code_last_found >> 32),
(uint32_t)instance->common.code_last_found,
code_fix,
code_hop,
instance->common.serial,
instance->common.btn);
}
void subghz_decoder_faac_slh_to_load_protocol(SubGhzProtocolFaacSLH* instance, void* context) {
furi_assert(context);
furi_assert(instance);
SubGhzProtocolCommonLoad* data = context;
instance->common.code_last_found = data->code_found;
instance->common.code_last_count_bit = data->code_count_bit;
subghz_protocol_faac_slh_check_remote_controller(instance);
#include "subghz_protocol_faac_slh.h"
struct SubGhzProtocolFaacSLH {
SubGhzProtocolCommon common;
};
typedef enum {
FaacSLHDecoderStepReset = 0,
FaacSLHDecoderStepFoundPreambula,
FaacSLHDecoderStepSaveDuration,
FaacSLHDecoderStepCheckDuration,
} FaacSLHDecoderStep;
SubGhzProtocolFaacSLH* subghz_protocol_faac_slh_alloc(void) {
SubGhzProtocolFaacSLH* instance = furi_alloc(sizeof(SubGhzProtocolFaacSLH));
instance->common.name = "Faac SLH";
instance->common.code_min_count_bit_for_found = 64;
instance->common.te_short = 255;
instance->common.te_long = 595;
instance->common.te_delta = 100;
instance->common.type_protocol = SubGhzProtocolCommonTypeDynamic;
instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_protocol_faac_slh_to_str;
instance->common.to_load_protocol =
(SubGhzProtocolCommonLoadFromRAW)subghz_decoder_faac_slh_to_load_protocol;
return instance;
}
void subghz_protocol_faac_slh_free(SubGhzProtocolFaacSLH* instance) {
furi_assert(instance);
free(instance);
}
/** Send bit
*
* @param instance - SubGhzProtocolFaacSLH instance
* @param bit - bit
*/
void subghz_protocol_faac_slh_send_bit(SubGhzProtocolFaacSLH* instance, uint8_t bit) {
if(bit) {
//send bit 1
SUBGHZ_TX_PIN_HIGH();
delay_us(instance->common.te_long);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_short);
} else {
//send bit 0
SUBGHZ_TX_PIN_HIGH();
delay_us(instance->common.te_short);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_long);
}
}
void subghz_protocol_faac_slh_send_key(
SubGhzProtocolFaacSLH* instance,
uint64_t key,
uint8_t bit,
uint8_t repeat) {
while(repeat--) {
SUBGHZ_TX_PIN_HIGH();
//Send header
delay_us(instance->common.te_long * 2);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_long * 2);
//Send key data
for(uint8_t i = bit; i > 0; i--) {
subghz_protocol_faac_slh_send_bit(instance, bit_read(key, i - 1));
}
}
}
void subghz_protocol_faac_slh_reset(SubGhzProtocolFaacSLH* instance) {
instance->common.parser_step = FaacSLHDecoderStepReset;
}
/** Analysis of received data
*
* @param instance SubGhzProtocolFaacSLH instance
*/
void subghz_protocol_faac_slh_check_remote_controller(SubGhzProtocolFaacSLH* instance) {
uint64_t code_found_reverse = subghz_protocol_common_reverse_key(
instance->common.code_last_found, instance->common.code_last_count_bit);
uint32_t code_fix = code_found_reverse & 0xFFFFFFFF;
//uint32_t code_hop = (code_found_reverse >> 24) & 0xFFFFF;
instance->common.serial = code_fix & 0xFFFFFFF;
instance->common.btn = (code_fix >> 28) & 0x0F;
}
void subghz_protocol_faac_slh_parse(SubGhzProtocolFaacSLH* instance, bool level, uint32_t duration) {
switch(instance->common.parser_step) {
case FaacSLHDecoderStepReset:
if((level) && (DURATION_DIFF(duration, instance->common.te_long * 2) <
instance->common.te_delta * 3)) {
instance->common.parser_step = FaacSLHDecoderStepFoundPreambula;
} else {
instance->common.parser_step = FaacSLHDecoderStepReset;
}
break;
case FaacSLHDecoderStepFoundPreambula:
if((!level) && (DURATION_DIFF(duration, instance->common.te_long * 2) <
instance->common.te_delta * 3)) {
//Found Preambula
instance->common.parser_step = FaacSLHDecoderStepSaveDuration;
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
} else {
instance->common.parser_step = FaacSLHDecoderStepReset;
}
break;
case FaacSLHDecoderStepSaveDuration:
if(level) {
if(duration >= (instance->common.te_short * 3 + instance->common.te_delta)) {
instance->common.parser_step = FaacSLHDecoderStepFoundPreambula;
if(instance->common.code_count_bit >=
instance->common.code_min_count_bit_for_found) {
instance->common.code_last_found = instance->common.code_found;
instance->common.code_last_count_bit = instance->common.code_count_bit;
if(instance->common.callback)
instance->common.callback(
(SubGhzProtocolCommon*)instance, instance->common.context);
}
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
break;
} else {
instance->common.te_last = duration;
instance->common.parser_step = FaacSLHDecoderStepCheckDuration;
}
} else {
instance->common.parser_step = FaacSLHDecoderStepReset;
}
break;
case FaacSLHDecoderStepCheckDuration:
if(!level) {
if((DURATION_DIFF(instance->common.te_last, instance->common.te_short) <
instance->common.te_delta) &&
(DURATION_DIFF(duration, instance->common.te_long) < instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 0);
instance->common.parser_step = FaacSLHDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->common.te_last, instance->common.te_long) <
instance->common.te_delta) &&
(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 1);
instance->common.parser_step = FaacSLHDecoderStepSaveDuration;
} else {
instance->common.parser_step = FaacSLHDecoderStepReset;
}
} else {
instance->common.parser_step = FaacSLHDecoderStepReset;
}
break;
}
}
void subghz_protocol_faac_slh_to_str(SubGhzProtocolFaacSLH* instance, string_t output) {
subghz_protocol_faac_slh_check_remote_controller(instance);
uint64_t code_found_reverse = subghz_protocol_common_reverse_key(
instance->common.code_last_found, instance->common.code_last_count_bit);
uint32_t code_fix = code_found_reverse & 0xFFFFFFFF;
uint32_t code_hop = (code_found_reverse >> 32) & 0xFFFFFFFF;
string_cat_printf(
output,
"%s %dbit\r\n"
"Key:0x%lX%08lX\r\n"
"Fix:%08lX \r\n"
"Hop:%08lX \r\n"
"Sn:%07lX Btn:%lX\r\n",
instance->common.name,
instance->common.code_last_count_bit,
(uint32_t)(instance->common.code_last_found >> 32),
(uint32_t)instance->common.code_last_found,
code_fix,
code_hop,
instance->common.serial,
instance->common.btn);
}
void subghz_decoder_faac_slh_to_load_protocol(SubGhzProtocolFaacSLH* instance, void* context) {
furi_assert(context);
furi_assert(instance);
SubGhzProtocolCommonLoad* data = context;
instance->common.code_last_found = data->code_found;
instance->common.code_last_count_bit = data->code_count_bit;
subghz_protocol_faac_slh_check_remote_controller(instance);
}

View File

@@ -1,58 +1,58 @@
#pragma once
#include "subghz_protocol_common.h"
typedef struct SubGhzProtocolFaacSLH SubGhzProtocolFaacSLH;
/** Allocate SubGhzProtocolFaacSLH
*
* @return SubGhzProtocolFaacSLH*
*/
SubGhzProtocolFaacSLH* subghz_protocol_faac_slh_alloc();
/** Free SubGhzProtocolFaacSLH
*
* @param instance
*/
void subghz_protocol_faac_slh_free(SubGhzProtocolFaacSLH* instance);
/** Sends the key on the air
*
* @param instance - SubGhzProtocolFaacSLH instance
* @param key - key send
* @param bit - count bit key
* @param repeat - repeat send key
*/
void subghz_protocol_faac_slh_send_key(SubGhzProtocolFaacSLH* instance, uint64_t key, uint8_t bit, uint8_t repeat);
/** Reset internal state
* @param instance - SubGhzProtocolFaacSLH instance
*/
void subghz_protocol_faac_slh_reset(SubGhzProtocolFaacSLH* instance);
/** Analysis of received data
*
* @param instance SubGhzProtocolFaacSLH instance
*/
void subghz_protocol_faac_slh_check_remote_controller(SubGhzProtocolFaacSLH* instance);
/** Parse accepted duration
*
* @param instance - SubGhzProtocolFaacSLH instance
* @param data - LevelDuration level_duration
*/
void subghz_protocol_faac_slh_parse(SubGhzProtocolFaacSLH* instance, bool level, uint32_t duration);
/** Outputting information from the parser
*
* @param instance - SubGhzProtocolFaacSLH* instance
* @param output - output string
*/
void subghz_protocol_faac_slh_to_str(SubGhzProtocolFaacSLH* instance, string_t output);
/** Loading protocol from bin data
*
* @param instance - SubGhzProtocolFaacSLH instance
* @param context - SubGhzProtocolCommonLoad context
*/
void subghz_decoder_faac_slh_to_load_protocol(SubGhzProtocolFaacSLH* instance, void* context);
#pragma once
#include "subghz_protocol_common.h"
typedef struct SubGhzProtocolFaacSLH SubGhzProtocolFaacSLH;
/** Allocate SubGhzProtocolFaacSLH
*
* @return SubGhzProtocolFaacSLH*
*/
SubGhzProtocolFaacSLH* subghz_protocol_faac_slh_alloc();
/** Free SubGhzProtocolFaacSLH
*
* @param instance
*/
void subghz_protocol_faac_slh_free(SubGhzProtocolFaacSLH* instance);
/** Sends the key on the air
*
* @param instance - SubGhzProtocolFaacSLH instance
* @param key - key send
* @param bit - count bit key
* @param repeat - repeat send key
*/
void subghz_protocol_faac_slh_send_key(SubGhzProtocolFaacSLH* instance, uint64_t key, uint8_t bit, uint8_t repeat);
/** Reset internal state
* @param instance - SubGhzProtocolFaacSLH instance
*/
void subghz_protocol_faac_slh_reset(SubGhzProtocolFaacSLH* instance);
/** Analysis of received data
*
* @param instance SubGhzProtocolFaacSLH instance
*/
void subghz_protocol_faac_slh_check_remote_controller(SubGhzProtocolFaacSLH* instance);
/** Parse accepted duration
*
* @param instance - SubGhzProtocolFaacSLH instance
* @param data - LevelDuration level_duration
*/
void subghz_protocol_faac_slh_parse(SubGhzProtocolFaacSLH* instance, bool level, uint32_t duration);
/** Outputting information from the parser
*
* @param instance - SubGhzProtocolFaacSLH* instance
* @param output - output string
*/
void subghz_protocol_faac_slh_to_str(SubGhzProtocolFaacSLH* instance, string_t output);
/** Loading protocol from bin data
*
* @param instance - SubGhzProtocolFaacSLH instance
* @param context - SubGhzProtocolCommonLoad context
*/
void subghz_decoder_faac_slh_to_load_protocol(SubGhzProtocolFaacSLH* instance, void* context);

View File

@@ -1,230 +1,230 @@
#include "subghz_protocol_gate_tx.h"
struct SubGhzProtocolGateTX {
SubGhzProtocolCommon common;
};
typedef enum {
GateTXDecoderStepReset = 0,
GateTXDecoderStepFoundStartBit,
GateTXDecoderStepSaveDuration,
GateTXDecoderStepCheckDuration,
} GateTXDecoderStep;
SubGhzProtocolGateTX* subghz_protocol_gate_tx_alloc(void) {
SubGhzProtocolGateTX* instance = furi_alloc(sizeof(SubGhzProtocolGateTX));
instance->common.name = "GateTX";
instance->common.code_min_count_bit_for_found = 24;
instance->common.te_short = 350;
instance->common.te_long = 700;
instance->common.te_delta = 100;
instance->common.type_protocol = SubGhzProtocolCommonTypeStatic;
instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_protocol_gate_tx_to_str;
instance->common.to_save_string =
(SubGhzProtocolCommonGetStrSave)subghz_protocol_gate_tx_to_save_str;
instance->common.to_load_protocol_from_file =
(SubGhzProtocolCommonLoadFromFile)subghz_protocol_gate_tx_to_load_protocol_from_file;
instance->common.to_load_protocol =
(SubGhzProtocolCommonLoadFromRAW)subghz_decoder_gate_tx_to_load_protocol;
instance->common.get_upload_protocol =
(SubGhzProtocolCommonEncoderGetUpLoad)subghz_protocol_gate_tx_send_key;
return instance;
}
void subghz_protocol_gate_tx_free(SubGhzProtocolGateTX* instance) {
furi_assert(instance);
free(instance);
}
bool subghz_protocol_gate_tx_send_key(
SubGhzProtocolGateTX* instance,
SubGhzProtocolCommonEncoder* encoder) {
furi_assert(instance);
furi_assert(encoder);
size_t index = 0;
encoder->size_upload = (instance->common.code_last_count_bit * 2) + 2;
if(encoder->size_upload > SUBGHZ_ENCODER_UPLOAD_MAX_SIZE) return false;
//Send header
encoder->upload[index++] =
level_duration_make(false, (uint32_t)instance->common.te_short * 49);
//Send start bit
encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_long);
//Send key data
for(uint8_t i = instance->common.code_last_count_bit; i > 0; i--) {
if(bit_read(instance->common.code_last_found, i - 1)) {
//send bit 1
encoder->upload[index++] =
level_duration_make(false, (uint32_t)instance->common.te_long);
encoder->upload[index++] =
level_duration_make(true, (uint32_t)instance->common.te_short);
} else {
//send bit 0
encoder->upload[index++] =
level_duration_make(false, (uint32_t)instance->common.te_short);
encoder->upload[index++] =
level_duration_make(true, (uint32_t)instance->common.te_long);
}
}
return true;
}
void subghz_protocol_gate_tx_reset(SubGhzProtocolGateTX* instance) {
instance->common.parser_step = GateTXDecoderStepReset;
}
/** Analysis of received data
*
* @param instance SubGhzProtocolFaacSLH instance
*/
void subghz_protocol_gate_tx_check_remote_controller(SubGhzProtocolGateTX* instance) {
uint32_t code_found_reverse = subghz_protocol_common_reverse_key(
instance->common.code_last_found, instance->common.code_last_count_bit);
instance->common.serial = (code_found_reverse & 0xFF) << 12 |
((code_found_reverse >> 8) & 0xFF) << 4 |
((code_found_reverse >> 20) & 0x0F);
instance->common.btn = ((code_found_reverse >> 16) & 0x0F);
}
void subghz_protocol_gate_tx_parse(SubGhzProtocolGateTX* instance, bool level, uint32_t duration) {
switch(instance->common.parser_step) {
case GateTXDecoderStepReset:
if((!level) && (DURATION_DIFF(duration, instance->common.te_short * 47) <
instance->common.te_delta * 47)) {
//Found Preambula
instance->common.parser_step = GateTXDecoderStepFoundStartBit;
} else {
instance->common.parser_step = GateTXDecoderStepReset;
}
break;
case GateTXDecoderStepFoundStartBit:
if(level &&
((DURATION_DIFF(duration, instance->common.te_long) < instance->common.te_delta * 3))) {
//Found start bit
instance->common.parser_step = GateTXDecoderStepSaveDuration;
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
} else {
instance->common.parser_step = GateTXDecoderStepReset;
}
break;
case GateTXDecoderStepSaveDuration:
if(!level) {
if(duration >= (instance->common.te_short * 10 + instance->common.te_delta)) {
instance->common.parser_step = GateTXDecoderStepFoundStartBit;
if(instance->common.code_count_bit >=
instance->common.code_min_count_bit_for_found) {
instance->common.code_last_found = instance->common.code_found;
instance->common.code_last_count_bit = instance->common.code_count_bit;
if(instance->common.callback)
instance->common.callback(
(SubGhzProtocolCommon*)instance, instance->common.context);
}
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
break;
} else {
instance->common.te_last = duration;
instance->common.parser_step = GateTXDecoderStepCheckDuration;
}
}
break;
case GateTXDecoderStepCheckDuration:
if(level) {
if((DURATION_DIFF(instance->common.te_last, instance->common.te_short) <
instance->common.te_delta) &&
(DURATION_DIFF(duration, instance->common.te_long) <
instance->common.te_delta * 3)) {
subghz_protocol_common_add_bit(&instance->common, 0);
instance->common.parser_step = GateTXDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->common.te_last, instance->common.te_long) <
instance->common.te_delta * 3) &&
(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 1);
instance->common.parser_step = GateTXDecoderStepSaveDuration;
} else {
instance->common.parser_step = GateTXDecoderStepReset;
}
} else {
instance->common.parser_step = GateTXDecoderStepReset;
}
break;
}
}
void subghz_protocol_gate_tx_to_str(SubGhzProtocolGateTX* instance, string_t output) {
subghz_protocol_gate_tx_check_remote_controller(instance);
string_cat_printf(
output,
"%s %dbit\r\n"
"Key:%06lX\r\n"
"Sn:%05lX Btn:%lX\r\n",
instance->common.name,
instance->common.code_last_count_bit,
(uint32_t)(instance->common.code_last_found & 0xFFFFFF),
instance->common.serial,
instance->common.btn);
}
void subghz_protocol_gate_tx_to_save_str(SubGhzProtocolGateTX* instance, string_t output) {
string_printf(
output,
"Protocol: %s\n"
"Bit: %d\n"
"Key: %08lX\n",
instance->common.name,
instance->common.code_last_count_bit,
(uint32_t)(instance->common.code_last_found & 0x00000000ffffffff));
}
bool subghz_protocol_gate_tx_to_load_protocol_from_file(
FileWorker* file_worker,
SubGhzProtocolGateTX* instance) {
bool loaded = false;
string_t temp_str;
string_init(temp_str);
int res = 0;
int data = 0;
do {
// Read and parse bit data from 2nd line
if(!file_worker_read_until(file_worker, temp_str, '\n')) {
break;
}
res = sscanf(string_get_cstr(temp_str), "Bit: %d\n", &data);
if(res != 1) {
break;
}
instance->common.code_last_count_bit = (uint8_t)data;
// Read and parse key data from 3nd line
if(!file_worker_read_until(file_worker, temp_str, '\n')) {
break;
}
uint32_t temp_key = 0;
res = sscanf(string_get_cstr(temp_str), "Key: %08lX\n", &temp_key);
if(res != 1) {
break;
}
instance->common.code_last_found = (uint64_t)temp_key;
subghz_protocol_gate_tx_check_remote_controller(instance);
loaded = true;
} while(0);
string_clear(temp_str);
return loaded;
}
void subghz_decoder_gate_tx_to_load_protocol(SubGhzProtocolGateTX* instance, void* context) {
furi_assert(context);
furi_assert(instance);
SubGhzProtocolCommonLoad* data = context;
instance->common.code_last_found = data->code_found;
instance->common.code_last_count_bit = data->code_count_bit;
subghz_protocol_gate_tx_check_remote_controller(instance);
#include "subghz_protocol_gate_tx.h"
struct SubGhzProtocolGateTX {
SubGhzProtocolCommon common;
};
typedef enum {
GateTXDecoderStepReset = 0,
GateTXDecoderStepFoundStartBit,
GateTXDecoderStepSaveDuration,
GateTXDecoderStepCheckDuration,
} GateTXDecoderStep;
SubGhzProtocolGateTX* subghz_protocol_gate_tx_alloc(void) {
SubGhzProtocolGateTX* instance = furi_alloc(sizeof(SubGhzProtocolGateTX));
instance->common.name = "GateTX";
instance->common.code_min_count_bit_for_found = 24;
instance->common.te_short = 350;
instance->common.te_long = 700;
instance->common.te_delta = 100;
instance->common.type_protocol = SubGhzProtocolCommonTypeStatic;
instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_protocol_gate_tx_to_str;
instance->common.to_save_string =
(SubGhzProtocolCommonGetStrSave)subghz_protocol_gate_tx_to_save_str;
instance->common.to_load_protocol_from_file =
(SubGhzProtocolCommonLoadFromFile)subghz_protocol_gate_tx_to_load_protocol_from_file;
instance->common.to_load_protocol =
(SubGhzProtocolCommonLoadFromRAW)subghz_decoder_gate_tx_to_load_protocol;
instance->common.get_upload_protocol =
(SubGhzProtocolCommonEncoderGetUpLoad)subghz_protocol_gate_tx_send_key;
return instance;
}
void subghz_protocol_gate_tx_free(SubGhzProtocolGateTX* instance) {
furi_assert(instance);
free(instance);
}
bool subghz_protocol_gate_tx_send_key(
SubGhzProtocolGateTX* instance,
SubGhzProtocolCommonEncoder* encoder) {
furi_assert(instance);
furi_assert(encoder);
size_t index = 0;
encoder->size_upload = (instance->common.code_last_count_bit * 2) + 2;
if(encoder->size_upload > SUBGHZ_ENCODER_UPLOAD_MAX_SIZE) return false;
//Send header
encoder->upload[index++] =
level_duration_make(false, (uint32_t)instance->common.te_short * 49);
//Send start bit
encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_long);
//Send key data
for(uint8_t i = instance->common.code_last_count_bit; i > 0; i--) {
if(bit_read(instance->common.code_last_found, i - 1)) {
//send bit 1
encoder->upload[index++] =
level_duration_make(false, (uint32_t)instance->common.te_long);
encoder->upload[index++] =
level_duration_make(true, (uint32_t)instance->common.te_short);
} else {
//send bit 0
encoder->upload[index++] =
level_duration_make(false, (uint32_t)instance->common.te_short);
encoder->upload[index++] =
level_duration_make(true, (uint32_t)instance->common.te_long);
}
}
return true;
}
void subghz_protocol_gate_tx_reset(SubGhzProtocolGateTX* instance) {
instance->common.parser_step = GateTXDecoderStepReset;
}
/** Analysis of received data
*
* @param instance SubGhzProtocolFaacSLH instance
*/
void subghz_protocol_gate_tx_check_remote_controller(SubGhzProtocolGateTX* instance) {
uint32_t code_found_reverse = subghz_protocol_common_reverse_key(
instance->common.code_last_found, instance->common.code_last_count_bit);
instance->common.serial = (code_found_reverse & 0xFF) << 12 |
((code_found_reverse >> 8) & 0xFF) << 4 |
((code_found_reverse >> 20) & 0x0F);
instance->common.btn = ((code_found_reverse >> 16) & 0x0F);
}
void subghz_protocol_gate_tx_parse(SubGhzProtocolGateTX* instance, bool level, uint32_t duration) {
switch(instance->common.parser_step) {
case GateTXDecoderStepReset:
if((!level) && (DURATION_DIFF(duration, instance->common.te_short * 47) <
instance->common.te_delta * 47)) {
//Found Preambula
instance->common.parser_step = GateTXDecoderStepFoundStartBit;
} else {
instance->common.parser_step = GateTXDecoderStepReset;
}
break;
case GateTXDecoderStepFoundStartBit:
if(level &&
((DURATION_DIFF(duration, instance->common.te_long) < instance->common.te_delta * 3))) {
//Found start bit
instance->common.parser_step = GateTXDecoderStepSaveDuration;
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
} else {
instance->common.parser_step = GateTXDecoderStepReset;
}
break;
case GateTXDecoderStepSaveDuration:
if(!level) {
if(duration >= (instance->common.te_short * 10 + instance->common.te_delta)) {
instance->common.parser_step = GateTXDecoderStepFoundStartBit;
if(instance->common.code_count_bit >=
instance->common.code_min_count_bit_for_found) {
instance->common.code_last_found = instance->common.code_found;
instance->common.code_last_count_bit = instance->common.code_count_bit;
if(instance->common.callback)
instance->common.callback(
(SubGhzProtocolCommon*)instance, instance->common.context);
}
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
break;
} else {
instance->common.te_last = duration;
instance->common.parser_step = GateTXDecoderStepCheckDuration;
}
}
break;
case GateTXDecoderStepCheckDuration:
if(level) {
if((DURATION_DIFF(instance->common.te_last, instance->common.te_short) <
instance->common.te_delta) &&
(DURATION_DIFF(duration, instance->common.te_long) <
instance->common.te_delta * 3)) {
subghz_protocol_common_add_bit(&instance->common, 0);
instance->common.parser_step = GateTXDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->common.te_last, instance->common.te_long) <
instance->common.te_delta * 3) &&
(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 1);
instance->common.parser_step = GateTXDecoderStepSaveDuration;
} else {
instance->common.parser_step = GateTXDecoderStepReset;
}
} else {
instance->common.parser_step = GateTXDecoderStepReset;
}
break;
}
}
void subghz_protocol_gate_tx_to_str(SubGhzProtocolGateTX* instance, string_t output) {
subghz_protocol_gate_tx_check_remote_controller(instance);
string_cat_printf(
output,
"%s %dbit\r\n"
"Key:%06lX\r\n"
"Sn:%05lX Btn:%lX\r\n",
instance->common.name,
instance->common.code_last_count_bit,
(uint32_t)(instance->common.code_last_found & 0xFFFFFF),
instance->common.serial,
instance->common.btn);
}
void subghz_protocol_gate_tx_to_save_str(SubGhzProtocolGateTX* instance, string_t output) {
string_printf(
output,
"Protocol: %s\n"
"Bit: %d\n"
"Key: %08lX\n",
instance->common.name,
instance->common.code_last_count_bit,
(uint32_t)(instance->common.code_last_found & 0x00000000ffffffff));
}
bool subghz_protocol_gate_tx_to_load_protocol_from_file(
FileWorker* file_worker,
SubGhzProtocolGateTX* instance) {
bool loaded = false;
string_t temp_str;
string_init(temp_str);
int res = 0;
int data = 0;
do {
// Read and parse bit data from 2nd line
if(!file_worker_read_until(file_worker, temp_str, '\n')) {
break;
}
res = sscanf(string_get_cstr(temp_str), "Bit: %d\n", &data);
if(res != 1) {
break;
}
instance->common.code_last_count_bit = (uint8_t)data;
// Read and parse key data from 3nd line
if(!file_worker_read_until(file_worker, temp_str, '\n')) {
break;
}
uint32_t temp_key = 0;
res = sscanf(string_get_cstr(temp_str), "Key: %08lX\n", &temp_key);
if(res != 1) {
break;
}
instance->common.code_last_found = (uint64_t)temp_key;
subghz_protocol_gate_tx_check_remote_controller(instance);
loaded = true;
} while(0);
string_clear(temp_str);
return loaded;
}
void subghz_decoder_gate_tx_to_load_protocol(SubGhzProtocolGateTX* instance, void* context) {
furi_assert(context);
furi_assert(instance);
SubGhzProtocolCommonLoad* data = context;
instance->common.code_last_found = data->code_found;
instance->common.code_last_count_bit = data->code_count_bit;
subghz_protocol_gate_tx_check_remote_controller(instance);
}

View File

@@ -1,66 +1,66 @@
#pragma once
#include "subghz_protocol_common.h"
typedef struct SubGhzProtocolGateTX SubGhzProtocolGateTX;
/** Allocate SubGhzProtocolGateTX
*
* @return SubGhzProtocolGateTX*
*/
SubGhzProtocolGateTX* subghz_protocol_gate_tx_alloc();
/** Free SubGhzProtocolGateTX
*
* @param instance
*/
void subghz_protocol_gate_tx_free(SubGhzProtocolGateTX* instance);
/** Get upload protocol
*
* @param instance - SubGhzProtocolGateTX instance
* @param encoder - SubGhzProtocolCommonEncoder encoder
* @return bool
*/
bool subghz_protocol_gate_tx_send_key(SubGhzProtocolGateTX* instance, SubGhzProtocolCommonEncoder* encoder);
/** Reset internal state
* @param instance - SubGhzProtocolGateTX instance
*/
void subghz_protocol_gate_tx_reset(SubGhzProtocolGateTX* instance);
/** Parse accepted duration
*
* @param instance - SubGhzProtocolGateTX instance
* @param data - LevelDuration level_duration
*/
void subghz_protocol_gate_tx_parse(SubGhzProtocolGateTX* instance, bool level, uint32_t duration);
/** Outputting information from the parser
*
* @param instance - SubGhzProtocolFaacSLH* instance
* @param output - output string
*/
void subghz_protocol_gate_tx_to_str(SubGhzProtocolGateTX* instance, string_t output);
/** Get a string to save the protocol
*
* @param instance - SubGhzProtocolGateTX instance
* @param output - the resulting string
*/
void subghz_protocol_gate_tx_to_save_str(SubGhzProtocolGateTX* instance, string_t output);
/** Loading protocol from file
*
* @param file_worker - FileWorker file_worker
* @param instance - SubGhzProtocolGateTX instance
* @return bool
*/
bool subghz_protocol_gate_tx_to_load_protocol_from_file(FileWorker* file_worker, SubGhzProtocolGateTX* instance);
/** Loading protocol from bin data
*
* @param instance - SubGhzProtocolGateTX instance
* @param context - SubGhzProtocolCommonLoad context
*/
void subghz_decoder_gate_tx_to_load_protocol(SubGhzProtocolGateTX* instance, void* context);
#pragma once
#include "subghz_protocol_common.h"
typedef struct SubGhzProtocolGateTX SubGhzProtocolGateTX;
/** Allocate SubGhzProtocolGateTX
*
* @return SubGhzProtocolGateTX*
*/
SubGhzProtocolGateTX* subghz_protocol_gate_tx_alloc();
/** Free SubGhzProtocolGateTX
*
* @param instance
*/
void subghz_protocol_gate_tx_free(SubGhzProtocolGateTX* instance);
/** Get upload protocol
*
* @param instance - SubGhzProtocolGateTX instance
* @param encoder - SubGhzProtocolCommonEncoder encoder
* @return bool
*/
bool subghz_protocol_gate_tx_send_key(SubGhzProtocolGateTX* instance, SubGhzProtocolCommonEncoder* encoder);
/** Reset internal state
* @param instance - SubGhzProtocolGateTX instance
*/
void subghz_protocol_gate_tx_reset(SubGhzProtocolGateTX* instance);
/** Parse accepted duration
*
* @param instance - SubGhzProtocolGateTX instance
* @param data - LevelDuration level_duration
*/
void subghz_protocol_gate_tx_parse(SubGhzProtocolGateTX* instance, bool level, uint32_t duration);
/** Outputting information from the parser
*
* @param instance - SubGhzProtocolFaacSLH* instance
* @param output - output string
*/
void subghz_protocol_gate_tx_to_str(SubGhzProtocolGateTX* instance, string_t output);
/** Get a string to save the protocol
*
* @param instance - SubGhzProtocolGateTX instance
* @param output - the resulting string
*/
void subghz_protocol_gate_tx_to_save_str(SubGhzProtocolGateTX* instance, string_t output);
/** Loading protocol from file
*
* @param file_worker - FileWorker file_worker
* @param instance - SubGhzProtocolGateTX instance
* @return bool
*/
bool subghz_protocol_gate_tx_to_load_protocol_from_file(FileWorker* file_worker, SubGhzProtocolGateTX* instance);
/** Loading protocol from bin data
*
* @param instance - SubGhzProtocolGateTX instance
* @param context - SubGhzProtocolCommonLoad context
*/
void subghz_decoder_gate_tx_to_load_protocol(SubGhzProtocolGateTX* instance, void* context);

View File

@@ -1,191 +1,191 @@
#include "subghz_protocol_ido.h"
struct SubGhzProtocolIDo {
SubGhzProtocolCommon common;
};
typedef enum {
IDoDecoderStepReset = 0,
IDoDecoderStepFoundPreambula,
IDoDecoderStepSaveDuration,
IDoDecoderStepCheckDuration,
} IDoDecoderStep;
SubGhzProtocolIDo* subghz_protocol_ido_alloc(void) {
SubGhzProtocolIDo* instance = furi_alloc(sizeof(SubGhzProtocolIDo));
instance->common.name = "iDo 117/111"; // PT4301-X";
instance->common.code_min_count_bit_for_found = 48;
instance->common.te_short = 450;
instance->common.te_long = 1450;
instance->common.te_delta = 150;
instance->common.type_protocol = SubGhzProtocolCommonTypeDynamic;
instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_protocol_ido_to_str;
instance->common.to_load_protocol =
(SubGhzProtocolCommonLoadFromRAW)subghz_decoder_ido_to_load_protocol;
return instance;
}
void subghz_protocol_ido_free(SubGhzProtocolIDo* instance) {
furi_assert(instance);
free(instance);
}
/** Send bit
*
* @param instance - SubGhzProtocolIDo instance
* @param bit - bit
*/
void subghz_protocol_ido_send_bit(SubGhzProtocolIDo* instance, uint8_t bit) {
if(bit) {
//send bit 1
SUBGHZ_TX_PIN_HIGH();
delay_us(instance->common.te_short);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_short);
} else {
//send bit 0
SUBGHZ_TX_PIN_HIGH();
delay_us(instance->common.te_short);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_long);
}
}
void subghz_protocol_ido_send_key(
SubGhzProtocolIDo* instance,
uint64_t key,
uint8_t bit,
uint8_t repeat) {
while(repeat--) {
SUBGHZ_TX_PIN_HIGH();
//Send header
delay_us(instance->common.te_short * 10);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_short * 10);
//Send key data
for(uint8_t i = bit; i > 0; i--) {
subghz_protocol_ido_send_bit(instance, bit_read(key, i - 1));
}
}
}
void subghz_protocol_ido_reset(SubGhzProtocolIDo* instance) {
instance->common.parser_step = IDoDecoderStepReset;
}
/** Analysis of received data
*
* @param instance SubGhzProtocolIDo instance
*/
void subghz_protocol_ido_check_remote_controller(SubGhzProtocolIDo* instance) {
uint64_t code_found_reverse = subghz_protocol_common_reverse_key(
instance->common.code_last_found, instance->common.code_last_count_bit);
uint32_t code_fix = code_found_reverse & 0xFFFFFF;
instance->common.serial = code_fix & 0xFFFFF;
instance->common.btn = (code_fix >> 20) & 0x0F;
}
void subghz_protocol_ido_parse(SubGhzProtocolIDo* instance, bool level, uint32_t duration) {
switch(instance->common.parser_step) {
case IDoDecoderStepReset:
if((level) && (DURATION_DIFF(duration, instance->common.te_short * 10) <
instance->common.te_delta * 5)) {
instance->common.parser_step = IDoDecoderStepFoundPreambula;
} else {
instance->common.parser_step = IDoDecoderStepReset;
}
break;
case IDoDecoderStepFoundPreambula:
if((!level) && (DURATION_DIFF(duration, instance->common.te_short * 10) <
instance->common.te_delta * 5)) {
//Found Preambula
instance->common.parser_step = IDoDecoderStepSaveDuration;
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
} else {
instance->common.parser_step = IDoDecoderStepReset;
}
break;
case IDoDecoderStepSaveDuration:
if(level) {
if(duration >= (instance->common.te_short * 5 + instance->common.te_delta)) {
instance->common.parser_step = IDoDecoderStepFoundPreambula;
if(instance->common.code_count_bit >=
instance->common.code_min_count_bit_for_found) {
instance->common.code_last_found = instance->common.code_found;
instance->common.code_last_count_bit = instance->common.code_count_bit;
if(instance->common.callback)
instance->common.callback(
(SubGhzProtocolCommon*)instance, instance->common.context);
}
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
break;
} else {
instance->common.te_last = duration;
instance->common.parser_step = IDoDecoderStepCheckDuration;
}
} else {
instance->common.parser_step = IDoDecoderStepReset;
}
break;
case IDoDecoderStepCheckDuration:
if(!level) {
if((DURATION_DIFF(instance->common.te_last, instance->common.te_short) <
instance->common.te_delta) &&
(DURATION_DIFF(duration, instance->common.te_long) <
instance->common.te_delta * 3)) {
subghz_protocol_common_add_bit(&instance->common, 0);
instance->common.parser_step = IDoDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->common.te_last, instance->common.te_short) <
instance->common.te_delta * 3) &&
(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 1);
instance->common.parser_step = IDoDecoderStepSaveDuration;
} else {
instance->common.parser_step = IDoDecoderStepReset;
}
} else {
instance->common.parser_step = IDoDecoderStepReset;
}
break;
}
}
void subghz_protocol_ido_to_str(SubGhzProtocolIDo* instance, string_t output) {
subghz_protocol_ido_check_remote_controller(instance);
uint64_t code_found_reverse = subghz_protocol_common_reverse_key(
instance->common.code_last_found, instance->common.code_last_count_bit);
uint32_t code_fix = code_found_reverse & 0xFFFFFF;
uint32_t code_hop = (code_found_reverse >> 24) & 0xFFFFFF;
string_cat_printf(
output,
"%s %dbit\r\n"
"Key:0x%lX%08lX\r\n"
"Fix:%06lX \r\n"
"Hop:%06lX \r\n"
"Sn:%05lX Btn:%lX\r\n",
instance->common.name,
instance->common.code_last_count_bit,
(uint32_t)(instance->common.code_last_found >> 32),
(uint32_t)instance->common.code_last_found,
code_fix,
code_hop,
instance->common.serial,
instance->common.btn);
}
void subghz_decoder_ido_to_load_protocol(SubGhzProtocolIDo* instance, void* context) {
furi_assert(context);
furi_assert(instance);
SubGhzProtocolCommonLoad* data = context;
instance->common.code_last_found = data->code_found;
instance->common.code_last_count_bit = data->code_count_bit;
subghz_protocol_ido_check_remote_controller(instance);
#include "subghz_protocol_ido.h"
struct SubGhzProtocolIDo {
SubGhzProtocolCommon common;
};
typedef enum {
IDoDecoderStepReset = 0,
IDoDecoderStepFoundPreambula,
IDoDecoderStepSaveDuration,
IDoDecoderStepCheckDuration,
} IDoDecoderStep;
SubGhzProtocolIDo* subghz_protocol_ido_alloc(void) {
SubGhzProtocolIDo* instance = furi_alloc(sizeof(SubGhzProtocolIDo));
instance->common.name = "iDo 117/111"; // PT4301-X";
instance->common.code_min_count_bit_for_found = 48;
instance->common.te_short = 450;
instance->common.te_long = 1450;
instance->common.te_delta = 150;
instance->common.type_protocol = SubGhzProtocolCommonTypeDynamic;
instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_protocol_ido_to_str;
instance->common.to_load_protocol =
(SubGhzProtocolCommonLoadFromRAW)subghz_decoder_ido_to_load_protocol;
return instance;
}
void subghz_protocol_ido_free(SubGhzProtocolIDo* instance) {
furi_assert(instance);
free(instance);
}
/** Send bit
*
* @param instance - SubGhzProtocolIDo instance
* @param bit - bit
*/
void subghz_protocol_ido_send_bit(SubGhzProtocolIDo* instance, uint8_t bit) {
if(bit) {
//send bit 1
SUBGHZ_TX_PIN_HIGH();
delay_us(instance->common.te_short);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_short);
} else {
//send bit 0
SUBGHZ_TX_PIN_HIGH();
delay_us(instance->common.te_short);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_long);
}
}
void subghz_protocol_ido_send_key(
SubGhzProtocolIDo* instance,
uint64_t key,
uint8_t bit,
uint8_t repeat) {
while(repeat--) {
SUBGHZ_TX_PIN_HIGH();
//Send header
delay_us(instance->common.te_short * 10);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_short * 10);
//Send key data
for(uint8_t i = bit; i > 0; i--) {
subghz_protocol_ido_send_bit(instance, bit_read(key, i - 1));
}
}
}
void subghz_protocol_ido_reset(SubGhzProtocolIDo* instance) {
instance->common.parser_step = IDoDecoderStepReset;
}
/** Analysis of received data
*
* @param instance SubGhzProtocolIDo instance
*/
void subghz_protocol_ido_check_remote_controller(SubGhzProtocolIDo* instance) {
uint64_t code_found_reverse = subghz_protocol_common_reverse_key(
instance->common.code_last_found, instance->common.code_last_count_bit);
uint32_t code_fix = code_found_reverse & 0xFFFFFF;
instance->common.serial = code_fix & 0xFFFFF;
instance->common.btn = (code_fix >> 20) & 0x0F;
}
void subghz_protocol_ido_parse(SubGhzProtocolIDo* instance, bool level, uint32_t duration) {
switch(instance->common.parser_step) {
case IDoDecoderStepReset:
if((level) && (DURATION_DIFF(duration, instance->common.te_short * 10) <
instance->common.te_delta * 5)) {
instance->common.parser_step = IDoDecoderStepFoundPreambula;
} else {
instance->common.parser_step = IDoDecoderStepReset;
}
break;
case IDoDecoderStepFoundPreambula:
if((!level) && (DURATION_DIFF(duration, instance->common.te_short * 10) <
instance->common.te_delta * 5)) {
//Found Preambula
instance->common.parser_step = IDoDecoderStepSaveDuration;
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
} else {
instance->common.parser_step = IDoDecoderStepReset;
}
break;
case IDoDecoderStepSaveDuration:
if(level) {
if(duration >= (instance->common.te_short * 5 + instance->common.te_delta)) {
instance->common.parser_step = IDoDecoderStepFoundPreambula;
if(instance->common.code_count_bit >=
instance->common.code_min_count_bit_for_found) {
instance->common.code_last_found = instance->common.code_found;
instance->common.code_last_count_bit = instance->common.code_count_bit;
if(instance->common.callback)
instance->common.callback(
(SubGhzProtocolCommon*)instance, instance->common.context);
}
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
break;
} else {
instance->common.te_last = duration;
instance->common.parser_step = IDoDecoderStepCheckDuration;
}
} else {
instance->common.parser_step = IDoDecoderStepReset;
}
break;
case IDoDecoderStepCheckDuration:
if(!level) {
if((DURATION_DIFF(instance->common.te_last, instance->common.te_short) <
instance->common.te_delta) &&
(DURATION_DIFF(duration, instance->common.te_long) <
instance->common.te_delta * 3)) {
subghz_protocol_common_add_bit(&instance->common, 0);
instance->common.parser_step = IDoDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->common.te_last, instance->common.te_short) <
instance->common.te_delta * 3) &&
(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 1);
instance->common.parser_step = IDoDecoderStepSaveDuration;
} else {
instance->common.parser_step = IDoDecoderStepReset;
}
} else {
instance->common.parser_step = IDoDecoderStepReset;
}
break;
}
}
void subghz_protocol_ido_to_str(SubGhzProtocolIDo* instance, string_t output) {
subghz_protocol_ido_check_remote_controller(instance);
uint64_t code_found_reverse = subghz_protocol_common_reverse_key(
instance->common.code_last_found, instance->common.code_last_count_bit);
uint32_t code_fix = code_found_reverse & 0xFFFFFF;
uint32_t code_hop = (code_found_reverse >> 24) & 0xFFFFFF;
string_cat_printf(
output,
"%s %dbit\r\n"
"Key:0x%lX%08lX\r\n"
"Fix:%06lX \r\n"
"Hop:%06lX \r\n"
"Sn:%05lX Btn:%lX\r\n",
instance->common.name,
instance->common.code_last_count_bit,
(uint32_t)(instance->common.code_last_found >> 32),
(uint32_t)instance->common.code_last_found,
code_fix,
code_hop,
instance->common.serial,
instance->common.btn);
}
void subghz_decoder_ido_to_load_protocol(SubGhzProtocolIDo* instance, void* context) {
furi_assert(context);
furi_assert(instance);
SubGhzProtocolCommonLoad* data = context;
instance->common.code_last_found = data->code_found;
instance->common.code_last_count_bit = data->code_count_bit;
subghz_protocol_ido_check_remote_controller(instance);
}

View File

@@ -1,58 +1,58 @@
#pragma once
#include "subghz_protocol_common.h"
typedef struct SubGhzProtocolIDo SubGhzProtocolIDo;
/** Allocate SubGhzProtocolIDo
*
* @return SubGhzProtocolIDo*
*/
SubGhzProtocolIDo* subghz_protocol_ido_alloc();
/** Free SubGhzProtocolIDo
*
* @param instance
*/
void subghz_protocol_ido_free(SubGhzProtocolIDo* instance);
/** Sends the key on the air
*
* @param instance - SubGhzProtocolIDo instance
* @param key - key send
* @param bit - count bit key
* @param repeat - repeat send key
*/
void subghz_protocol_ido_send_key(SubGhzProtocolIDo* instance, uint64_t key, uint8_t bit, uint8_t repeat);
/** Reset internal state
* @param instance - SubGhzProtocolIDo instance
*/
void subghz_protocol_ido_reset(SubGhzProtocolIDo* instance);
/** Analysis of received data
*
* @param instance SubGhzProtocolIDo instance
*/
void subghz_protocol_ido_check_remote_controller(SubGhzProtocolIDo* instance);
/** Parse accepted duration
*
* @param instance - SubGhzProtocolIDo instance
* @param data - LevelDuration level_duration
*/
void subghz_protocol_ido_parse(SubGhzProtocolIDo* instance, bool level, uint32_t duration);
/** Outputting information from the parser
*
* @param instance - SubGhzProtocolIDo* instance
* @param output - output string
*/
void subghz_protocol_ido_to_str(SubGhzProtocolIDo* instance, string_t output);
/** Loading protocol from bin data
*
* @param instance - SubGhzProtocolIDo instance
* @param context - SubGhzProtocolCommonLoad context
*/
void subghz_decoder_ido_to_load_protocol(SubGhzProtocolIDo* instance, void* context);
#pragma once
#include "subghz_protocol_common.h"
typedef struct SubGhzProtocolIDo SubGhzProtocolIDo;
/** Allocate SubGhzProtocolIDo
*
* @return SubGhzProtocolIDo*
*/
SubGhzProtocolIDo* subghz_protocol_ido_alloc();
/** Free SubGhzProtocolIDo
*
* @param instance
*/
void subghz_protocol_ido_free(SubGhzProtocolIDo* instance);
/** Sends the key on the air
*
* @param instance - SubGhzProtocolIDo instance
* @param key - key send
* @param bit - count bit key
* @param repeat - repeat send key
*/
void subghz_protocol_ido_send_key(SubGhzProtocolIDo* instance, uint64_t key, uint8_t bit, uint8_t repeat);
/** Reset internal state
* @param instance - SubGhzProtocolIDo instance
*/
void subghz_protocol_ido_reset(SubGhzProtocolIDo* instance);
/** Analysis of received data
*
* @param instance SubGhzProtocolIDo instance
*/
void subghz_protocol_ido_check_remote_controller(SubGhzProtocolIDo* instance);
/** Parse accepted duration
*
* @param instance - SubGhzProtocolIDo instance
* @param data - LevelDuration level_duration
*/
void subghz_protocol_ido_parse(SubGhzProtocolIDo* instance, bool level, uint32_t duration);
/** Outputting information from the parser
*
* @param instance - SubGhzProtocolIDo* instance
* @param output - output string
*/
void subghz_protocol_ido_to_str(SubGhzProtocolIDo* instance, string_t output);
/** Loading protocol from bin data
*
* @param instance - SubGhzProtocolIDo instance
* @param context - SubGhzProtocolCommonLoad context
*/
void subghz_decoder_ido_to_load_protocol(SubGhzProtocolIDo* instance, void* context);

View File

@@ -1,486 +1,486 @@
#include "subghz_protocol_keeloq.h"
#include "subghz_protocol_keeloq_common.h"
#include "../subghz_keystore.h"
#include <furi.h>
#include <m-string.h>
struct SubGhzProtocolKeeloq {
SubGhzProtocolCommon common;
SubGhzKeystore* keystore;
const char* manufacture_name;
};
typedef enum {
KeeloqDecoderStepReset = 0,
KeeloqDecoderStepCheckPreambula,
KeeloqDecoderStepSaveDuration,
KeeloqDecoderStepCheckDuration,
} KeeloqDecoderStep;
SubGhzProtocolKeeloq* subghz_protocol_keeloq_alloc(SubGhzKeystore* keystore) {
SubGhzProtocolKeeloq* instance = furi_alloc(sizeof(SubGhzProtocolKeeloq));
instance->keystore = keystore;
instance->common.name = "KeeLoq";
instance->common.code_min_count_bit_for_found = 64;
instance->common.te_short = 400;
instance->common.te_long = 800;
instance->common.te_delta = 140;
instance->common.type_protocol = SubGhzProtocolCommonTypeDynamic;
instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_protocol_keeloq_to_str;
instance->common.to_save_string =
(SubGhzProtocolCommonGetStrSave)subghz_protocol_keeloq_to_save_str;
instance->common.to_load_protocol_from_file =
(SubGhzProtocolCommonLoadFromFile)subghz_protocol_keeloq_to_load_protocol_from_file;
instance->common.to_load_protocol =
(SubGhzProtocolCommonLoadFromRAW)subghz_decoder_keeloq_to_load_protocol;
instance->common.get_upload_protocol =
(SubGhzProtocolCommonEncoderGetUpLoad)subghz_protocol_keeloq_send_key;
return instance;
}
void subghz_protocol_keeloq_free(SubGhzProtocolKeeloq* instance) {
furi_assert(instance);
free(instance);
}
/** Checking the accepted code against the database manafacture key
*
* @param instance SubGhzProtocolKeeloq instance
* @param fix fix part of the parcel
* @param hop hop encrypted part of the parcel
* @return true on successful search
*/
uint8_t subghz_protocol_keeloq_check_remote_controller_selector(
SubGhzProtocolKeeloq* instance,
uint32_t fix,
uint32_t hop) {
uint16_t end_serial = (uint16_t)(fix & 0x3FF);
uint8_t btn = (uint8_t)(fix >> 28);
uint32_t decrypt = 0;
uint64_t man_normal_learning;
for
M_EACH(manufacture_code, *subghz_keystore_get_data(instance->keystore), SubGhzKeyArray_t) {
switch(manufacture_code->type) {
case KEELOQ_LEARNING_SIMPLE:
//Simple Learning
decrypt = subghz_protocol_keeloq_common_decrypt(hop, manufacture_code->key);
if((decrypt >> 28 == btn) &&
(((((uint16_t)(decrypt >> 16)) & 0x3FF) == end_serial) ||
((((uint16_t)(decrypt >> 16)) & 0x3FF) == 0))) {
instance->manufacture_name = string_get_cstr(manufacture_code->name);
instance->common.cnt = decrypt & 0x0000FFFF;
return 1;
}
break;
case KEELOQ_LEARNING_NORMAL:
// Normal_Learning
// https://phreakerclub.com/forum/showpost.php?p=43557&postcount=37
man_normal_learning =
subghz_protocol_keeloq_common_normal_learning(fix, manufacture_code->key);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man_normal_learning);
if((decrypt >> 28 == btn) &&
(((((uint16_t)(decrypt >> 16)) & 0x3FF) == end_serial) ||
((((uint16_t)(decrypt >> 16)) & 0x3FF) == 0))) {
instance->manufacture_name = string_get_cstr(manufacture_code->name);
instance->common.cnt = decrypt & 0x0000FFFF;
return 1;
}
break;
case KEELOQ_LEARNING_UNKNOWN:
// Simple Learning
decrypt = subghz_protocol_keeloq_common_decrypt(hop, manufacture_code->key);
if((decrypt >> 28 == btn) &&
(((((uint16_t)(decrypt >> 16)) & 0x3FF) == end_serial) ||
((((uint16_t)(decrypt >> 16)) & 0x3FF) == 0))) {
instance->manufacture_name = string_get_cstr(manufacture_code->name);
instance->common.cnt = decrypt & 0x0000FFFF;
return 1;
}
// Check for mirrored man
uint64_t man_rev = 0;
uint64_t man_rev_byte = 0;
for(uint8_t i = 0; i < 64; i += 8) {
man_rev_byte = (uint8_t)(manufacture_code->key >> i);
man_rev = man_rev | man_rev_byte << (56 - i);
}
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man_rev);
if((decrypt >> 28 == btn) &&
(((((uint16_t)(decrypt >> 16)) & 0x3FF) == end_serial) ||
((((uint16_t)(decrypt >> 16)) & 0x3FF) == 0))) {
instance->manufacture_name = string_get_cstr(manufacture_code->name);
instance->common.cnt = decrypt & 0x0000FFFF;
return 1;
}
//###########################
// Normal_Learning
// https://phreakerclub.com/forum/showpost.php?p=43557&postcount=37
man_normal_learning =
subghz_protocol_keeloq_common_normal_learning(fix, manufacture_code->key);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man_normal_learning);
if((decrypt >> 28 == btn) &&
(((((uint16_t)(decrypt >> 16)) & 0x3FF) == end_serial) ||
((((uint16_t)(decrypt >> 16)) & 0x3FF) == 0))) {
instance->manufacture_name = string_get_cstr(manufacture_code->name);
instance->common.cnt = decrypt & 0x0000FFFF;
return 1;
}
// Check for mirrored man
man_rev = 0;
man_rev_byte = 0;
for(uint8_t i = 0; i < 64; i += 8) {
man_rev_byte = (uint8_t)(manufacture_code->key >> i);
man_rev = man_rev | man_rev_byte << (56 - i);
}
man_normal_learning = subghz_protocol_keeloq_common_normal_learning(fix, man_rev);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man_normal_learning);
if((decrypt >> 28 == btn) &&
(((((uint16_t)(decrypt >> 16)) & 0x3FF) == end_serial) ||
((((uint16_t)(decrypt >> 16)) & 0x3FF) == 0))) {
instance->manufacture_name = string_get_cstr(manufacture_code->name);
instance->common.cnt = decrypt & 0x0000FFFF;
return 1;
}
break;
}
}
instance->manufacture_name = "Unknown";
instance->common.cnt = 0;
return 0;
}
/** Analysis of received data
*
* @param instance SubGhzProtocolKeeloq instance
*/
void subghz_protocol_keeloq_check_remote_controller(SubGhzProtocolKeeloq* instance) {
uint64_t key = subghz_protocol_common_reverse_key(
instance->common.code_last_found, instance->common.code_last_count_bit);
uint32_t key_fix = key >> 32;
uint32_t key_hop = key & 0x00000000ffffffff;
// Check key AN-Motors
if((key_hop >> 24) == ((key_hop >> 16) & 0x00ff) &&
(key_fix >> 28) == ((key_hop >> 12) & 0x0f) && (key_hop & 0xFFF) == 0x404) {
instance->manufacture_name = "AN-Motors";
instance->common.cnt = key_hop >> 16;
} else if((key_hop & 0xFFF) == (0x000) && (key_fix >> 28) == ((key_hop >> 12) & 0x0f)) {
instance->manufacture_name = "HCS101";
instance->common.cnt = key_hop >> 16;
} else {
subghz_protocol_keeloq_check_remote_controller_selector(instance, key_fix, key_hop);
}
instance->common.serial = key_fix & 0x0FFFFFFF;
instance->common.btn = key_fix >> 28;
}
const char* subghz_protocol_keeloq_find_and_get_manufacture_name(void* context) {
SubGhzProtocolKeeloq* instance = context;
subghz_protocol_keeloq_check_remote_controller(instance);
return instance->manufacture_name;
}
const char* subghz_protocol_keeloq_get_manufacture_name(void* context) {
SubGhzProtocolKeeloq* instance = context;
return instance->manufacture_name;
}
bool subghz_protocol_keeloq_set_manufacture_name(void* context, const char* manufacture_name) {
SubGhzProtocolKeeloq* instance = context;
instance->manufacture_name = manufacture_name;
int res = 0;
for
M_EACH(
manufacture_code,
*subghz_keystore_get_data(instance->keystore),
SubGhzKeyArray_t) {
res = strcmp(string_get_cstr(manufacture_code->name), instance->manufacture_name);
if(res == 0) return true;
}
instance->manufacture_name = "Unknown";
return false;
}
uint64_t subghz_protocol_keeloq_gen_key(void* context) {
SubGhzProtocolKeeloq* instance = context;
uint32_t fix = instance->common.btn << 28 | instance->common.serial;
uint32_t decrypt = instance->common.btn << 28 | (instance->common.serial & 0x3FF) << 16 |
instance->common.cnt;
uint32_t hop = 0;
uint64_t man_normal_learning = 0;
int res = 0;
for
M_EACH(manufacture_code, *subghz_keystore_get_data(instance->keystore), SubGhzKeyArray_t) {
res = strcmp(string_get_cstr(manufacture_code->name), instance->manufacture_name);
if(res == 0) {
switch(manufacture_code->type) {
case KEELOQ_LEARNING_SIMPLE:
//Simple Learning
hop = subghz_protocol_keeloq_common_encrypt(decrypt, manufacture_code->key);
break;
case KEELOQ_LEARNING_NORMAL:
//Simple Learning
man_normal_learning =
subghz_protocol_keeloq_common_normal_learning(fix, manufacture_code->key);
hop = subghz_protocol_keeloq_common_encrypt(decrypt, man_normal_learning);
break;
case KEELOQ_LEARNING_UNKNOWN:
hop = 0; //todo
break;
}
break;
}
}
uint64_t yek = (uint64_t)fix << 32 | hop;
return subghz_protocol_common_reverse_key(yek, instance->common.code_last_count_bit);
}
bool subghz_protocol_keeloq_send_key(
SubGhzProtocolKeeloq* instance,
SubGhzProtocolCommonEncoder* encoder) {
furi_assert(instance);
furi_assert(encoder);
//gen new key
instance->common.cnt++;
instance->common.code_last_found = subghz_protocol_keeloq_gen_key(instance);
if(instance->common.callback)
instance->common.callback((SubGhzProtocolCommon*)instance, instance->common.context);
if(!strcmp(instance->manufacture_name, "Unknown")) {
return false;
}
size_t index = 0;
encoder->size_upload = 11 * 2 + 2 + (instance->common.code_last_count_bit * 2) + 4;
if(encoder->size_upload > SUBGHZ_ENCODER_UPLOAD_MAX_SIZE) return false;
//Send header
for(uint8_t i = 11; i > 0; i--) {
encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_short);
encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->common.te_short);
}
encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_short);
encoder->upload[index++] =
level_duration_make(false, (uint32_t)instance->common.te_short * 10);
//Send key data
for(uint8_t i = instance->common.code_last_count_bit; i > 0; i--) {
if(bit_read(instance->common.code_last_found, i - 1)) {
//send bit 1
encoder->upload[index++] =
level_duration_make(true, (uint32_t)instance->common.te_short);
encoder->upload[index++] =
level_duration_make(false, (uint32_t)instance->common.te_long);
} else {
//send bit 0
encoder->upload[index++] =
level_duration_make(true, (uint32_t)instance->common.te_long);
encoder->upload[index++] =
level_duration_make(false, (uint32_t)instance->common.te_short);
}
}
// +send 2 status bit
encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_short);
encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->common.te_long);
//encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_long);
//encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->common.te_short);
// send end
encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_short);
encoder->upload[index++] =
level_duration_make(false, (uint32_t)instance->common.te_short * 40);
return true;
}
void subghz_protocol_keeloq_reset(SubGhzProtocolKeeloq* instance) {
instance->common.parser_step = KeeloqDecoderStepReset;
}
void subghz_protocol_keeloq_parse(SubGhzProtocolKeeloq* instance, bool level, uint32_t duration) {
switch(instance->common.parser_step) {
case KeeloqDecoderStepReset:
if((level) &&
DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta) {
instance->common.parser_step = KeeloqDecoderStepCheckPreambula;
instance->common.header_count++;
} else {
instance->common.parser_step = KeeloqDecoderStepReset;
}
break;
case KeeloqDecoderStepCheckPreambula:
if((!level) &&
(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta)) {
instance->common.parser_step = KeeloqDecoderStepReset;
break;
}
if((instance->common.header_count > 2) &&
(DURATION_DIFF(duration, instance->common.te_short * 10) <
instance->common.te_delta * 10)) {
// Found header
instance->common.parser_step = KeeloqDecoderStepSaveDuration;
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
} else {
instance->common.parser_step = KeeloqDecoderStepReset;
instance->common.header_count = 0;
}
break;
case KeeloqDecoderStepSaveDuration:
if(level) {
instance->common.te_last = duration;
instance->common.parser_step = KeeloqDecoderStepCheckDuration;
}
break;
case KeeloqDecoderStepCheckDuration:
if(!level) {
if(duration >= (instance->common.te_short * 2 + instance->common.te_delta)) {
// Found end TX
instance->common.parser_step = KeeloqDecoderStepReset;
if(instance->common.code_count_bit >=
instance->common.code_min_count_bit_for_found) {
if(instance->common.code_last_found != instance->common.code_found) {
instance->common.code_last_found = instance->common.code_found;
instance->common.code_last_count_bit = instance->common.code_count_bit;
if(instance->common.callback)
instance->common.callback(
(SubGhzProtocolCommon*)instance, instance->common.context);
}
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
instance->common.header_count = 0;
}
break;
} else if(
(DURATION_DIFF(instance->common.te_last, instance->common.te_short) <
instance->common.te_delta) &&
(DURATION_DIFF(duration, instance->common.te_long) < instance->common.te_delta)) {
if(instance->common.code_count_bit <
instance->common.code_min_count_bit_for_found) {
subghz_protocol_common_add_bit(&instance->common, 1);
}
instance->common.parser_step = KeeloqDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->common.te_last, instance->common.te_long) <
instance->common.te_delta) &&
(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta)) {
if(instance->common.code_count_bit <
instance->common.code_min_count_bit_for_found) {
subghz_protocol_common_add_bit(&instance->common, 0);
}
instance->common.parser_step = KeeloqDecoderStepSaveDuration;
} else {
instance->common.parser_step = KeeloqDecoderStepReset;
instance->common.header_count = 0;
}
} else {
instance->common.parser_step = KeeloqDecoderStepReset;
instance->common.header_count = 0;
}
break;
}
}
void subghz_protocol_keeloq_to_str(SubGhzProtocolKeeloq* instance, string_t output) {
subghz_protocol_keeloq_check_remote_controller(instance);
uint32_t code_found_hi = instance->common.code_last_found >> 32;
uint32_t code_found_lo = instance->common.code_last_found & 0x00000000ffffffff;
uint64_t code_found_reverse = subghz_protocol_common_reverse_key(
instance->common.code_last_found, instance->common.code_last_count_bit);
uint32_t code_found_reverse_hi = code_found_reverse >> 32;
uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff;
string_cat_printf(
output,
"%s %dbit\r\n"
"Key:%08lX%08lX\r\n"
"Fix:0x%08lX Cnt:%04X\r\n"
"Hop:0x%08lX Btn:%02lX\r\n"
"MF:%s\r\n"
"Sn:0x%07lX \r\n",
instance->common.name,
instance->common.code_last_count_bit,
code_found_hi,
code_found_lo,
code_found_reverse_hi,
instance->common.cnt,
code_found_reverse_lo,
instance->common.btn,
instance->manufacture_name,
instance->common.serial);
}
void subghz_protocol_keeloq_to_save_str(SubGhzProtocolKeeloq* instance, string_t output) {
string_printf(
output,
"Protocol: %s\n"
"Bit: %d\n"
"Key: %08lX%08lX\n",
instance->common.name,
instance->common.code_last_count_bit,
(uint32_t)(instance->common.code_last_found >> 32),
(uint32_t)(instance->common.code_last_found & 0xFFFFFFFF));
}
bool subghz_protocol_keeloq_to_load_protocol_from_file(
FileWorker* file_worker,
SubGhzProtocolKeeloq* instance) {
bool loaded = false;
string_t temp_str;
string_init(temp_str);
int res = 0;
int data = 0;
do {
// Read and parse bit data from 2nd line
if(!file_worker_read_until(file_worker, temp_str, '\n')) {
break;
}
res = sscanf(string_get_cstr(temp_str), "Bit: %d\n", &data);
if(res != 1) {
break;
}
instance->common.code_last_count_bit = (uint8_t)data;
// Read and parse key data from 3nd line
if(!file_worker_read_until(file_worker, temp_str, '\n')) {
break;
}
// strlen("Key: ") = 5
string_right(temp_str, 5);
uint8_t buf_key[8] = {0};
if(!subghz_protocol_common_read_hex(temp_str, buf_key, 8)) {
break;
}
for(uint8_t i = 0; i < 8; i++) {
instance->common.code_last_found = instance->common.code_last_found << 8 | buf_key[i];
}
loaded = true;
} while(0);
string_clear(temp_str);
return loaded;
}
void subghz_decoder_keeloq_to_load_protocol(SubGhzProtocolKeeloq* instance, void* context) {
furi_assert(context);
furi_assert(instance);
SubGhzProtocolCommonLoad* data = context;
instance->common.code_last_found = data->code_found;
instance->common.code_last_count_bit = data->code_count_bit;
subghz_protocol_keeloq_check_remote_controller(instance);
}
#include "subghz_protocol_keeloq.h"
#include "subghz_protocol_keeloq_common.h"
#include "../subghz_keystore.h"
#include <furi.h>
#include <m-string.h>
struct SubGhzProtocolKeeloq {
SubGhzProtocolCommon common;
SubGhzKeystore* keystore;
const char* manufacture_name;
};
typedef enum {
KeeloqDecoderStepReset = 0,
KeeloqDecoderStepCheckPreambula,
KeeloqDecoderStepSaveDuration,
KeeloqDecoderStepCheckDuration,
} KeeloqDecoderStep;
SubGhzProtocolKeeloq* subghz_protocol_keeloq_alloc(SubGhzKeystore* keystore) {
SubGhzProtocolKeeloq* instance = furi_alloc(sizeof(SubGhzProtocolKeeloq));
instance->keystore = keystore;
instance->common.name = "KeeLoq";
instance->common.code_min_count_bit_for_found = 64;
instance->common.te_short = 400;
instance->common.te_long = 800;
instance->common.te_delta = 140;
instance->common.type_protocol = SubGhzProtocolCommonTypeDynamic;
instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_protocol_keeloq_to_str;
instance->common.to_save_string =
(SubGhzProtocolCommonGetStrSave)subghz_protocol_keeloq_to_save_str;
instance->common.to_load_protocol_from_file =
(SubGhzProtocolCommonLoadFromFile)subghz_protocol_keeloq_to_load_protocol_from_file;
instance->common.to_load_protocol =
(SubGhzProtocolCommonLoadFromRAW)subghz_decoder_keeloq_to_load_protocol;
instance->common.get_upload_protocol =
(SubGhzProtocolCommonEncoderGetUpLoad)subghz_protocol_keeloq_send_key;
return instance;
}
void subghz_protocol_keeloq_free(SubGhzProtocolKeeloq* instance) {
furi_assert(instance);
free(instance);
}
/** Checking the accepted code against the database manafacture key
*
* @param instance SubGhzProtocolKeeloq instance
* @param fix fix part of the parcel
* @param hop hop encrypted part of the parcel
* @return true on successful search
*/
uint8_t subghz_protocol_keeloq_check_remote_controller_selector(
SubGhzProtocolKeeloq* instance,
uint32_t fix,
uint32_t hop) {
uint16_t end_serial = (uint16_t)(fix & 0x3FF);
uint8_t btn = (uint8_t)(fix >> 28);
uint32_t decrypt = 0;
uint64_t man_normal_learning;
for
M_EACH(manufacture_code, *subghz_keystore_get_data(instance->keystore), SubGhzKeyArray_t) {
switch(manufacture_code->type) {
case KEELOQ_LEARNING_SIMPLE:
//Simple Learning
decrypt = subghz_protocol_keeloq_common_decrypt(hop, manufacture_code->key);
if((decrypt >> 28 == btn) &&
(((((uint16_t)(decrypt >> 16)) & 0x3FF) == end_serial) ||
((((uint16_t)(decrypt >> 16)) & 0x3FF) == 0))) {
instance->manufacture_name = string_get_cstr(manufacture_code->name);
instance->common.cnt = decrypt & 0x0000FFFF;
return 1;
}
break;
case KEELOQ_LEARNING_NORMAL:
// Normal_Learning
// https://phreakerclub.com/forum/showpost.php?p=43557&postcount=37
man_normal_learning =
subghz_protocol_keeloq_common_normal_learning(fix, manufacture_code->key);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man_normal_learning);
if((decrypt >> 28 == btn) &&
(((((uint16_t)(decrypt >> 16)) & 0x3FF) == end_serial) ||
((((uint16_t)(decrypt >> 16)) & 0x3FF) == 0))) {
instance->manufacture_name = string_get_cstr(manufacture_code->name);
instance->common.cnt = decrypt & 0x0000FFFF;
return 1;
}
break;
case KEELOQ_LEARNING_UNKNOWN:
// Simple Learning
decrypt = subghz_protocol_keeloq_common_decrypt(hop, manufacture_code->key);
if((decrypt >> 28 == btn) &&
(((((uint16_t)(decrypt >> 16)) & 0x3FF) == end_serial) ||
((((uint16_t)(decrypt >> 16)) & 0x3FF) == 0))) {
instance->manufacture_name = string_get_cstr(manufacture_code->name);
instance->common.cnt = decrypt & 0x0000FFFF;
return 1;
}
// Check for mirrored man
uint64_t man_rev = 0;
uint64_t man_rev_byte = 0;
for(uint8_t i = 0; i < 64; i += 8) {
man_rev_byte = (uint8_t)(manufacture_code->key >> i);
man_rev = man_rev | man_rev_byte << (56 - i);
}
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man_rev);
if((decrypt >> 28 == btn) &&
(((((uint16_t)(decrypt >> 16)) & 0x3FF) == end_serial) ||
((((uint16_t)(decrypt >> 16)) & 0x3FF) == 0))) {
instance->manufacture_name = string_get_cstr(manufacture_code->name);
instance->common.cnt = decrypt & 0x0000FFFF;
return 1;
}
//###########################
// Normal_Learning
// https://phreakerclub.com/forum/showpost.php?p=43557&postcount=37
man_normal_learning =
subghz_protocol_keeloq_common_normal_learning(fix, manufacture_code->key);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man_normal_learning);
if((decrypt >> 28 == btn) &&
(((((uint16_t)(decrypt >> 16)) & 0x3FF) == end_serial) ||
((((uint16_t)(decrypt >> 16)) & 0x3FF) == 0))) {
instance->manufacture_name = string_get_cstr(manufacture_code->name);
instance->common.cnt = decrypt & 0x0000FFFF;
return 1;
}
// Check for mirrored man
man_rev = 0;
man_rev_byte = 0;
for(uint8_t i = 0; i < 64; i += 8) {
man_rev_byte = (uint8_t)(manufacture_code->key >> i);
man_rev = man_rev | man_rev_byte << (56 - i);
}
man_normal_learning = subghz_protocol_keeloq_common_normal_learning(fix, man_rev);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man_normal_learning);
if((decrypt >> 28 == btn) &&
(((((uint16_t)(decrypt >> 16)) & 0x3FF) == end_serial) ||
((((uint16_t)(decrypt >> 16)) & 0x3FF) == 0))) {
instance->manufacture_name = string_get_cstr(manufacture_code->name);
instance->common.cnt = decrypt & 0x0000FFFF;
return 1;
}
break;
}
}
instance->manufacture_name = "Unknown";
instance->common.cnt = 0;
return 0;
}
/** Analysis of received data
*
* @param instance SubGhzProtocolKeeloq instance
*/
void subghz_protocol_keeloq_check_remote_controller(SubGhzProtocolKeeloq* instance) {
uint64_t key = subghz_protocol_common_reverse_key(
instance->common.code_last_found, instance->common.code_last_count_bit);
uint32_t key_fix = key >> 32;
uint32_t key_hop = key & 0x00000000ffffffff;
// Check key AN-Motors
if((key_hop >> 24) == ((key_hop >> 16) & 0x00ff) &&
(key_fix >> 28) == ((key_hop >> 12) & 0x0f) && (key_hop & 0xFFF) == 0x404) {
instance->manufacture_name = "AN-Motors";
instance->common.cnt = key_hop >> 16;
} else if((key_hop & 0xFFF) == (0x000) && (key_fix >> 28) == ((key_hop >> 12) & 0x0f)) {
instance->manufacture_name = "HCS101";
instance->common.cnt = key_hop >> 16;
} else {
subghz_protocol_keeloq_check_remote_controller_selector(instance, key_fix, key_hop);
}
instance->common.serial = key_fix & 0x0FFFFFFF;
instance->common.btn = key_fix >> 28;
}
const char* subghz_protocol_keeloq_find_and_get_manufacture_name(void* context) {
SubGhzProtocolKeeloq* instance = context;
subghz_protocol_keeloq_check_remote_controller(instance);
return instance->manufacture_name;
}
const char* subghz_protocol_keeloq_get_manufacture_name(void* context) {
SubGhzProtocolKeeloq* instance = context;
return instance->manufacture_name;
}
bool subghz_protocol_keeloq_set_manufacture_name(void* context, const char* manufacture_name) {
SubGhzProtocolKeeloq* instance = context;
instance->manufacture_name = manufacture_name;
int res = 0;
for
M_EACH(
manufacture_code,
*subghz_keystore_get_data(instance->keystore),
SubGhzKeyArray_t) {
res = strcmp(string_get_cstr(manufacture_code->name), instance->manufacture_name);
if(res == 0) return true;
}
instance->manufacture_name = "Unknown";
return false;
}
uint64_t subghz_protocol_keeloq_gen_key(void* context) {
SubGhzProtocolKeeloq* instance = context;
uint32_t fix = instance->common.btn << 28 | instance->common.serial;
uint32_t decrypt = instance->common.btn << 28 | (instance->common.serial & 0x3FF) << 16 |
instance->common.cnt;
uint32_t hop = 0;
uint64_t man_normal_learning = 0;
int res = 0;
for
M_EACH(manufacture_code, *subghz_keystore_get_data(instance->keystore), SubGhzKeyArray_t) {
res = strcmp(string_get_cstr(manufacture_code->name), instance->manufacture_name);
if(res == 0) {
switch(manufacture_code->type) {
case KEELOQ_LEARNING_SIMPLE:
//Simple Learning
hop = subghz_protocol_keeloq_common_encrypt(decrypt, manufacture_code->key);
break;
case KEELOQ_LEARNING_NORMAL:
//Simple Learning
man_normal_learning =
subghz_protocol_keeloq_common_normal_learning(fix, manufacture_code->key);
hop = subghz_protocol_keeloq_common_encrypt(decrypt, man_normal_learning);
break;
case KEELOQ_LEARNING_UNKNOWN:
hop = 0; //todo
break;
}
break;
}
}
uint64_t yek = (uint64_t)fix << 32 | hop;
return subghz_protocol_common_reverse_key(yek, instance->common.code_last_count_bit);
}
bool subghz_protocol_keeloq_send_key(
SubGhzProtocolKeeloq* instance,
SubGhzProtocolCommonEncoder* encoder) {
furi_assert(instance);
furi_assert(encoder);
//gen new key
instance->common.cnt++;
instance->common.code_last_found = subghz_protocol_keeloq_gen_key(instance);
if(instance->common.callback)
instance->common.callback((SubGhzProtocolCommon*)instance, instance->common.context);
if(!strcmp(instance->manufacture_name, "Unknown")) {
return false;
}
size_t index = 0;
encoder->size_upload = 11 * 2 + 2 + (instance->common.code_last_count_bit * 2) + 4;
if(encoder->size_upload > SUBGHZ_ENCODER_UPLOAD_MAX_SIZE) return false;
//Send header
for(uint8_t i = 11; i > 0; i--) {
encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_short);
encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->common.te_short);
}
encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_short);
encoder->upload[index++] =
level_duration_make(false, (uint32_t)instance->common.te_short * 10);
//Send key data
for(uint8_t i = instance->common.code_last_count_bit; i > 0; i--) {
if(bit_read(instance->common.code_last_found, i - 1)) {
//send bit 1
encoder->upload[index++] =
level_duration_make(true, (uint32_t)instance->common.te_short);
encoder->upload[index++] =
level_duration_make(false, (uint32_t)instance->common.te_long);
} else {
//send bit 0
encoder->upload[index++] =
level_duration_make(true, (uint32_t)instance->common.te_long);
encoder->upload[index++] =
level_duration_make(false, (uint32_t)instance->common.te_short);
}
}
// +send 2 status bit
encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_short);
encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->common.te_long);
//encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_long);
//encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->common.te_short);
// send end
encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_short);
encoder->upload[index++] =
level_duration_make(false, (uint32_t)instance->common.te_short * 40);
return true;
}
void subghz_protocol_keeloq_reset(SubGhzProtocolKeeloq* instance) {
instance->common.parser_step = KeeloqDecoderStepReset;
}
void subghz_protocol_keeloq_parse(SubGhzProtocolKeeloq* instance, bool level, uint32_t duration) {
switch(instance->common.parser_step) {
case KeeloqDecoderStepReset:
if((level) &&
DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta) {
instance->common.parser_step = KeeloqDecoderStepCheckPreambula;
instance->common.header_count++;
} else {
instance->common.parser_step = KeeloqDecoderStepReset;
}
break;
case KeeloqDecoderStepCheckPreambula:
if((!level) &&
(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta)) {
instance->common.parser_step = KeeloqDecoderStepReset;
break;
}
if((instance->common.header_count > 2) &&
(DURATION_DIFF(duration, instance->common.te_short * 10) <
instance->common.te_delta * 10)) {
// Found header
instance->common.parser_step = KeeloqDecoderStepSaveDuration;
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
} else {
instance->common.parser_step = KeeloqDecoderStepReset;
instance->common.header_count = 0;
}
break;
case KeeloqDecoderStepSaveDuration:
if(level) {
instance->common.te_last = duration;
instance->common.parser_step = KeeloqDecoderStepCheckDuration;
}
break;
case KeeloqDecoderStepCheckDuration:
if(!level) {
if(duration >= (instance->common.te_short * 2 + instance->common.te_delta)) {
// Found end TX
instance->common.parser_step = KeeloqDecoderStepReset;
if(instance->common.code_count_bit >=
instance->common.code_min_count_bit_for_found) {
if(instance->common.code_last_found != instance->common.code_found) {
instance->common.code_last_found = instance->common.code_found;
instance->common.code_last_count_bit = instance->common.code_count_bit;
if(instance->common.callback)
instance->common.callback(
(SubGhzProtocolCommon*)instance, instance->common.context);
}
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
instance->common.header_count = 0;
}
break;
} else if(
(DURATION_DIFF(instance->common.te_last, instance->common.te_short) <
instance->common.te_delta) &&
(DURATION_DIFF(duration, instance->common.te_long) < instance->common.te_delta)) {
if(instance->common.code_count_bit <
instance->common.code_min_count_bit_for_found) {
subghz_protocol_common_add_bit(&instance->common, 1);
}
instance->common.parser_step = KeeloqDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->common.te_last, instance->common.te_long) <
instance->common.te_delta) &&
(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta)) {
if(instance->common.code_count_bit <
instance->common.code_min_count_bit_for_found) {
subghz_protocol_common_add_bit(&instance->common, 0);
}
instance->common.parser_step = KeeloqDecoderStepSaveDuration;
} else {
instance->common.parser_step = KeeloqDecoderStepReset;
instance->common.header_count = 0;
}
} else {
instance->common.parser_step = KeeloqDecoderStepReset;
instance->common.header_count = 0;
}
break;
}
}
void subghz_protocol_keeloq_to_str(SubGhzProtocolKeeloq* instance, string_t output) {
subghz_protocol_keeloq_check_remote_controller(instance);
uint32_t code_found_hi = instance->common.code_last_found >> 32;
uint32_t code_found_lo = instance->common.code_last_found & 0x00000000ffffffff;
uint64_t code_found_reverse = subghz_protocol_common_reverse_key(
instance->common.code_last_found, instance->common.code_last_count_bit);
uint32_t code_found_reverse_hi = code_found_reverse >> 32;
uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff;
string_cat_printf(
output,
"%s %dbit\r\n"
"Key:%08lX%08lX\r\n"
"Fix:0x%08lX Cnt:%04X\r\n"
"Hop:0x%08lX Btn:%02lX\r\n"
"MF:%s\r\n"
"Sn:0x%07lX \r\n",
instance->common.name,
instance->common.code_last_count_bit,
code_found_hi,
code_found_lo,
code_found_reverse_hi,
instance->common.cnt,
code_found_reverse_lo,
instance->common.btn,
instance->manufacture_name,
instance->common.serial);
}
void subghz_protocol_keeloq_to_save_str(SubGhzProtocolKeeloq* instance, string_t output) {
string_printf(
output,
"Protocol: %s\n"
"Bit: %d\n"
"Key: %08lX%08lX\n",
instance->common.name,
instance->common.code_last_count_bit,
(uint32_t)(instance->common.code_last_found >> 32),
(uint32_t)(instance->common.code_last_found & 0xFFFFFFFF));
}
bool subghz_protocol_keeloq_to_load_protocol_from_file(
FileWorker* file_worker,
SubGhzProtocolKeeloq* instance) {
bool loaded = false;
string_t temp_str;
string_init(temp_str);
int res = 0;
int data = 0;
do {
// Read and parse bit data from 2nd line
if(!file_worker_read_until(file_worker, temp_str, '\n')) {
break;
}
res = sscanf(string_get_cstr(temp_str), "Bit: %d\n", &data);
if(res != 1) {
break;
}
instance->common.code_last_count_bit = (uint8_t)data;
// Read and parse key data from 3nd line
if(!file_worker_read_until(file_worker, temp_str, '\n')) {
break;
}
// strlen("Key: ") = 5
string_right(temp_str, 5);
uint8_t buf_key[8] = {0};
if(!subghz_protocol_common_read_hex(temp_str, buf_key, 8)) {
break;
}
for(uint8_t i = 0; i < 8; i++) {
instance->common.code_last_found = instance->common.code_last_found << 8 | buf_key[i];
}
loaded = true;
} while(0);
string_clear(temp_str);
return loaded;
}
void subghz_decoder_keeloq_to_load_protocol(SubGhzProtocolKeeloq* instance, void* context) {
furi_assert(context);
furi_assert(instance);
SubGhzProtocolCommonLoad* data = context;
instance->common.code_last_found = data->code_found;
instance->common.code_last_count_bit = data->code_count_bit;
subghz_protocol_keeloq_check_remote_controller(instance);
}

View File

@@ -1,97 +1,97 @@
#pragma once
#include "subghz_protocol_common.h"
typedef struct SubGhzKeystore SubGhzKeystore;
typedef struct SubGhzProtocolKeeloq SubGhzProtocolKeeloq;
/** Allocate SubGhzProtocolKeeloq
*
* @return SubGhzProtocolKeeloq*
*/
SubGhzProtocolKeeloq* subghz_protocol_keeloq_alloc(SubGhzKeystore* keystore);
/** Free SubGhzProtocolKeeloq
*
* @param instance
*/
void subghz_protocol_keeloq_free(SubGhzProtocolKeeloq* instance);
/** Find and get manufacture name
*
* @param context - SubGhzProtocolKeeloq context
* @return name - char* manufacture name
*/
const char* subghz_protocol_keeloq_find_and_get_manufacture_name(void* context);
/** Get manufacture name
*
* @param context - SubGhzProtocolKeeloq context
* @return name - char* manufacture name
*/
const char* subghz_protocol_keeloq_get_manufacture_name(void* context);
/** Set manufacture name
*
* @param manufacture_name - manufacture name
* @param context - SubGhzProtocolKeeloq context
* @return bool
*/
bool subghz_protocol_keeloq_set_manufacture_name(void* context, const char* manufacture_name);
/** Get key keeloq
*
* @param context - SubGhzProtocolKeeloq context
* @return key
*/
uint64_t subghz_protocol_keeloq_gen_key(void* context);
/** Get upload protocol
*
* @param instance - SubGhzProtocolKeeloq instance
* @param encoder - SubGhzProtocolCommonEncoder encoder
* @return bool
*/
bool subghz_protocol_keeloq_send_key(SubGhzProtocolKeeloq* instance, SubGhzProtocolCommonEncoder* encoder);
/** Reset internal state
* @param instance - SubGhzProtocolKeeloq instance
*/
void subghz_protocol_keeloq_reset(SubGhzProtocolKeeloq* instance);
/** Parse accepted duration
*
* @param instance - SubGhzProtocolKeeloq instance
* @param data - LevelDuration level_duration
*/
void subghz_protocol_keeloq_parse(SubGhzProtocolKeeloq* instance, bool level, uint32_t duration);
/** Outputting information from the parser
*
* @param instance - SubGhzProtocolKeeloq* instance
* @param output - output string
*/
void subghz_protocol_keeloq_to_str(SubGhzProtocolKeeloq* instance, string_t output);
/** Get a string to save the protocol
*
* @param instance - SubGhzProtocolKeeloq instance
* @param output - the resulting string
*/
void subghz_protocol_keeloq_to_save_str(SubGhzProtocolKeeloq* instance, string_t output);
/** Loading protocol from file
*
* @param file_worker - FileWorker file_worker
* @param instance - SubGhzProtocolKeeloq instance
* @return bool
*/
bool subghz_protocol_keeloq_to_load_protocol_from_file(FileWorker* file_worker, SubGhzProtocolKeeloq* instance);
/** Loading protocol from bin data
*
* @param instance - SubGhzProtocolKeeloq instance
* @param context - SubGhzProtocolCommonLoad context
*/
void subghz_decoder_keeloq_to_load_protocol(SubGhzProtocolKeeloq* instance, void* context);
#pragma once
#include "subghz_protocol_common.h"
typedef struct SubGhzKeystore SubGhzKeystore;
typedef struct SubGhzProtocolKeeloq SubGhzProtocolKeeloq;
/** Allocate SubGhzProtocolKeeloq
*
* @return SubGhzProtocolKeeloq*
*/
SubGhzProtocolKeeloq* subghz_protocol_keeloq_alloc(SubGhzKeystore* keystore);
/** Free SubGhzProtocolKeeloq
*
* @param instance
*/
void subghz_protocol_keeloq_free(SubGhzProtocolKeeloq* instance);
/** Find and get manufacture name
*
* @param context - SubGhzProtocolKeeloq context
* @return name - char* manufacture name
*/
const char* subghz_protocol_keeloq_find_and_get_manufacture_name(void* context);
/** Get manufacture name
*
* @param context - SubGhzProtocolKeeloq context
* @return name - char* manufacture name
*/
const char* subghz_protocol_keeloq_get_manufacture_name(void* context);
/** Set manufacture name
*
* @param manufacture_name - manufacture name
* @param context - SubGhzProtocolKeeloq context
* @return bool
*/
bool subghz_protocol_keeloq_set_manufacture_name(void* context, const char* manufacture_name);
/** Get key keeloq
*
* @param context - SubGhzProtocolKeeloq context
* @return key
*/
uint64_t subghz_protocol_keeloq_gen_key(void* context);
/** Get upload protocol
*
* @param instance - SubGhzProtocolKeeloq instance
* @param encoder - SubGhzProtocolCommonEncoder encoder
* @return bool
*/
bool subghz_protocol_keeloq_send_key(SubGhzProtocolKeeloq* instance, SubGhzProtocolCommonEncoder* encoder);
/** Reset internal state
* @param instance - SubGhzProtocolKeeloq instance
*/
void subghz_protocol_keeloq_reset(SubGhzProtocolKeeloq* instance);
/** Parse accepted duration
*
* @param instance - SubGhzProtocolKeeloq instance
* @param data - LevelDuration level_duration
*/
void subghz_protocol_keeloq_parse(SubGhzProtocolKeeloq* instance, bool level, uint32_t duration);
/** Outputting information from the parser
*
* @param instance - SubGhzProtocolKeeloq* instance
* @param output - output string
*/
void subghz_protocol_keeloq_to_str(SubGhzProtocolKeeloq* instance, string_t output);
/** Get a string to save the protocol
*
* @param instance - SubGhzProtocolKeeloq instance
* @param output - the resulting string
*/
void subghz_protocol_keeloq_to_save_str(SubGhzProtocolKeeloq* instance, string_t output);
/** Loading protocol from file
*
* @param file_worker - FileWorker file_worker
* @param instance - SubGhzProtocolKeeloq instance
* @return bool
*/
bool subghz_protocol_keeloq_to_load_protocol_from_file(FileWorker* file_worker, SubGhzProtocolKeeloq* instance);
/** Loading protocol from bin data
*
* @param instance - SubGhzProtocolKeeloq instance
* @param context - SubGhzProtocolCommonLoad context
*/
void subghz_decoder_keeloq_to_load_protocol(SubGhzProtocolKeeloq* instance, void* context);

View File

@@ -1,49 +1,49 @@
#include "subghz_protocol_keeloq_common.h"
#include <furi.h>
#include <m-string.h>
#include <m-array.h>
/** Simple Learning Encrypt
* @param data - 0xBSSSCCCC, B(4bit) key, S(10bit) serial&0x3FF, C(16bit) counter
* @param key - manufacture (64bit)
* @return keelog encrypt data
*/
inline uint32_t subghz_protocol_keeloq_common_encrypt(const uint32_t data, const uint64_t key) {
uint32_t x = data, r;
for (r = 0; r < 528; r++)
x = (x>>1)^((bit(x,0)^bit(x,16)^(uint32_t)bit(key,r&63)^bit(KEELOQ_NLF,g5(x,1,9,20,26,31)))<<31);
return x;
}
/** Simple Learning Decrypt
* @param data - keelog encrypt data
* @param key - manufacture (64bit)
* @return 0xBSSSCCCC, B(4bit) key, S(10bit) serial&0x3FF, C(16bit) counter
*/
inline uint32_t subghz_protocol_keeloq_common_decrypt(const uint32_t data, const uint64_t key) {
uint32_t x = data, r;
for (r = 0; r < 528; r++)
x = (x<<1)^bit(x,31)^bit(x,15)^(uint32_t)bit(key,(15-r)&63)^bit(KEELOQ_NLF,g5(x,0,8,19,25,30));
return x;
}
/** Normal Learning
* @param data - serial number (28bit)
* @param key - manufacture (64bit)
* @return manufacture for this serial number (64bit)
*/
inline uint64_t subghz_protocol_keeloq_common_normal_learning(uint32_t data, const uint64_t key){
uint32_t k1,k2;
data&=0x0FFFFFFF;
data|=0x20000000;
k1=subghz_protocol_keeloq_common_decrypt(data, key);
data&=0x0FFFFFFF;
data|=0x60000000;
k2=subghz_protocol_keeloq_common_decrypt(data, key);
return ((uint64_t)k2<<32)| k1; // key - shifrovanoya
}
#include "subghz_protocol_keeloq_common.h"
#include <furi.h>
#include <m-string.h>
#include <m-array.h>
/** Simple Learning Encrypt
* @param data - 0xBSSSCCCC, B(4bit) key, S(10bit) serial&0x3FF, C(16bit) counter
* @param key - manufacture (64bit)
* @return keelog encrypt data
*/
inline uint32_t subghz_protocol_keeloq_common_encrypt(const uint32_t data, const uint64_t key) {
uint32_t x = data, r;
for (r = 0; r < 528; r++)
x = (x>>1)^((bit(x,0)^bit(x,16)^(uint32_t)bit(key,r&63)^bit(KEELOQ_NLF,g5(x,1,9,20,26,31)))<<31);
return x;
}
/** Simple Learning Decrypt
* @param data - keelog encrypt data
* @param key - manufacture (64bit)
* @return 0xBSSSCCCC, B(4bit) key, S(10bit) serial&0x3FF, C(16bit) counter
*/
inline uint32_t subghz_protocol_keeloq_common_decrypt(const uint32_t data, const uint64_t key) {
uint32_t x = data, r;
for (r = 0; r < 528; r++)
x = (x<<1)^bit(x,31)^bit(x,15)^(uint32_t)bit(key,(15-r)&63)^bit(KEELOQ_NLF,g5(x,0,8,19,25,30));
return x;
}
/** Normal Learning
* @param data - serial number (28bit)
* @param key - manufacture (64bit)
* @return manufacture for this serial number (64bit)
*/
inline uint64_t subghz_protocol_keeloq_common_normal_learning(uint32_t data, const uint64_t key){
uint32_t k1,k2;
data&=0x0FFFFFFF;
data|=0x20000000;
k1=subghz_protocol_keeloq_common_decrypt(data, key);
data&=0x0FFFFFFF;
data|=0x60000000;
k2=subghz_protocol_keeloq_common_decrypt(data, key);
return ((uint64_t)k2<<32)| k1; // key - shifrovanoya
}

View File

@@ -1,48 +1,48 @@
#pragma once
#include "subghz_protocol_common.h"
#include "file-worker.h"
#include <furi.h>
/*
* Keeloq
* https://ru.wikipedia.org/wiki/KeeLoq
* https://phreakerclub.com/forum/showthread.php?t=1094
*
*/
#define KEELOQ_NLF 0x3A5C742E
#define bit(x,n) (((x)>>(n))&1)
#define g5(x,a,b,c,d,e) (bit(x,a)+bit(x,b)*2+bit(x,c)*4+bit(x,d)*8+bit(x,e)*16)
/*
* KeeLoq learning types
* https://phreakerclub.com/forum/showthread.php?t=67
*/
#define KEELOQ_LEARNING_UNKNOWN 0u
#define KEELOQ_LEARNING_SIMPLE 1u
#define KEELOQ_LEARNING_NORMAL 2u
#define KEELOQ_LEARNING_SECURE 3u
/** Simple Learning Encrypt
* @param data - 0xBSSSCCCC, B(4bit) key, S(10bit) serial&0x3FF, C(16bit) counter
* @param key - manufacture (64bit)
* @return keelog encrypt data
*/
uint32_t subghz_protocol_keeloq_common_encrypt(const uint32_t data, const uint64_t key);
/** Simple Learning Decrypt
* @param data - keelog encrypt data
* @param key - manufacture (64bit)
* @return 0xBSSSCCCC, B(4bit) key, S(10bit) serial&0x3FF, C(16bit) counter
*/
uint32_t subghz_protocol_keeloq_common_decrypt(const uint32_t data, const uint64_t key);
/** Normal Learning
* @param data - serial number (28bit)
* @param key - manufacture (64bit)
* @return manufacture for this serial number (64bit)
*/
uint64_t subghz_protocol_keeloq_common_normal_learning(uint32_t data, const uint64_t key);
#pragma once
#include "subghz_protocol_common.h"
#include "file-worker.h"
#include <furi.h>
/*
* Keeloq
* https://ru.wikipedia.org/wiki/KeeLoq
* https://phreakerclub.com/forum/showthread.php?t=1094
*
*/
#define KEELOQ_NLF 0x3A5C742E
#define bit(x,n) (((x)>>(n))&1)
#define g5(x,a,b,c,d,e) (bit(x,a)+bit(x,b)*2+bit(x,c)*4+bit(x,d)*8+bit(x,e)*16)
/*
* KeeLoq learning types
* https://phreakerclub.com/forum/showthread.php?t=67
*/
#define KEELOQ_LEARNING_UNKNOWN 0u
#define KEELOQ_LEARNING_SIMPLE 1u
#define KEELOQ_LEARNING_NORMAL 2u
#define KEELOQ_LEARNING_SECURE 3u
/** Simple Learning Encrypt
* @param data - 0xBSSSCCCC, B(4bit) key, S(10bit) serial&0x3FF, C(16bit) counter
* @param key - manufacture (64bit)
* @return keelog encrypt data
*/
uint32_t subghz_protocol_keeloq_common_encrypt(const uint32_t data, const uint64_t key);
/** Simple Learning Decrypt
* @param data - keelog encrypt data
* @param key - manufacture (64bit)
* @return 0xBSSSCCCC, B(4bit) key, S(10bit) serial&0x3FF, C(16bit) counter
*/
uint32_t subghz_protocol_keeloq_common_decrypt(const uint32_t data, const uint64_t key);
/** Normal Learning
* @param data - serial number (28bit)
* @param key - manufacture (64bit)
* @return manufacture for this serial number (64bit)
*/
uint64_t subghz_protocol_keeloq_common_normal_learning(uint32_t data, const uint64_t key);

View File

@@ -1,285 +1,285 @@
#include "subghz_protocol_nero_sketch.h"
struct SubGhzProtocolNeroSketch {
SubGhzProtocolCommon common;
};
typedef enum {
NeroSketchDecoderStepReset = 0,
NeroSketchDecoderStepCheckPreambula,
NeroSketchDecoderStepSaveDuration,
NeroSketchDecoderStepCheckDuration,
} NeroSketchDecoderStep;
SubGhzProtocolNeroSketch* subghz_protocol_nero_sketch_alloc(void) {
SubGhzProtocolNeroSketch* instance = furi_alloc(sizeof(SubGhzProtocolNeroSketch));
instance->common.name = "Nero Sketch";
instance->common.code_min_count_bit_for_found = 40;
instance->common.te_short = 330;
instance->common.te_long = 660;
instance->common.te_delta = 150;
instance->common.type_protocol = SubGhzProtocolCommonTypeStatic;
instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_protocol_nero_sketch_to_str;
instance->common.to_save_string =
(SubGhzProtocolCommonGetStrSave)subghz_protocol_nero_sketch_to_save_str;
instance->common.to_load_protocol_from_file =
(SubGhzProtocolCommonLoadFromFile)subghz_protocol_nero_sketch_to_load_protocol_from_file;
instance->common.to_load_protocol =
(SubGhzProtocolCommonLoadFromRAW)subghz_decoder_nero_sketch_to_load_protocol;
instance->common.get_upload_protocol =
(SubGhzProtocolCommonEncoderGetUpLoad)subghz_protocol_nero_sketch_send_key;
return instance;
}
void subghz_protocol_nero_sketch_free(SubGhzProtocolNeroSketch* instance) {
furi_assert(instance);
free(instance);
}
bool subghz_protocol_nero_sketch_send_key(
SubGhzProtocolNeroSketch* instance,
SubGhzProtocolCommonEncoder* encoder) {
furi_assert(instance);
furi_assert(encoder);
size_t index = 0;
encoder->size_upload = 47 * 2 + 2 + (instance->common.code_last_count_bit * 2) + 2;
if(encoder->size_upload > SUBGHZ_ENCODER_UPLOAD_MAX_SIZE) return false;
//Send header
for(uint8_t i = 0; i < 47; i++) {
encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_short);
encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->common.te_short);
}
//Send start bit
encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_short * 4);
encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->common.te_short);
//Send key data
for(uint8_t i = instance->common.code_last_count_bit; i > 0; i--) {
if(bit_read(instance->common.code_last_found, i - 1)) {
//send bit 1
encoder->upload[index++] =
level_duration_make(true, (uint32_t)instance->common.te_long);
encoder->upload[index++] =
level_duration_make(false, (uint32_t)instance->common.te_short);
} else {
//send bit 0
encoder->upload[index++] =
level_duration_make(true, (uint32_t)instance->common.te_short);
encoder->upload[index++] =
level_duration_make(false, (uint32_t)instance->common.te_long);
}
}
//Send stop bit
encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_short * 3);
encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->common.te_short);
return true;
}
void subghz_protocol_nero_sketch_reset(SubGhzProtocolNeroSketch* instance) {
instance->common.parser_step = NeroSketchDecoderStepReset;
}
/** Analysis of received data
*
* @param instance SubGhzProtocolNeroSketch instance
*/
// void subghz_protocol_nero_sketch_check_remote_controller(SubGhzProtocolNeroSketch* instance) {
// //пока не понятно с серийником, но код статический
// // uint64_t code_found_reverse = subghz_protocol_common_reverse_key(instance->common.code_found, instance->common.code_count_bit);
// // uint32_t code_fix = code_found_reverse & 0xFFFFFFFF;
// // //uint32_t code_hop = (code_found_reverse >> 24) & 0xFFFFF;
// // instance->common.serial = code_fix & 0xFFFFFFF;
// // instance->common.btn = (code_fix >> 28) & 0x0F;
// //if (instance->common.callback) instance->common.callback((SubGhzProtocolCommon*)instance, instance->common.context);
// }
void subghz_protocol_nero_sketch_parse(
SubGhzProtocolNeroSketch* instance,
bool level,
uint32_t duration) {
switch(instance->common.parser_step) {
case NeroSketchDecoderStepReset:
if((level) &&
(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta)) {
instance->common.parser_step = NeroSketchDecoderStepCheckPreambula;
instance->common.te_last = duration;
instance->common.header_count = 0;
} else {
instance->common.parser_step = NeroSketchDecoderStepReset;
}
break;
case NeroSketchDecoderStepCheckPreambula:
if(level) {
if((DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta) ||
(DURATION_DIFF(duration, instance->common.te_short * 4) <
instance->common.te_delta)) {
instance->common.te_last = duration;
} else {
instance->common.parser_step = NeroSketchDecoderStepReset;
}
} else if(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta) {
if(DURATION_DIFF(instance->common.te_last, instance->common.te_short) <
instance->common.te_delta) {
// Found header
instance->common.header_count++;
break;
} else if(
DURATION_DIFF(instance->common.te_last, instance->common.te_short * 4) <
instance->common.te_delta) {
// Found start bit
if(instance->common.header_count > 40) {
instance->common.parser_step = NeroSketchDecoderStepSaveDuration;
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
} else {
instance->common.parser_step = NeroSketchDecoderStepReset;
}
} else {
instance->common.parser_step = NeroSketchDecoderStepReset;
}
} else {
instance->common.parser_step = NeroSketchDecoderStepReset;
}
break;
case NeroSketchDecoderStepSaveDuration:
if(level) {
if(duration >= (instance->common.te_short * 2 + instance->common.te_delta * 2)) {
//Found stop bit
instance->common.parser_step = NeroSketchDecoderStepReset;
if(instance->common.code_count_bit >=
instance->common.code_min_count_bit_for_found) {
instance->common.code_last_found = instance->common.code_found;
instance->common.code_last_count_bit = instance->common.code_count_bit;
if(instance->common.callback)
instance->common.callback(
(SubGhzProtocolCommon*)instance, instance->common.context);
}
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
break;
} else {
instance->common.te_last = duration;
instance->common.parser_step = NeroSketchDecoderStepCheckDuration;
}
} else {
instance->common.parser_step = NeroSketchDecoderStepReset;
}
break;
case NeroSketchDecoderStepCheckDuration:
if(!level) {
if((DURATION_DIFF(instance->common.te_last, instance->common.te_short) <
instance->common.te_delta) &&
(DURATION_DIFF(duration, instance->common.te_long) < instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 0);
instance->common.parser_step = NeroSketchDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->common.te_last, instance->common.te_long) <
instance->common.te_delta) &&
(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 1);
instance->common.parser_step = NeroSketchDecoderStepSaveDuration;
} else {
instance->common.parser_step = NeroSketchDecoderStepReset;
}
} else {
instance->common.parser_step = NeroSketchDecoderStepReset;
}
break;
}
}
void subghz_protocol_nero_sketch_to_str(SubGhzProtocolNeroSketch* instance, string_t output) {
uint32_t code_found_hi = instance->common.code_last_found >> 32;
uint32_t code_found_lo = instance->common.code_last_found & 0x00000000ffffffff;
uint64_t code_found_reverse = subghz_protocol_common_reverse_key(
instance->common.code_last_found, instance->common.code_last_count_bit);
uint32_t code_found_reverse_hi = code_found_reverse >> 32;
uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff;
string_cat_printf(
output,
"%s %dbit\r\n"
"Key:0x%lX%08lX\r\n"
"Yek:0x%lX%08lX\r\n",
instance->common.name,
instance->common.code_last_count_bit,
code_found_hi,
code_found_lo,
code_found_reverse_hi,
code_found_reverse_lo);
}
void subghz_protocol_nero_sketch_to_save_str(SubGhzProtocolNeroSketch* instance, string_t output) {
uint32_t code_found_hi = instance->common.code_last_found >> 32;
uint32_t code_found_lo = instance->common.code_last_found & 0x00000000ffffffff;
string_printf(
output,
"Protocol: %s\n"
"Bit: %d\n"
"Key: %08lX%08lX\n",
instance->common.name,
instance->common.code_last_count_bit,
code_found_hi,
code_found_lo);
}
bool subghz_protocol_nero_sketch_to_load_protocol_from_file(
FileWorker* file_worker,
SubGhzProtocolNeroSketch* instance) {
bool loaded = false;
string_t temp_str;
string_init(temp_str);
int res = 0;
int data = 0;
do {
// Read and parse bit data from 2nd line
if(!file_worker_read_until(file_worker, temp_str, '\n')) {
break;
}
res = sscanf(string_get_cstr(temp_str), "Bit: %d\n", &data);
if(res != 1) {
break;
}
instance->common.code_last_count_bit = (uint8_t)data;
// Read and parse key data from 3nd line
if(!file_worker_read_until(file_worker, temp_str, '\n')) {
break;
}
uint32_t temp_key_hi = 0;
uint32_t temp_key_lo = 0;
res = sscanf(string_get_cstr(temp_str), "Key: %08lX%08lX\n", &temp_key_hi, &temp_key_lo);
if(res != 2) {
break;
}
instance->common.code_last_found = (uint64_t)temp_key_hi << 32 | temp_key_lo;
loaded = true;
} while(0);
string_clear(temp_str);
return loaded;
}
void subghz_decoder_nero_sketch_to_load_protocol(SubGhzProtocolNeroSketch* instance, void* context) {
furi_assert(context);
furi_assert(instance);
SubGhzProtocolCommonLoad* data = context;
instance->common.code_last_found = data->code_found;
instance->common.code_last_count_bit = data->code_count_bit;
#include "subghz_protocol_nero_sketch.h"
struct SubGhzProtocolNeroSketch {
SubGhzProtocolCommon common;
};
typedef enum {
NeroSketchDecoderStepReset = 0,
NeroSketchDecoderStepCheckPreambula,
NeroSketchDecoderStepSaveDuration,
NeroSketchDecoderStepCheckDuration,
} NeroSketchDecoderStep;
SubGhzProtocolNeroSketch* subghz_protocol_nero_sketch_alloc(void) {
SubGhzProtocolNeroSketch* instance = furi_alloc(sizeof(SubGhzProtocolNeroSketch));
instance->common.name = "Nero Sketch";
instance->common.code_min_count_bit_for_found = 40;
instance->common.te_short = 330;
instance->common.te_long = 660;
instance->common.te_delta = 150;
instance->common.type_protocol = SubGhzProtocolCommonTypeStatic;
instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_protocol_nero_sketch_to_str;
instance->common.to_save_string =
(SubGhzProtocolCommonGetStrSave)subghz_protocol_nero_sketch_to_save_str;
instance->common.to_load_protocol_from_file =
(SubGhzProtocolCommonLoadFromFile)subghz_protocol_nero_sketch_to_load_protocol_from_file;
instance->common.to_load_protocol =
(SubGhzProtocolCommonLoadFromRAW)subghz_decoder_nero_sketch_to_load_protocol;
instance->common.get_upload_protocol =
(SubGhzProtocolCommonEncoderGetUpLoad)subghz_protocol_nero_sketch_send_key;
return instance;
}
void subghz_protocol_nero_sketch_free(SubGhzProtocolNeroSketch* instance) {
furi_assert(instance);
free(instance);
}
bool subghz_protocol_nero_sketch_send_key(
SubGhzProtocolNeroSketch* instance,
SubGhzProtocolCommonEncoder* encoder) {
furi_assert(instance);
furi_assert(encoder);
size_t index = 0;
encoder->size_upload = 47 * 2 + 2 + (instance->common.code_last_count_bit * 2) + 2;
if(encoder->size_upload > SUBGHZ_ENCODER_UPLOAD_MAX_SIZE) return false;
//Send header
for(uint8_t i = 0; i < 47; i++) {
encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_short);
encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->common.te_short);
}
//Send start bit
encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_short * 4);
encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->common.te_short);
//Send key data
for(uint8_t i = instance->common.code_last_count_bit; i > 0; i--) {
if(bit_read(instance->common.code_last_found, i - 1)) {
//send bit 1
encoder->upload[index++] =
level_duration_make(true, (uint32_t)instance->common.te_long);
encoder->upload[index++] =
level_duration_make(false, (uint32_t)instance->common.te_short);
} else {
//send bit 0
encoder->upload[index++] =
level_duration_make(true, (uint32_t)instance->common.te_short);
encoder->upload[index++] =
level_duration_make(false, (uint32_t)instance->common.te_long);
}
}
//Send stop bit
encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_short * 3);
encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->common.te_short);
return true;
}
void subghz_protocol_nero_sketch_reset(SubGhzProtocolNeroSketch* instance) {
instance->common.parser_step = NeroSketchDecoderStepReset;
}
/** Analysis of received data
*
* @param instance SubGhzProtocolNeroSketch instance
*/
// void subghz_protocol_nero_sketch_check_remote_controller(SubGhzProtocolNeroSketch* instance) {
// //пока не понятно с серийником, но код статический
// // uint64_t code_found_reverse = subghz_protocol_common_reverse_key(instance->common.code_found, instance->common.code_count_bit);
// // uint32_t code_fix = code_found_reverse & 0xFFFFFFFF;
// // //uint32_t code_hop = (code_found_reverse >> 24) & 0xFFFFF;
// // instance->common.serial = code_fix & 0xFFFFFFF;
// // instance->common.btn = (code_fix >> 28) & 0x0F;
// //if (instance->common.callback) instance->common.callback((SubGhzProtocolCommon*)instance, instance->common.context);
// }
void subghz_protocol_nero_sketch_parse(
SubGhzProtocolNeroSketch* instance,
bool level,
uint32_t duration) {
switch(instance->common.parser_step) {
case NeroSketchDecoderStepReset:
if((level) &&
(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta)) {
instance->common.parser_step = NeroSketchDecoderStepCheckPreambula;
instance->common.te_last = duration;
instance->common.header_count = 0;
} else {
instance->common.parser_step = NeroSketchDecoderStepReset;
}
break;
case NeroSketchDecoderStepCheckPreambula:
if(level) {
if((DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta) ||
(DURATION_DIFF(duration, instance->common.te_short * 4) <
instance->common.te_delta)) {
instance->common.te_last = duration;
} else {
instance->common.parser_step = NeroSketchDecoderStepReset;
}
} else if(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta) {
if(DURATION_DIFF(instance->common.te_last, instance->common.te_short) <
instance->common.te_delta) {
// Found header
instance->common.header_count++;
break;
} else if(
DURATION_DIFF(instance->common.te_last, instance->common.te_short * 4) <
instance->common.te_delta) {
// Found start bit
if(instance->common.header_count > 40) {
instance->common.parser_step = NeroSketchDecoderStepSaveDuration;
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
} else {
instance->common.parser_step = NeroSketchDecoderStepReset;
}
} else {
instance->common.parser_step = NeroSketchDecoderStepReset;
}
} else {
instance->common.parser_step = NeroSketchDecoderStepReset;
}
break;
case NeroSketchDecoderStepSaveDuration:
if(level) {
if(duration >= (instance->common.te_short * 2 + instance->common.te_delta * 2)) {
//Found stop bit
instance->common.parser_step = NeroSketchDecoderStepReset;
if(instance->common.code_count_bit >=
instance->common.code_min_count_bit_for_found) {
instance->common.code_last_found = instance->common.code_found;
instance->common.code_last_count_bit = instance->common.code_count_bit;
if(instance->common.callback)
instance->common.callback(
(SubGhzProtocolCommon*)instance, instance->common.context);
}
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
break;
} else {
instance->common.te_last = duration;
instance->common.parser_step = NeroSketchDecoderStepCheckDuration;
}
} else {
instance->common.parser_step = NeroSketchDecoderStepReset;
}
break;
case NeroSketchDecoderStepCheckDuration:
if(!level) {
if((DURATION_DIFF(instance->common.te_last, instance->common.te_short) <
instance->common.te_delta) &&
(DURATION_DIFF(duration, instance->common.te_long) < instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 0);
instance->common.parser_step = NeroSketchDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->common.te_last, instance->common.te_long) <
instance->common.te_delta) &&
(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 1);
instance->common.parser_step = NeroSketchDecoderStepSaveDuration;
} else {
instance->common.parser_step = NeroSketchDecoderStepReset;
}
} else {
instance->common.parser_step = NeroSketchDecoderStepReset;
}
break;
}
}
void subghz_protocol_nero_sketch_to_str(SubGhzProtocolNeroSketch* instance, string_t output) {
uint32_t code_found_hi = instance->common.code_last_found >> 32;
uint32_t code_found_lo = instance->common.code_last_found & 0x00000000ffffffff;
uint64_t code_found_reverse = subghz_protocol_common_reverse_key(
instance->common.code_last_found, instance->common.code_last_count_bit);
uint32_t code_found_reverse_hi = code_found_reverse >> 32;
uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff;
string_cat_printf(
output,
"%s %dbit\r\n"
"Key:0x%lX%08lX\r\n"
"Yek:0x%lX%08lX\r\n",
instance->common.name,
instance->common.code_last_count_bit,
code_found_hi,
code_found_lo,
code_found_reverse_hi,
code_found_reverse_lo);
}
void subghz_protocol_nero_sketch_to_save_str(SubGhzProtocolNeroSketch* instance, string_t output) {
uint32_t code_found_hi = instance->common.code_last_found >> 32;
uint32_t code_found_lo = instance->common.code_last_found & 0x00000000ffffffff;
string_printf(
output,
"Protocol: %s\n"
"Bit: %d\n"
"Key: %08lX%08lX\n",
instance->common.name,
instance->common.code_last_count_bit,
code_found_hi,
code_found_lo);
}
bool subghz_protocol_nero_sketch_to_load_protocol_from_file(
FileWorker* file_worker,
SubGhzProtocolNeroSketch* instance) {
bool loaded = false;
string_t temp_str;
string_init(temp_str);
int res = 0;
int data = 0;
do {
// Read and parse bit data from 2nd line
if(!file_worker_read_until(file_worker, temp_str, '\n')) {
break;
}
res = sscanf(string_get_cstr(temp_str), "Bit: %d\n", &data);
if(res != 1) {
break;
}
instance->common.code_last_count_bit = (uint8_t)data;
// Read and parse key data from 3nd line
if(!file_worker_read_until(file_worker, temp_str, '\n')) {
break;
}
uint32_t temp_key_hi = 0;
uint32_t temp_key_lo = 0;
res = sscanf(string_get_cstr(temp_str), "Key: %08lX%08lX\n", &temp_key_hi, &temp_key_lo);
if(res != 2) {
break;
}
instance->common.code_last_found = (uint64_t)temp_key_hi << 32 | temp_key_lo;
loaded = true;
} while(0);
string_clear(temp_str);
return loaded;
}
void subghz_decoder_nero_sketch_to_load_protocol(SubGhzProtocolNeroSketch* instance, void* context) {
furi_assert(context);
furi_assert(instance);
SubGhzProtocolCommonLoad* data = context;
instance->common.code_last_found = data->code_found;
instance->common.code_last_count_bit = data->code_count_bit;
}

View File

@@ -1,72 +1,72 @@
#pragma once
#include "subghz_protocol_common.h"
typedef struct SubGhzProtocolNeroSketch SubGhzProtocolNeroSketch;
/** Allocate SubGhzProtocolNeroSketch
*
* @return SubGhzProtocolNeroSketch*
*/
SubGhzProtocolNeroSketch* subghz_protocol_nero_sketch_alloc();
/** Free SubGhzProtocolNeroSketch
*
* @param instance
*/
void subghz_protocol_nero_sketch_free(SubGhzProtocolNeroSketch* instance);
/** Get upload protocol
*
* @param instance - SubGhzProtocolNeroSketch instance
* @param encoder - SubGhzProtocolCommonEncoder encoder
* @return bool
*/
bool subghz_protocol_nero_sketch_send_key(SubGhzProtocolNeroSketch* instance, SubGhzProtocolCommonEncoder* encoder);
/** Reset internal state
* @param instance - SubGhzProtocolNeroSketch instance
*/
void subghz_protocol_nero_sketch_reset(SubGhzProtocolNeroSketch* instance);
/** Analysis of received data
*
* @param instance SubGhzProtocolNeroSketch instance
*/
void subghz_protocol_nero_sketch_check_remote_controller(SubGhzProtocolNeroSketch* instance);
/** Parse accepted duration
*
* @param instance - SubGhzProtocolNeroSketch instance
* @param data - LevelDuration level_duration
*/
void subghz_protocol_nero_sketch_parse(SubGhzProtocolNeroSketch* instance, bool level, uint32_t duration);
/** Outputting information from the parser
*
* @param instance - SubGhzProtocolNeroSketch* instance
* @param output - output string
*/
void subghz_protocol_nero_sketch_to_str(SubGhzProtocolNeroSketch* instance, string_t output);
/** Get a string to save the protocol
*
* @param instance - SubGhzProtocolNeroSketch instance
* @param output - the resulting string
*/
void subghz_protocol_nero_sketch_to_save_str(SubGhzProtocolNeroSketch* instance, string_t output);
/** Loading protocol from file
*
* @param file_worker - FileWorker file_worker
* @param instance - SubGhzProtocolNeroSketch instance
* @return bool
*/
bool subghz_protocol_nero_sketch_to_load_protocol_from_file(FileWorker* file_worker, SubGhzProtocolNeroSketch* instance);
/** Loading protocol from bin data
*
* @param instance - SubGhzProtocolNeroSketch instance
* @param context - SubGhzProtocolCommonLoad context
*/
#pragma once
#include "subghz_protocol_common.h"
typedef struct SubGhzProtocolNeroSketch SubGhzProtocolNeroSketch;
/** Allocate SubGhzProtocolNeroSketch
*
* @return SubGhzProtocolNeroSketch*
*/
SubGhzProtocolNeroSketch* subghz_protocol_nero_sketch_alloc();
/** Free SubGhzProtocolNeroSketch
*
* @param instance
*/
void subghz_protocol_nero_sketch_free(SubGhzProtocolNeroSketch* instance);
/** Get upload protocol
*
* @param instance - SubGhzProtocolNeroSketch instance
* @param encoder - SubGhzProtocolCommonEncoder encoder
* @return bool
*/
bool subghz_protocol_nero_sketch_send_key(SubGhzProtocolNeroSketch* instance, SubGhzProtocolCommonEncoder* encoder);
/** Reset internal state
* @param instance - SubGhzProtocolNeroSketch instance
*/
void subghz_protocol_nero_sketch_reset(SubGhzProtocolNeroSketch* instance);
/** Analysis of received data
*
* @param instance SubGhzProtocolNeroSketch instance
*/
void subghz_protocol_nero_sketch_check_remote_controller(SubGhzProtocolNeroSketch* instance);
/** Parse accepted duration
*
* @param instance - SubGhzProtocolNeroSketch instance
* @param data - LevelDuration level_duration
*/
void subghz_protocol_nero_sketch_parse(SubGhzProtocolNeroSketch* instance, bool level, uint32_t duration);
/** Outputting information from the parser
*
* @param instance - SubGhzProtocolNeroSketch* instance
* @param output - output string
*/
void subghz_protocol_nero_sketch_to_str(SubGhzProtocolNeroSketch* instance, string_t output);
/** Get a string to save the protocol
*
* @param instance - SubGhzProtocolNeroSketch instance
* @param output - the resulting string
*/
void subghz_protocol_nero_sketch_to_save_str(SubGhzProtocolNeroSketch* instance, string_t output);
/** Loading protocol from file
*
* @param file_worker - FileWorker file_worker
* @param instance - SubGhzProtocolNeroSketch instance
* @return bool
*/
bool subghz_protocol_nero_sketch_to_load_protocol_from_file(FileWorker* file_worker, SubGhzProtocolNeroSketch* instance);
/** Loading protocol from bin data
*
* @param instance - SubGhzProtocolNeroSketch instance
* @param context - SubGhzProtocolCommonLoad context
*/
void subghz_decoder_nero_sketch_to_load_protocol(SubGhzProtocolNeroSketch* instance, void* context);

View File

@@ -1,227 +1,227 @@
#include "subghz_protocol_nice_flo.h"
/*
* Help
* https://phreakerclub.com/447
*
*/
struct SubGhzProtocolNiceFlo {
SubGhzProtocolCommon common;
};
typedef enum {
NiceFloDecoderStepReset = 0,
NiceFloDecoderStepFoundStartBit,
NiceFloDecoderStepSaveDuration,
NiceFloDecoderStepCheckDuration,
} NiceFloDecoderStep;
SubGhzProtocolNiceFlo* subghz_protocol_nice_flo_alloc() {
SubGhzProtocolNiceFlo* instance = furi_alloc(sizeof(SubGhzProtocolNiceFlo));
instance->common.name = "Nice FLO";
instance->common.code_min_count_bit_for_found = 12;
instance->common.te_short = 700;
instance->common.te_long = 1400;
instance->common.te_delta = 200;
instance->common.type_protocol = SubGhzProtocolCommonTypeStatic;
instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_protocol_nice_flo_to_str;
instance->common.to_save_string =
(SubGhzProtocolCommonGetStrSave)subghz_protocol_nice_flo_to_save_str;
instance->common.to_load_protocol_from_file =
(SubGhzProtocolCommonLoadFromFile)subghz_protocol_nice_flo_to_load_protocol_from_file;
instance->common.to_load_protocol =
(SubGhzProtocolCommonLoadFromRAW)subghz_decoder_nice_flo_to_load_protocol;
instance->common.get_upload_protocol =
(SubGhzProtocolCommonEncoderGetUpLoad)subghz_protocol_nice_flo_send_key;
return instance;
}
void subghz_protocol_nice_flo_free(SubGhzProtocolNiceFlo* instance) {
furi_assert(instance);
free(instance);
}
bool subghz_protocol_nice_flo_send_key(
SubGhzProtocolNiceFlo* instance,
SubGhzProtocolCommonEncoder* encoder) {
furi_assert(instance);
furi_assert(encoder);
size_t index = 0;
encoder->size_upload = (instance->common.code_last_count_bit * 2) + 2;
if(encoder->size_upload > SUBGHZ_ENCODER_UPLOAD_MAX_SIZE) return false;
//Send header
encoder->upload[index++] =
level_duration_make(false, (uint32_t)instance->common.te_short * 36);
//Send start bit
encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_short);
//Send key data
for(uint8_t i = instance->common.code_last_count_bit; i > 0; i--) {
if(bit_read(instance->common.code_last_found, i - 1)) {
//send bit 1
encoder->upload[index++] =
level_duration_make(false, (uint32_t)instance->common.te_long);
encoder->upload[index++] =
level_duration_make(true, (uint32_t)instance->common.te_short);
} else {
//send bit 0
encoder->upload[index++] =
level_duration_make(false, (uint32_t)instance->common.te_short);
encoder->upload[index++] =
level_duration_make(true, (uint32_t)instance->common.te_long);
}
}
return true;
}
void subghz_protocol_nice_flo_reset(SubGhzProtocolNiceFlo* instance) {
instance->common.parser_step = NiceFloDecoderStepReset;
}
void subghz_protocol_nice_flo_parse(SubGhzProtocolNiceFlo* instance, bool level, uint32_t duration) {
switch(instance->common.parser_step) {
case NiceFloDecoderStepReset:
if((!level) && (DURATION_DIFF(duration, instance->common.te_short * 36) <
instance->common.te_delta * 36)) {
//Found header Nice Flo
instance->common.parser_step = NiceFloDecoderStepFoundStartBit;
} else {
instance->common.parser_step = NiceFloDecoderStepReset;
}
break;
case NiceFloDecoderStepFoundStartBit:
if(!level) {
break;
} else if(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta) {
//Found start bit Nice Flo
instance->common.parser_step = NiceFloDecoderStepSaveDuration;
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
} else {
instance->common.parser_step = NiceFloDecoderStepReset;
}
break;
case NiceFloDecoderStepSaveDuration:
if(!level) { //save interval
if(duration >= (instance->common.te_short * 4)) {
instance->common.parser_step = NiceFloDecoderStepFoundStartBit;
if(instance->common.code_count_bit >=
instance->common.code_min_count_bit_for_found) {
instance->common.serial = 0x0;
instance->common.btn = 0x0;
instance->common.code_last_found = instance->common.code_found;
instance->common.code_last_count_bit = instance->common.code_count_bit;
if(instance->common.callback)
instance->common.callback(
(SubGhzProtocolCommon*)instance, instance->common.context);
}
break;
}
instance->common.te_last = duration;
instance->common.parser_step = NiceFloDecoderStepCheckDuration;
} else {
instance->common.parser_step = NiceFloDecoderStepReset;
}
break;
case NiceFloDecoderStepCheckDuration:
if(level) {
if((DURATION_DIFF(instance->common.te_last, instance->common.te_short) <
instance->common.te_delta) &&
(DURATION_DIFF(duration, instance->common.te_long) < instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 0);
instance->common.parser_step = NiceFloDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->common.te_last, instance->common.te_long) <
instance->common.te_delta) &&
(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 1);
instance->common.parser_step = NiceFloDecoderStepSaveDuration;
} else
instance->common.parser_step = NiceFloDecoderStepReset;
} else {
instance->common.parser_step = NiceFloDecoderStepReset;
}
break;
}
}
void subghz_protocol_nice_flo_to_str(SubGhzProtocolNiceFlo* instance, string_t output) {
uint32_t code_found_lo = instance->common.code_last_found & 0x00000000ffffffff;
uint64_t code_found_reverse = subghz_protocol_common_reverse_key(
instance->common.code_last_found, instance->common.code_last_count_bit);
uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff;
string_cat_printf(
output,
"%s %dbit\r\n"
"Key:0x%08lX\r\n"
"Yek:0x%08lX\r\n",
instance->common.name,
instance->common.code_last_count_bit,
code_found_lo,
code_found_reverse_lo);
}
void subghz_protocol_nice_flo_to_save_str(SubGhzProtocolNiceFlo* instance, string_t output) {
string_printf(
output,
"Protocol: %s\n"
"Bit: %d\n"
"Key: %08lX\n",
instance->common.name,
instance->common.code_last_count_bit,
(uint32_t)(instance->common.code_last_found & 0x00000000ffffffff));
}
bool subghz_protocol_nice_flo_to_load_protocol_from_file(
FileWorker* file_worker,
SubGhzProtocolNiceFlo* instance) {
bool loaded = false;
string_t temp_str;
string_init(temp_str);
int res = 0;
int data = 0;
do {
// Read and parse bit data from 2nd line
if(!file_worker_read_until(file_worker, temp_str, '\n')) {
break;
}
res = sscanf(string_get_cstr(temp_str), "Bit: %d\n", &data);
if(res != 1) {
break;
}
instance->common.code_last_count_bit = (uint8_t)data;
// Read and parse key data from 3nd line
if(!file_worker_read_until(file_worker, temp_str, '\n')) {
break;
}
uint32_t temp_key = 0;
res = sscanf(string_get_cstr(temp_str), "Key: %08lX\n", &temp_key);
if(res != 1) {
break;
}
instance->common.code_last_found = (uint64_t)temp_key;
loaded = true;
} while(0);
string_clear(temp_str);
return loaded;
}
void subghz_decoder_nice_flo_to_load_protocol(SubGhzProtocolNiceFlo* instance, void* context) {
furi_assert(context);
furi_assert(instance);
SubGhzProtocolCommonLoad* data = context;
instance->common.code_last_found = data->code_found;
instance->common.code_last_count_bit = data->code_count_bit;
instance->common.serial = 0x0;
instance->common.btn = 0x0;
#include "subghz_protocol_nice_flo.h"
/*
* Help
* https://phreakerclub.com/447
*
*/
struct SubGhzProtocolNiceFlo {
SubGhzProtocolCommon common;
};
typedef enum {
NiceFloDecoderStepReset = 0,
NiceFloDecoderStepFoundStartBit,
NiceFloDecoderStepSaveDuration,
NiceFloDecoderStepCheckDuration,
} NiceFloDecoderStep;
SubGhzProtocolNiceFlo* subghz_protocol_nice_flo_alloc() {
SubGhzProtocolNiceFlo* instance = furi_alloc(sizeof(SubGhzProtocolNiceFlo));
instance->common.name = "Nice FLO";
instance->common.code_min_count_bit_for_found = 12;
instance->common.te_short = 700;
instance->common.te_long = 1400;
instance->common.te_delta = 200;
instance->common.type_protocol = SubGhzProtocolCommonTypeStatic;
instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_protocol_nice_flo_to_str;
instance->common.to_save_string =
(SubGhzProtocolCommonGetStrSave)subghz_protocol_nice_flo_to_save_str;
instance->common.to_load_protocol_from_file =
(SubGhzProtocolCommonLoadFromFile)subghz_protocol_nice_flo_to_load_protocol_from_file;
instance->common.to_load_protocol =
(SubGhzProtocolCommonLoadFromRAW)subghz_decoder_nice_flo_to_load_protocol;
instance->common.get_upload_protocol =
(SubGhzProtocolCommonEncoderGetUpLoad)subghz_protocol_nice_flo_send_key;
return instance;
}
void subghz_protocol_nice_flo_free(SubGhzProtocolNiceFlo* instance) {
furi_assert(instance);
free(instance);
}
bool subghz_protocol_nice_flo_send_key(
SubGhzProtocolNiceFlo* instance,
SubGhzProtocolCommonEncoder* encoder) {
furi_assert(instance);
furi_assert(encoder);
size_t index = 0;
encoder->size_upload = (instance->common.code_last_count_bit * 2) + 2;
if(encoder->size_upload > SUBGHZ_ENCODER_UPLOAD_MAX_SIZE) return false;
//Send header
encoder->upload[index++] =
level_duration_make(false, (uint32_t)instance->common.te_short * 36);
//Send start bit
encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_short);
//Send key data
for(uint8_t i = instance->common.code_last_count_bit; i > 0; i--) {
if(bit_read(instance->common.code_last_found, i - 1)) {
//send bit 1
encoder->upload[index++] =
level_duration_make(false, (uint32_t)instance->common.te_long);
encoder->upload[index++] =
level_duration_make(true, (uint32_t)instance->common.te_short);
} else {
//send bit 0
encoder->upload[index++] =
level_duration_make(false, (uint32_t)instance->common.te_short);
encoder->upload[index++] =
level_duration_make(true, (uint32_t)instance->common.te_long);
}
}
return true;
}
void subghz_protocol_nice_flo_reset(SubGhzProtocolNiceFlo* instance) {
instance->common.parser_step = NiceFloDecoderStepReset;
}
void subghz_protocol_nice_flo_parse(SubGhzProtocolNiceFlo* instance, bool level, uint32_t duration) {
switch(instance->common.parser_step) {
case NiceFloDecoderStepReset:
if((!level) && (DURATION_DIFF(duration, instance->common.te_short * 36) <
instance->common.te_delta * 36)) {
//Found header Nice Flo
instance->common.parser_step = NiceFloDecoderStepFoundStartBit;
} else {
instance->common.parser_step = NiceFloDecoderStepReset;
}
break;
case NiceFloDecoderStepFoundStartBit:
if(!level) {
break;
} else if(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta) {
//Found start bit Nice Flo
instance->common.parser_step = NiceFloDecoderStepSaveDuration;
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
} else {
instance->common.parser_step = NiceFloDecoderStepReset;
}
break;
case NiceFloDecoderStepSaveDuration:
if(!level) { //save interval
if(duration >= (instance->common.te_short * 4)) {
instance->common.parser_step = NiceFloDecoderStepFoundStartBit;
if(instance->common.code_count_bit >=
instance->common.code_min_count_bit_for_found) {
instance->common.serial = 0x0;
instance->common.btn = 0x0;
instance->common.code_last_found = instance->common.code_found;
instance->common.code_last_count_bit = instance->common.code_count_bit;
if(instance->common.callback)
instance->common.callback(
(SubGhzProtocolCommon*)instance, instance->common.context);
}
break;
}
instance->common.te_last = duration;
instance->common.parser_step = NiceFloDecoderStepCheckDuration;
} else {
instance->common.parser_step = NiceFloDecoderStepReset;
}
break;
case NiceFloDecoderStepCheckDuration:
if(level) {
if((DURATION_DIFF(instance->common.te_last, instance->common.te_short) <
instance->common.te_delta) &&
(DURATION_DIFF(duration, instance->common.te_long) < instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 0);
instance->common.parser_step = NiceFloDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->common.te_last, instance->common.te_long) <
instance->common.te_delta) &&
(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 1);
instance->common.parser_step = NiceFloDecoderStepSaveDuration;
} else
instance->common.parser_step = NiceFloDecoderStepReset;
} else {
instance->common.parser_step = NiceFloDecoderStepReset;
}
break;
}
}
void subghz_protocol_nice_flo_to_str(SubGhzProtocolNiceFlo* instance, string_t output) {
uint32_t code_found_lo = instance->common.code_last_found & 0x00000000ffffffff;
uint64_t code_found_reverse = subghz_protocol_common_reverse_key(
instance->common.code_last_found, instance->common.code_last_count_bit);
uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff;
string_cat_printf(
output,
"%s %dbit\r\n"
"Key:0x%08lX\r\n"
"Yek:0x%08lX\r\n",
instance->common.name,
instance->common.code_last_count_bit,
code_found_lo,
code_found_reverse_lo);
}
void subghz_protocol_nice_flo_to_save_str(SubGhzProtocolNiceFlo* instance, string_t output) {
string_printf(
output,
"Protocol: %s\n"
"Bit: %d\n"
"Key: %08lX\n",
instance->common.name,
instance->common.code_last_count_bit,
(uint32_t)(instance->common.code_last_found & 0x00000000ffffffff));
}
bool subghz_protocol_nice_flo_to_load_protocol_from_file(
FileWorker* file_worker,
SubGhzProtocolNiceFlo* instance) {
bool loaded = false;
string_t temp_str;
string_init(temp_str);
int res = 0;
int data = 0;
do {
// Read and parse bit data from 2nd line
if(!file_worker_read_until(file_worker, temp_str, '\n')) {
break;
}
res = sscanf(string_get_cstr(temp_str), "Bit: %d\n", &data);
if(res != 1) {
break;
}
instance->common.code_last_count_bit = (uint8_t)data;
// Read and parse key data from 3nd line
if(!file_worker_read_until(file_worker, temp_str, '\n')) {
break;
}
uint32_t temp_key = 0;
res = sscanf(string_get_cstr(temp_str), "Key: %08lX\n", &temp_key);
if(res != 1) {
break;
}
instance->common.code_last_found = (uint64_t)temp_key;
loaded = true;
} while(0);
string_clear(temp_str);
return loaded;
}
void subghz_decoder_nice_flo_to_load_protocol(SubGhzProtocolNiceFlo* instance, void* context) {
furi_assert(context);
furi_assert(instance);
SubGhzProtocolCommonLoad* data = context;
instance->common.code_last_found = data->code_found;
instance->common.code_last_count_bit = data->code_count_bit;
instance->common.serial = 0x0;
instance->common.btn = 0x0;
}

View File

@@ -1,66 +1,66 @@
#pragma once
#include "subghz_protocol_common.h"
typedef struct SubGhzProtocolNiceFlo SubGhzProtocolNiceFlo;
/** Allocate SubGhzProtocolNiceFlo
*
* @return SubGhzProtocolNiceFlo*
*/
SubGhzProtocolNiceFlo* subghz_protocol_nice_flo_alloc();
/** Free SubGhzProtocolNiceFlo
*
* @param instance
*/
void subghz_protocol_nice_flo_free(SubGhzProtocolNiceFlo* instance);
/** Get upload protocol
*
* @param instance - SubGhzProtocolNiceFlo instance
* @param encoder - SubGhzProtocolCommonEncoder encoder
* @return bool
*/
bool subghz_protocol_nice_flo_send_key(SubGhzProtocolNiceFlo* instance, SubGhzProtocolCommonEncoder* encoder);
/** Reset internal state
* @param instance - SubGhzProtocolNiceFlo instance
*/
void subghz_protocol_nice_flo_reset(SubGhzProtocolNiceFlo* instance);
/** Parse accepted duration
*
* @param instance - SubGhzProtocolNiceFlo instance
* @param data - LevelDuration level_duration
*/
void subghz_protocol_nice_flo_parse(SubGhzProtocolNiceFlo* instance, bool level, uint32_t duration);
/** Outputting information from the parser
*
* @param instance - SubGhzProtocolNiceFlo* instance
* @param output - output string
*/
void subghz_protocol_nice_flo_to_str(SubGhzProtocolNiceFlo* instance, string_t output);
/** Get a string to save the protocol
*
* @param instance - SubGhzProtocolNiceFlo instance
* @param output - the resulting string
*/
void subghz_protocol_nice_flo_to_save_str(SubGhzProtocolNiceFlo* instance, string_t output);
/** Loading protocol from file
*
* @param file_worker - FileWorker file_worker
* @param instance - SubGhzProtocolNiceFlo instance
* @return bool
*/
bool subghz_protocol_nice_flo_to_load_protocol_from_file(FileWorker* file_worker, SubGhzProtocolNiceFlo* instance);
/** Loading protocol from bin data
*
* @param instance - SubGhzProtocolNiceFlo instance
* @param context - SubGhzProtocolCommonLoad context
*/
void subghz_decoder_nice_flo_to_load_protocol(SubGhzProtocolNiceFlo* instance, void* context);
#pragma once
#include "subghz_protocol_common.h"
typedef struct SubGhzProtocolNiceFlo SubGhzProtocolNiceFlo;
/** Allocate SubGhzProtocolNiceFlo
*
* @return SubGhzProtocolNiceFlo*
*/
SubGhzProtocolNiceFlo* subghz_protocol_nice_flo_alloc();
/** Free SubGhzProtocolNiceFlo
*
* @param instance
*/
void subghz_protocol_nice_flo_free(SubGhzProtocolNiceFlo* instance);
/** Get upload protocol
*
* @param instance - SubGhzProtocolNiceFlo instance
* @param encoder - SubGhzProtocolCommonEncoder encoder
* @return bool
*/
bool subghz_protocol_nice_flo_send_key(SubGhzProtocolNiceFlo* instance, SubGhzProtocolCommonEncoder* encoder);
/** Reset internal state
* @param instance - SubGhzProtocolNiceFlo instance
*/
void subghz_protocol_nice_flo_reset(SubGhzProtocolNiceFlo* instance);
/** Parse accepted duration
*
* @param instance - SubGhzProtocolNiceFlo instance
* @param data - LevelDuration level_duration
*/
void subghz_protocol_nice_flo_parse(SubGhzProtocolNiceFlo* instance, bool level, uint32_t duration);
/** Outputting information from the parser
*
* @param instance - SubGhzProtocolNiceFlo* instance
* @param output - output string
*/
void subghz_protocol_nice_flo_to_str(SubGhzProtocolNiceFlo* instance, string_t output);
/** Get a string to save the protocol
*
* @param instance - SubGhzProtocolNiceFlo instance
* @param output - the resulting string
*/
void subghz_protocol_nice_flo_to_save_str(SubGhzProtocolNiceFlo* instance, string_t output);
/** Loading protocol from file
*
* @param file_worker - FileWorker file_worker
* @param instance - SubGhzProtocolNiceFlo instance
* @return bool
*/
bool subghz_protocol_nice_flo_to_load_protocol_from_file(FileWorker* file_worker, SubGhzProtocolNiceFlo* instance);
/** Loading protocol from bin data
*
* @param instance - SubGhzProtocolNiceFlo instance
* @param context - SubGhzProtocolCommonLoad context
*/
void subghz_decoder_nice_flo_to_load_protocol(SubGhzProtocolNiceFlo* instance, void* context);

View File

@@ -1,267 +1,267 @@
#include "subghz_protocol_nice_flor_s.h"
#include <furi.h>
#include "file-worker.h"
/*
* https://phreakerclub.com/1615
* https://phreakerclub.com/forum/showthread.php?t=2360
* https://vrtp.ru/index.php?showtopic=27867
*/
struct SubGhzProtocolNiceFlorS {
SubGhzProtocolCommon common;
const char* rainbow_table_file_name;
};
typedef enum {
NiceFlorSDecoderStepReset = 0,
NiceFlorSDecoderStepCheckHeader,
NiceFlorSDecoderStepFoundHeader,
NiceFlorSDecoderStepSaveDuration,
NiceFlorSDecoderStepCheckDuration,
} NiceFlorSDecoderStep;
SubGhzProtocolNiceFlorS* subghz_protocol_nice_flor_s_alloc() {
SubGhzProtocolNiceFlorS* instance = furi_alloc(sizeof(SubGhzProtocolNiceFlorS));
instance->common.name = "Nice FloR-S";
instance->common.code_min_count_bit_for_found = 52;
instance->common.te_short = 500;
instance->common.te_long = 1000;
instance->common.te_delta = 300;
instance->common.type_protocol = SubGhzProtocolCommonTypeDynamic;
instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_protocol_nice_flor_s_to_str;
instance->common.to_load_protocol =
(SubGhzProtocolCommonLoadFromRAW)subghz_decoder_nice_flor_s_to_load_protocol;
return instance;
}
void subghz_protocol_nice_flor_s_free(SubGhzProtocolNiceFlorS* instance) {
furi_assert(instance);
free(instance);
}
void subghz_protocol_nice_flor_s_name_file(SubGhzProtocolNiceFlorS* instance, const char* name) {
instance->rainbow_table_file_name = name;
printf("Loading Nice FloR S rainbow table %s\r\n", name);
}
/** Send bit
*
* @param instance - SubGhzProtocolNiceFlorS instance
* @param bit - bit
*/
void subghz_protocol_nice_flor_s_send_bit(SubGhzProtocolNiceFlorS* instance, uint8_t bit) {
if(bit) {
//send bit 1
SUBGHZ_TX_PIN_HIGH();
delay_us(instance->common.te_long);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_short);
} else {
//send bit 0
SUBGHZ_TX_PIN_HIGH();
delay_us(instance->common.te_short);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_long);
}
}
void subghz_protocol_nice_flor_s_send_key(
SubGhzProtocolNiceFlorS* instance,
uint64_t key,
uint8_t bit,
uint8_t repeat) {
while(repeat--) {
//Send header
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_short * 34);
//Send Start Bit
SUBGHZ_TX_PIN_HIGH();
delay_us(instance->common.te_short * 3);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_short * 3);
//Send key data
for(uint8_t i = bit; i > 0; i--) {
subghz_protocol_nice_flor_s_send_bit(instance, bit_read(key, i - 1));
}
//Send Stop Bit
SUBGHZ_TX_PIN_HIGH();
delay_us(instance->common.te_short * 3);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_short * 3);
}
}
/** Read bytes from rainbow table
*
* @param instance - SubGhzProtocolNiceFlorS* instance
* @param address - address byte
* @return byte data
*/
uint8_t subghz_nice_flor_s_get_byte_in_file(SubGhzProtocolNiceFlorS* instance, uint32_t address) {
if(!instance->rainbow_table_file_name) return 0;
uint8_t buffer = 0;
FileWorker* file_worker = file_worker_alloc(true);
if(file_worker_open(
file_worker, instance->rainbow_table_file_name, FSAM_READ, FSOM_OPEN_EXISTING)) {
file_worker_seek(file_worker, address, true);
file_worker_read(file_worker, &buffer, 1);
}
file_worker_close(file_worker);
file_worker_free(file_worker);
return buffer;
}
/** Decrypt protocol Nice Flor S
*
* @param instance - SubGhzProtocolNiceFlorS* instance
*/
void subghz_nice_flor_s_decoder_decrypt(SubGhzProtocolNiceFlorS* instance) {
/*
* Packet format Nice Flor-s: START-P0-P1-P2-P3-P4-P5-P6-P7-STOP
* P0 (4-bit) - button positional code - 1:0x1, 2:0x2, 3:0x4, 4:0x8;
* P1 (4-bit) - batch repetition number, calculated by the formula:
* P1 = 0xF ^ P0 ^ n; where n changes from 1 to 15, then 0, and then in a circle
* key 1: {0xF,0xC,0xD,0xA,0xB,0x8,0x9,0x6,0x7,0x4,0x5,0x2,0x3,0x0,0x1,0xE};
* key 2: {0xC,0xF,0xE,0x9,0x8,0xB,0xA,0x5,0x4,0x7,0x6,0x1,0x0,0x3,0x2,0xD};
* key 3: {0xA,0x9,0x8,0xF,0xE,0xD,0xC,0x3,0x2,0x1,0x0,0x7,0x6,0x5,0x4,0xB};
* P2 (4-bit) - part of the serial number, P2 = (K ^ S3) & 0xF;
* P3 (byte) - the major part of the encrypted index
* P4 (byte) - the low-order part of the encrypted index
* P5 (byte) - part of the serial number, P5 = K ^ S2;
* P6 (byte) - part of the serial number, P6 = K ^ S1;
* P7 (byte) - part of the serial number, P7 = K ^ S0;
* K (byte) - depends on P3 and P4, K = Fk(P3, P4);
* S3,S2,S1,S0 - serial number of the console 28 bit.
*/
uint16_t p3p4 = (uint16_t)(instance->common.code_last_found >> 24);
instance->common.cnt = subghz_nice_flor_s_get_byte_in_file(instance, p3p4 * 2) << 8 |
subghz_nice_flor_s_get_byte_in_file(instance, p3p4 * 2 + 1);
uint8_t k =
(uint8_t)(p3p4 & 0x00FF) ^
subghz_nice_flor_s_get_byte_in_file(instance, (0x20000 | (instance->common.cnt & 0x00ff)));
uint8_t s3 = ((uint8_t)(instance->common.code_last_found >> 40) ^ k) & 0x0f;
uint8_t s2 = ((uint8_t)(instance->common.code_last_found >> 16) ^ k);
uint8_t s1 = ((uint8_t)(instance->common.code_last_found >> 8) ^ k);
uint8_t s0 = ((uint8_t)(instance->common.code_last_found) ^ k);
instance->common.serial = s3 << 24 | s2 << 16 | s1 << 8 | s0;
instance->common.btn = (instance->common.code_last_found >> 48) & 0x0f;
}
void subghz_protocol_nice_flor_s_reset(SubGhzProtocolNiceFlorS* instance) {
instance->common.parser_step = NiceFlorSDecoderStepReset;
}
void subghz_protocol_nice_flor_s_parse(
SubGhzProtocolNiceFlorS* instance,
bool level,
uint32_t duration) {
switch(instance->common.parser_step) {
case NiceFlorSDecoderStepReset:
if((!level) && (DURATION_DIFF(duration, instance->common.te_short * 38) <
instance->common.te_delta * 38)) {
//Found start header Nice Flor-S
instance->common.parser_step = NiceFlorSDecoderStepCheckHeader;
} else {
instance->common.parser_step = NiceFlorSDecoderStepReset;
}
break;
case NiceFlorSDecoderStepCheckHeader:
if((level) && (DURATION_DIFF(duration, instance->common.te_short * 3) <
instance->common.te_delta * 3)) {
//Found next header Nice Flor-S
instance->common.parser_step = NiceFlorSDecoderStepFoundHeader;
} else {
instance->common.parser_step = NiceFlorSDecoderStepReset;
}
break;
case NiceFlorSDecoderStepFoundHeader:
if((!level) && (DURATION_DIFF(duration, instance->common.te_short * 3) <
instance->common.te_delta * 3)) {
//Found header Nice Flor-S
instance->common.parser_step = NiceFlorSDecoderStepSaveDuration;
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
} else {
instance->common.parser_step = NiceFlorSDecoderStepReset;
}
break;
case NiceFlorSDecoderStepSaveDuration:
if(level) {
if(DURATION_DIFF(duration, instance->common.te_short * 3) <
instance->common.te_delta) {
//Found STOP bit
instance->common.parser_step = NiceFlorSDecoderStepReset;
if(instance->common.code_count_bit >=
instance->common.code_min_count_bit_for_found) {
instance->common.code_last_found = instance->common.code_found;
instance->common.code_last_count_bit = instance->common.code_count_bit;
if(instance->common.callback)
instance->common.callback(
(SubGhzProtocolCommon*)instance, instance->common.context);
}
break;
} else {
//save interval
instance->common.te_last = duration;
instance->common.parser_step = NiceFlorSDecoderStepCheckDuration;
}
}
break;
case NiceFlorSDecoderStepCheckDuration:
if(!level) {
if((DURATION_DIFF(instance->common.te_last, instance->common.te_short) <
instance->common.te_delta) &&
(DURATION_DIFF(duration, instance->common.te_long) < instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 0);
instance->common.parser_step = NiceFlorSDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->common.te_last, instance->common.te_long) <
instance->common.te_delta) &&
(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 1);
instance->common.parser_step = NiceFlorSDecoderStepSaveDuration;
} else
instance->common.parser_step = NiceFlorSDecoderStepReset;
} else {
instance->common.parser_step = NiceFlorSDecoderStepReset;
}
break;
}
}
void subghz_protocol_nice_flor_s_to_str(SubGhzProtocolNiceFlorS* instance, string_t output) {
subghz_nice_flor_s_decoder_decrypt(instance);
uint32_t code_found_hi = instance->common.code_last_found >> 32;
uint32_t code_found_lo = instance->common.code_last_found & 0x00000000ffffffff;
string_cat_printf(
output,
"%s %dbit\r\n"
"Key:0x%lX%08lX\r\n"
"Sn:%05lX\r\n"
"Cnt:%04X Btn:%02lX\r\n",
instance->common.name,
instance->common.code_last_count_bit,
code_found_hi,
code_found_lo,
instance->common.serial,
instance->common.cnt,
instance->common.btn);
}
void subghz_decoder_nice_flor_s_to_load_protocol(SubGhzProtocolNiceFlorS* instance, void* context) {
furi_assert(context);
furi_assert(instance);
SubGhzProtocolCommonLoad* data = context;
instance->common.code_last_found = data->code_found;
instance->common.code_last_count_bit = data->code_count_bit;
subghz_nice_flor_s_decoder_decrypt(instance);
#include "subghz_protocol_nice_flor_s.h"
#include <furi.h>
#include "file-worker.h"
/*
* https://phreakerclub.com/1615
* https://phreakerclub.com/forum/showthread.php?t=2360
* https://vrtp.ru/index.php?showtopic=27867
*/
struct SubGhzProtocolNiceFlorS {
SubGhzProtocolCommon common;
const char* rainbow_table_file_name;
};
typedef enum {
NiceFlorSDecoderStepReset = 0,
NiceFlorSDecoderStepCheckHeader,
NiceFlorSDecoderStepFoundHeader,
NiceFlorSDecoderStepSaveDuration,
NiceFlorSDecoderStepCheckDuration,
} NiceFlorSDecoderStep;
SubGhzProtocolNiceFlorS* subghz_protocol_nice_flor_s_alloc() {
SubGhzProtocolNiceFlorS* instance = furi_alloc(sizeof(SubGhzProtocolNiceFlorS));
instance->common.name = "Nice FloR-S";
instance->common.code_min_count_bit_for_found = 52;
instance->common.te_short = 500;
instance->common.te_long = 1000;
instance->common.te_delta = 300;
instance->common.type_protocol = SubGhzProtocolCommonTypeDynamic;
instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_protocol_nice_flor_s_to_str;
instance->common.to_load_protocol =
(SubGhzProtocolCommonLoadFromRAW)subghz_decoder_nice_flor_s_to_load_protocol;
return instance;
}
void subghz_protocol_nice_flor_s_free(SubGhzProtocolNiceFlorS* instance) {
furi_assert(instance);
free(instance);
}
void subghz_protocol_nice_flor_s_name_file(SubGhzProtocolNiceFlorS* instance, const char* name) {
instance->rainbow_table_file_name = name;
printf("Loading Nice FloR S rainbow table %s\r\n", name);
}
/** Send bit
*
* @param instance - SubGhzProtocolNiceFlorS instance
* @param bit - bit
*/
void subghz_protocol_nice_flor_s_send_bit(SubGhzProtocolNiceFlorS* instance, uint8_t bit) {
if(bit) {
//send bit 1
SUBGHZ_TX_PIN_HIGH();
delay_us(instance->common.te_long);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_short);
} else {
//send bit 0
SUBGHZ_TX_PIN_HIGH();
delay_us(instance->common.te_short);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_long);
}
}
void subghz_protocol_nice_flor_s_send_key(
SubGhzProtocolNiceFlorS* instance,
uint64_t key,
uint8_t bit,
uint8_t repeat) {
while(repeat--) {
//Send header
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_short * 34);
//Send Start Bit
SUBGHZ_TX_PIN_HIGH();
delay_us(instance->common.te_short * 3);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_short * 3);
//Send key data
for(uint8_t i = bit; i > 0; i--) {
subghz_protocol_nice_flor_s_send_bit(instance, bit_read(key, i - 1));
}
//Send Stop Bit
SUBGHZ_TX_PIN_HIGH();
delay_us(instance->common.te_short * 3);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_short * 3);
}
}
/** Read bytes from rainbow table
*
* @param instance - SubGhzProtocolNiceFlorS* instance
* @param address - address byte
* @return byte data
*/
uint8_t subghz_nice_flor_s_get_byte_in_file(SubGhzProtocolNiceFlorS* instance, uint32_t address) {
if(!instance->rainbow_table_file_name) return 0;
uint8_t buffer = 0;
FileWorker* file_worker = file_worker_alloc(true);
if(file_worker_open(
file_worker, instance->rainbow_table_file_name, FSAM_READ, FSOM_OPEN_EXISTING)) {
file_worker_seek(file_worker, address, true);
file_worker_read(file_worker, &buffer, 1);
}
file_worker_close(file_worker);
file_worker_free(file_worker);
return buffer;
}
/** Decrypt protocol Nice Flor S
*
* @param instance - SubGhzProtocolNiceFlorS* instance
*/
void subghz_nice_flor_s_decoder_decrypt(SubGhzProtocolNiceFlorS* instance) {
/*
* Packet format Nice Flor-s: START-P0-P1-P2-P3-P4-P5-P6-P7-STOP
* P0 (4-bit) - button positional code - 1:0x1, 2:0x2, 3:0x4, 4:0x8;
* P1 (4-bit) - batch repetition number, calculated by the formula:
* P1 = 0xF ^ P0 ^ n; where n changes from 1 to 15, then 0, and then in a circle
* key 1: {0xF,0xC,0xD,0xA,0xB,0x8,0x9,0x6,0x7,0x4,0x5,0x2,0x3,0x0,0x1,0xE};
* key 2: {0xC,0xF,0xE,0x9,0x8,0xB,0xA,0x5,0x4,0x7,0x6,0x1,0x0,0x3,0x2,0xD};
* key 3: {0xA,0x9,0x8,0xF,0xE,0xD,0xC,0x3,0x2,0x1,0x0,0x7,0x6,0x5,0x4,0xB};
* P2 (4-bit) - part of the serial number, P2 = (K ^ S3) & 0xF;
* P3 (byte) - the major part of the encrypted index
* P4 (byte) - the low-order part of the encrypted index
* P5 (byte) - part of the serial number, P5 = K ^ S2;
* P6 (byte) - part of the serial number, P6 = K ^ S1;
* P7 (byte) - part of the serial number, P7 = K ^ S0;
* K (byte) - depends on P3 and P4, K = Fk(P3, P4);
* S3,S2,S1,S0 - serial number of the console 28 bit.
*/
uint16_t p3p4 = (uint16_t)(instance->common.code_last_found >> 24);
instance->common.cnt = subghz_nice_flor_s_get_byte_in_file(instance, p3p4 * 2) << 8 |
subghz_nice_flor_s_get_byte_in_file(instance, p3p4 * 2 + 1);
uint8_t k =
(uint8_t)(p3p4 & 0x00FF) ^
subghz_nice_flor_s_get_byte_in_file(instance, (0x20000 | (instance->common.cnt & 0x00ff)));
uint8_t s3 = ((uint8_t)(instance->common.code_last_found >> 40) ^ k) & 0x0f;
uint8_t s2 = ((uint8_t)(instance->common.code_last_found >> 16) ^ k);
uint8_t s1 = ((uint8_t)(instance->common.code_last_found >> 8) ^ k);
uint8_t s0 = ((uint8_t)(instance->common.code_last_found) ^ k);
instance->common.serial = s3 << 24 | s2 << 16 | s1 << 8 | s0;
instance->common.btn = (instance->common.code_last_found >> 48) & 0x0f;
}
void subghz_protocol_nice_flor_s_reset(SubGhzProtocolNiceFlorS* instance) {
instance->common.parser_step = NiceFlorSDecoderStepReset;
}
void subghz_protocol_nice_flor_s_parse(
SubGhzProtocolNiceFlorS* instance,
bool level,
uint32_t duration) {
switch(instance->common.parser_step) {
case NiceFlorSDecoderStepReset:
if((!level) && (DURATION_DIFF(duration, instance->common.te_short * 38) <
instance->common.te_delta * 38)) {
//Found start header Nice Flor-S
instance->common.parser_step = NiceFlorSDecoderStepCheckHeader;
} else {
instance->common.parser_step = NiceFlorSDecoderStepReset;
}
break;
case NiceFlorSDecoderStepCheckHeader:
if((level) && (DURATION_DIFF(duration, instance->common.te_short * 3) <
instance->common.te_delta * 3)) {
//Found next header Nice Flor-S
instance->common.parser_step = NiceFlorSDecoderStepFoundHeader;
} else {
instance->common.parser_step = NiceFlorSDecoderStepReset;
}
break;
case NiceFlorSDecoderStepFoundHeader:
if((!level) && (DURATION_DIFF(duration, instance->common.te_short * 3) <
instance->common.te_delta * 3)) {
//Found header Nice Flor-S
instance->common.parser_step = NiceFlorSDecoderStepSaveDuration;
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
} else {
instance->common.parser_step = NiceFlorSDecoderStepReset;
}
break;
case NiceFlorSDecoderStepSaveDuration:
if(level) {
if(DURATION_DIFF(duration, instance->common.te_short * 3) <
instance->common.te_delta) {
//Found STOP bit
instance->common.parser_step = NiceFlorSDecoderStepReset;
if(instance->common.code_count_bit >=
instance->common.code_min_count_bit_for_found) {
instance->common.code_last_found = instance->common.code_found;
instance->common.code_last_count_bit = instance->common.code_count_bit;
if(instance->common.callback)
instance->common.callback(
(SubGhzProtocolCommon*)instance, instance->common.context);
}
break;
} else {
//save interval
instance->common.te_last = duration;
instance->common.parser_step = NiceFlorSDecoderStepCheckDuration;
}
}
break;
case NiceFlorSDecoderStepCheckDuration:
if(!level) {
if((DURATION_DIFF(instance->common.te_last, instance->common.te_short) <
instance->common.te_delta) &&
(DURATION_DIFF(duration, instance->common.te_long) < instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 0);
instance->common.parser_step = NiceFlorSDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->common.te_last, instance->common.te_long) <
instance->common.te_delta) &&
(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 1);
instance->common.parser_step = NiceFlorSDecoderStepSaveDuration;
} else
instance->common.parser_step = NiceFlorSDecoderStepReset;
} else {
instance->common.parser_step = NiceFlorSDecoderStepReset;
}
break;
}
}
void subghz_protocol_nice_flor_s_to_str(SubGhzProtocolNiceFlorS* instance, string_t output) {
subghz_nice_flor_s_decoder_decrypt(instance);
uint32_t code_found_hi = instance->common.code_last_found >> 32;
uint32_t code_found_lo = instance->common.code_last_found & 0x00000000ffffffff;
string_cat_printf(
output,
"%s %dbit\r\n"
"Key:0x%lX%08lX\r\n"
"Sn:%05lX\r\n"
"Cnt:%04X Btn:%02lX\r\n",
instance->common.name,
instance->common.code_last_count_bit,
code_found_hi,
code_found_lo,
instance->common.serial,
instance->common.cnt,
instance->common.btn);
}
void subghz_decoder_nice_flor_s_to_load_protocol(SubGhzProtocolNiceFlorS* instance, void* context) {
furi_assert(context);
furi_assert(instance);
SubGhzProtocolCommonLoad* data = context;
instance->common.code_last_found = data->code_found;
instance->common.code_last_count_bit = data->code_count_bit;
subghz_nice_flor_s_decoder_decrypt(instance);
}

View File

@@ -1,59 +1,59 @@
#pragma once
#include "subghz_protocol_common.h"
typedef struct SubGhzProtocolNiceFlorS SubGhzProtocolNiceFlorS;
/** Allocate SubGhzProtocolNiceFlorS
*
* @return SubGhzProtocolNiceFlorS*
*/
SubGhzProtocolNiceFlorS* subghz_protocol_nice_flor_s_alloc();
/** Free SubGhzProtocolNiceFlorS
*
* @param instance
*/
void subghz_protocol_nice_flor_s_free(SubGhzProtocolNiceFlorS* instance);
/** File name rainbow table Nice Flor-S
*
* @param instance - SubGhzProtocolNiceFlorS instance
* @param file_name - "path/file_name"
*/
void subghz_protocol_nice_flor_s_name_file(SubGhzProtocolNiceFlorS* instance, const char* name);
/** Sends the key on the air
*
* @param instance - SubGhzProtocolNiceFlorS instance
* @param key - key send
* @param bit - count bit key
* @param repeat - repeat send key
*/
void subghz_protocol_nice_flor_s_send_key(SubGhzProtocolNiceFlorS* instance, uint64_t key, uint8_t bit, uint8_t repeat);
/** Reset internal state
* @param instance - SubGhzProtocolNiceFlorS instance
*/
void subghz_protocol_nice_flor_s_reset(SubGhzProtocolNiceFlorS* instance);
/** Parse accepted duration
*
* @param instance - SubGhzProtocolNiceFlorS instance
* @param data - LevelDuration level_duration
*/
void subghz_protocol_nice_flor_s_parse(SubGhzProtocolNiceFlorS* instance, bool level, uint32_t duration);
/** Outputting information from the parser
*
* @param instance - SubGhzProtocolNiceFlorS* instance
* @param output - output string
*/
void subghz_protocol_nice_flor_s_to_str(SubGhzProtocolNiceFlorS* instance, string_t output);
/** Loading protocol from bin data
*
* @param instance - SubGhzProtocolNiceFlorS instance
* @param context - SubGhzProtocolCommonLoad context
*/
#pragma once
#include "subghz_protocol_common.h"
typedef struct SubGhzProtocolNiceFlorS SubGhzProtocolNiceFlorS;
/** Allocate SubGhzProtocolNiceFlorS
*
* @return SubGhzProtocolNiceFlorS*
*/
SubGhzProtocolNiceFlorS* subghz_protocol_nice_flor_s_alloc();
/** Free SubGhzProtocolNiceFlorS
*
* @param instance
*/
void subghz_protocol_nice_flor_s_free(SubGhzProtocolNiceFlorS* instance);
/** File name rainbow table Nice Flor-S
*
* @param instance - SubGhzProtocolNiceFlorS instance
* @param file_name - "path/file_name"
*/
void subghz_protocol_nice_flor_s_name_file(SubGhzProtocolNiceFlorS* instance, const char* name);
/** Sends the key on the air
*
* @param instance - SubGhzProtocolNiceFlorS instance
* @param key - key send
* @param bit - count bit key
* @param repeat - repeat send key
*/
void subghz_protocol_nice_flor_s_send_key(SubGhzProtocolNiceFlorS* instance, uint64_t key, uint8_t bit, uint8_t repeat);
/** Reset internal state
* @param instance - SubGhzProtocolNiceFlorS instance
*/
void subghz_protocol_nice_flor_s_reset(SubGhzProtocolNiceFlorS* instance);
/** Parse accepted duration
*
* @param instance - SubGhzProtocolNiceFlorS instance
* @param data - LevelDuration level_duration
*/
void subghz_protocol_nice_flor_s_parse(SubGhzProtocolNiceFlorS* instance, bool level, uint32_t duration);
/** Outputting information from the parser
*
* @param instance - SubGhzProtocolNiceFlorS* instance
* @param output - output string
*/
void subghz_protocol_nice_flor_s_to_str(SubGhzProtocolNiceFlorS* instance, string_t output);
/** Loading protocol from bin data
*
* @param instance - SubGhzProtocolNiceFlorS instance
* @param context - SubGhzProtocolCommonLoad context
*/
void subghz_decoder_nice_flor_s_to_load_protocol(SubGhzProtocolNiceFlorS* instance, void* context);

View File

@@ -1,369 +1,369 @@
#include "subghz_protocol_princeton.h"
/*
* Help
* https://phreakerclub.com/447
*
*/
#define SUBGHZ_PT_SHORT 400
#define SUBGHZ_PT_LONG (SUBGHZ_PT_SHORT * 3)
#define SUBGHZ_PT_GUARD (SUBGHZ_PT_SHORT * 30)
#define SUBGHZ_PT_COUNT_KEY 5
#define SUBGHZ_PT_TIMEOUT 320
struct SubGhzEncoderPrinceton {
uint32_t key;
uint16_t te;
size_t repeat;
size_t front;
size_t count_key;
uint32_t time_high;
uint32_t time_low;
};
typedef enum {
PrincetonDecoderStepReset = 0,
PrincetonDecoderStepSaveDuration,
PrincetonDecoderStepCheckDuration,
} PrincetonDecoderStep;
SubGhzEncoderPrinceton* subghz_encoder_princeton_alloc() {
SubGhzEncoderPrinceton* instance = furi_alloc(sizeof(SubGhzEncoderPrinceton));
return instance;
}
void subghz_encoder_princeton_free(SubGhzEncoderPrinceton* instance) {
furi_assert(instance);
free(instance);
}
void subghz_encoder_princeton_set_te(SubGhzEncoderPrinceton* instance, void* decoder) {
SubGhzDecoderPrinceton* pricenton = decoder;
if((pricenton->te) != 0) {
instance->te = pricenton->te;
} else {
instance->te = SUBGHZ_PT_SHORT;
}
}
void subghz_encoder_princeton_set(SubGhzEncoderPrinceton* instance, uint32_t key, size_t repeat) {
furi_assert(instance);
instance->te = SUBGHZ_PT_SHORT;
instance->key = key;
instance->repeat = repeat + 1;
instance->front = 48;
instance->count_key = SUBGHZ_PT_COUNT_KEY + 7;
instance->time_high = 0;
instance->time_low = 0;
}
size_t subghz_encoder_princeton_get_repeat_left(SubGhzEncoderPrinceton* instance) {
furi_assert(instance);
return instance->repeat;
}
void subghz_encoder_princeton_print_log(void* context) {
SubGhzEncoderPrinceton* instance = context;
float duty_cycle =
((float)instance->time_high / (instance->time_high + instance->time_low)) * 100;
FURI_LOG_I(
"EncoderPrinceton",
"Radio ON=%dus, OFF=%dus, DutyCycle=%d,%d%%",
instance->time_high,
instance->time_low,
(uint32_t)duty_cycle,
(uint32_t)((duty_cycle - (uint32_t)duty_cycle) * 100));
}
LevelDuration subghz_encoder_princeton_yield(void* context) {
SubGhzEncoderPrinceton* instance = context;
if(instance->repeat == 0) {
subghz_encoder_princeton_print_log(instance);
return level_duration_reset();
}
size_t bit = instance->front / 2;
bool level = !(instance->front % 2);
LevelDuration ret;
if(bit < 24) {
uint8_t byte = bit / 8;
uint8_t bit_in_byte = bit % 8;
bool value = (((uint8_t*)&instance->key)[2 - byte] >> (7 - bit_in_byte)) & 1;
if(value) {
ret = level_duration_make(level, level ? instance->te * 3 : instance->te);
if(level)
instance->time_high += instance->te * 3;
else
instance->time_low += instance->te;
} else {
ret = level_duration_make(level, level ? instance->te : instance->te * 3);
if(level)
instance->time_high += instance->te;
else
instance->time_low += instance->te * 3;
}
} else {
if(--instance->count_key != 0) {
ret = level_duration_make(level, level ? instance->te : instance->te * 30);
if(level)
instance->time_high += instance->te;
else
instance->time_low += instance->te * 30;
} else {
instance->count_key = SUBGHZ_PT_COUNT_KEY + 6;
instance->front = 48;
ret = level_duration_make(level, level ? instance->te : SUBGHZ_PT_TIMEOUT * 1000);
if(level)
instance->time_high += instance->te;
else
instance->time_low += SUBGHZ_PT_TIMEOUT * 1000;
}
}
instance->front++;
if(instance->front == 50) {
instance->repeat--;
instance->front = 0;
}
return ret;
}
SubGhzDecoderPrinceton* subghz_decoder_princeton_alloc(void) {
SubGhzDecoderPrinceton* instance = furi_alloc(sizeof(SubGhzDecoderPrinceton));
instance->te = SUBGHZ_PT_SHORT;
instance->common.name = "Princeton";
instance->common.code_min_count_bit_for_found = 24;
instance->common.te_short = SUBGHZ_PT_SHORT; //150;
instance->common.te_long = SUBGHZ_PT_LONG; //450;
instance->common.te_delta = 250; //50;
instance->common.type_protocol = SubGhzProtocolCommonTypeStatic;
instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_decoder_princeton_to_str;
instance->common.to_save_string =
(SubGhzProtocolCommonGetStrSave)subghz_decoder_princeton_to_save_str;
instance->common.to_load_protocol_from_file =
(SubGhzProtocolCommonLoadFromFile)subghz_decoder_princeton_to_load_protocol_from_file;
instance->common.to_load_protocol =
(SubGhzProtocolCommonLoadFromRAW)subghz_decoder_princeton_to_load_protocol;
instance->common.get_upload_protocol =
(SubGhzProtocolCommonEncoderGetUpLoad)subghz_protocol_princeton_send_key;
return instance;
}
void subghz_decoder_princeton_free(SubGhzDecoderPrinceton* instance) {
furi_assert(instance);
free(instance);
}
uint16_t subghz_protocol_princeton_get_te(void* context) {
SubGhzDecoderPrinceton* instance = context;
return instance->te;
}
bool subghz_protocol_princeton_send_key(
SubGhzDecoderPrinceton* instance,
SubGhzProtocolCommonEncoder* encoder) {
furi_assert(instance);
furi_assert(encoder);
size_t index = 0;
encoder->size_upload = (instance->common.code_last_count_bit * 2) + 2;
if(encoder->size_upload > SUBGHZ_ENCODER_UPLOAD_MAX_SIZE) return false;
//Send key data
for(uint8_t i = instance->common.code_last_count_bit; i > 0; i--) {
if(bit_read(instance->common.code_last_found, i - 1)) {
//send bit 1
encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->te * 3);
encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->te);
} else {
//send bit 0
encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->te);
encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->te * 3);
}
}
//Send Stop bit
encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->te);
//Send PT_GUARD
encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->te * 30);
return true;
}
void subghz_decoder_princeton_reset(SubGhzDecoderPrinceton* instance) {
instance->common.parser_step = PrincetonDecoderStepReset;
}
void subghz_decoder_princeton_parse(
SubGhzDecoderPrinceton* instance,
bool level,
uint32_t duration) {
switch(instance->common.parser_step) {
case PrincetonDecoderStepReset:
if((!level) && (DURATION_DIFF(duration, instance->common.te_short * 36) <
instance->common.te_delta * 36)) {
//Found Preambula
instance->common.parser_step = PrincetonDecoderStepSaveDuration;
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
instance->te = 0;
} else {
instance->common.parser_step = PrincetonDecoderStepReset;
}
break;
case PrincetonDecoderStepSaveDuration:
//save duration
if(level) {
instance->common.te_last = duration;
instance->te += duration;
instance->common.parser_step = PrincetonDecoderStepCheckDuration;
}
break;
case PrincetonDecoderStepCheckDuration:
if(!level) {
if(duration >= (instance->common.te_short * 10 + instance->common.te_delta)) {
instance->common.parser_step = PrincetonDecoderStepSaveDuration;
if(instance->common.code_count_bit ==
instance->common.code_min_count_bit_for_found) {
instance->te /= (instance->common.code_count_bit * 4 + 1);
instance->common.code_last_found = instance->common.code_found;
instance->common.code_last_count_bit = instance->common.code_count_bit;
instance->common.serial = instance->common.code_found >> 4;
instance->common.btn = (uint8_t)instance->common.code_found & 0x00000F;
if(instance->common.callback)
instance->common.callback(
(SubGhzProtocolCommon*)instance, instance->common.context);
}
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
instance->te = 0;
break;
}
instance->te += duration;
if((DURATION_DIFF(instance->common.te_last, instance->common.te_short) <
instance->common.te_delta) &&
(DURATION_DIFF(duration, instance->common.te_long) <
instance->common.te_delta * 3)) {
subghz_protocol_common_add_bit(&instance->common, 0);
instance->common.parser_step = PrincetonDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->common.te_last, instance->common.te_long) <
instance->common.te_delta * 3) &&
(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 1);
instance->common.parser_step = PrincetonDecoderStepSaveDuration;
} else {
instance->common.parser_step = PrincetonDecoderStepReset;
}
} else {
instance->common.parser_step = PrincetonDecoderStepReset;
}
break;
}
}
void subghz_decoder_princeton_to_str(SubGhzDecoderPrinceton* instance, string_t output) {
uint32_t code_found_lo = instance->common.code_last_found & 0x00000000ffffffff;
uint64_t code_found_reverse = subghz_protocol_common_reverse_key(
instance->common.code_last_found, instance->common.code_last_count_bit);
uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff;
string_cat_printf(
output,
"%s %dbit\r\n"
"Key:0x%08lX\r\n"
"Yek:0x%08lX\r\n"
"Sn:0x%05lX BTN:%02X\r\n"
"Te:%dus\r\n",
instance->common.name,
instance->common.code_last_count_bit,
code_found_lo,
code_found_reverse_lo,
instance->common.serial,
instance->common.btn,
instance->te);
}
void subghz_decoder_princeton_to_save_str(SubGhzDecoderPrinceton* instance, string_t output) {
string_printf(
output,
"Protocol: %s\n"
"Bit: %d\n"
"Te: %d\n"
"Key: %08lX\n",
instance->common.name,
instance->common.code_last_count_bit,
instance->te,
(uint32_t)(instance->common.code_last_found & 0x00000000ffffffff));
}
bool subghz_decoder_princeton_to_load_protocol_from_file(
FileWorker* file_worker,
SubGhzDecoderPrinceton* instance) {
bool loaded = false;
string_t temp_str;
string_init(temp_str);
int res = 0;
int data = 0;
do {
// Read and parse bit data from 2nd line
if(!file_worker_read_until(file_worker, temp_str, '\n')) {
break;
}
res = sscanf(string_get_cstr(temp_str), "Bit: %d\n", &data);
if(res != 1) {
break;
}
instance->common.code_last_count_bit = (uint8_t)data;
// Read and parse te data from 3nd line
if(!file_worker_read_until(file_worker, temp_str, '\n')) {
break;
}
res = sscanf(string_get_cstr(temp_str), "Te: %d\n", &data);
if(res != 1) {
break;
}
instance->te = (uint16_t)data;
// Read and parse key data from 4nd line
if(!file_worker_read_until(file_worker, temp_str, '\n')) {
break;
}
uint32_t temp_key = 0;
res = sscanf(string_get_cstr(temp_str), "Key: %08lX\n", &temp_key);
if(res != 1) {
break;
}
instance->common.code_last_found = (uint64_t)temp_key;
instance->common.serial = instance->common.code_last_found >> 4;
instance->common.btn = (uint8_t)instance->common.code_last_found & 0x00000F;
loaded = true;
} while(0);
string_clear(temp_str);
return loaded;
}
void subghz_decoder_princeton_to_load_protocol(SubGhzDecoderPrinceton* instance, void* context) {
furi_assert(context);
furi_assert(instance);
SubGhzProtocolCommonLoad* data = context;
instance->common.code_last_found = data->code_found;
instance->common.code_last_count_bit = data->code_count_bit;
instance->te = data->param1;
instance->common.serial = instance->common.code_last_found >> 4;
instance->common.btn = (uint8_t)instance->common.code_last_found & 0x00000F;
}
#include "subghz_protocol_princeton.h"
/*
* Help
* https://phreakerclub.com/447
*
*/
#define SUBGHZ_PT_SHORT 400
#define SUBGHZ_PT_LONG (SUBGHZ_PT_SHORT * 3)
#define SUBGHZ_PT_GUARD (SUBGHZ_PT_SHORT * 30)
#define SUBGHZ_PT_COUNT_KEY 5
#define SUBGHZ_PT_TIMEOUT 320
struct SubGhzEncoderPrinceton {
uint32_t key;
uint16_t te;
size_t repeat;
size_t front;
size_t count_key;
uint32_t time_high;
uint32_t time_low;
};
typedef enum {
PrincetonDecoderStepReset = 0,
PrincetonDecoderStepSaveDuration,
PrincetonDecoderStepCheckDuration,
} PrincetonDecoderStep;
SubGhzEncoderPrinceton* subghz_encoder_princeton_alloc() {
SubGhzEncoderPrinceton* instance = furi_alloc(sizeof(SubGhzEncoderPrinceton));
return instance;
}
void subghz_encoder_princeton_free(SubGhzEncoderPrinceton* instance) {
furi_assert(instance);
free(instance);
}
void subghz_encoder_princeton_set_te(SubGhzEncoderPrinceton* instance, void* decoder) {
SubGhzDecoderPrinceton* pricenton = decoder;
if((pricenton->te) != 0) {
instance->te = pricenton->te;
} else {
instance->te = SUBGHZ_PT_SHORT;
}
}
void subghz_encoder_princeton_set(SubGhzEncoderPrinceton* instance, uint32_t key, size_t repeat) {
furi_assert(instance);
instance->te = SUBGHZ_PT_SHORT;
instance->key = key;
instance->repeat = repeat + 1;
instance->front = 48;
instance->count_key = SUBGHZ_PT_COUNT_KEY + 7;
instance->time_high = 0;
instance->time_low = 0;
}
size_t subghz_encoder_princeton_get_repeat_left(SubGhzEncoderPrinceton* instance) {
furi_assert(instance);
return instance->repeat;
}
void subghz_encoder_princeton_print_log(void* context) {
SubGhzEncoderPrinceton* instance = context;
float duty_cycle =
((float)instance->time_high / (instance->time_high + instance->time_low)) * 100;
FURI_LOG_I(
"EncoderPrinceton",
"Radio ON=%dus, OFF=%dus, DutyCycle=%d,%d%%",
instance->time_high,
instance->time_low,
(uint32_t)duty_cycle,
(uint32_t)((duty_cycle - (uint32_t)duty_cycle) * 100));
}
LevelDuration subghz_encoder_princeton_yield(void* context) {
SubGhzEncoderPrinceton* instance = context;
if(instance->repeat == 0) {
subghz_encoder_princeton_print_log(instance);
return level_duration_reset();
}
size_t bit = instance->front / 2;
bool level = !(instance->front % 2);
LevelDuration ret;
if(bit < 24) {
uint8_t byte = bit / 8;
uint8_t bit_in_byte = bit % 8;
bool value = (((uint8_t*)&instance->key)[2 - byte] >> (7 - bit_in_byte)) & 1;
if(value) {
ret = level_duration_make(level, level ? instance->te * 3 : instance->te);
if(level)
instance->time_high += instance->te * 3;
else
instance->time_low += instance->te;
} else {
ret = level_duration_make(level, level ? instance->te : instance->te * 3);
if(level)
instance->time_high += instance->te;
else
instance->time_low += instance->te * 3;
}
} else {
if(--instance->count_key != 0) {
ret = level_duration_make(level, level ? instance->te : instance->te * 30);
if(level)
instance->time_high += instance->te;
else
instance->time_low += instance->te * 30;
} else {
instance->count_key = SUBGHZ_PT_COUNT_KEY + 6;
instance->front = 48;
ret = level_duration_make(level, level ? instance->te : SUBGHZ_PT_TIMEOUT * 1000);
if(level)
instance->time_high += instance->te;
else
instance->time_low += SUBGHZ_PT_TIMEOUT * 1000;
}
}
instance->front++;
if(instance->front == 50) {
instance->repeat--;
instance->front = 0;
}
return ret;
}
SubGhzDecoderPrinceton* subghz_decoder_princeton_alloc(void) {
SubGhzDecoderPrinceton* instance = furi_alloc(sizeof(SubGhzDecoderPrinceton));
instance->te = SUBGHZ_PT_SHORT;
instance->common.name = "Princeton";
instance->common.code_min_count_bit_for_found = 24;
instance->common.te_short = SUBGHZ_PT_SHORT; //150;
instance->common.te_long = SUBGHZ_PT_LONG; //450;
instance->common.te_delta = 250; //50;
instance->common.type_protocol = SubGhzProtocolCommonTypeStatic;
instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_decoder_princeton_to_str;
instance->common.to_save_string =
(SubGhzProtocolCommonGetStrSave)subghz_decoder_princeton_to_save_str;
instance->common.to_load_protocol_from_file =
(SubGhzProtocolCommonLoadFromFile)subghz_decoder_princeton_to_load_protocol_from_file;
instance->common.to_load_protocol =
(SubGhzProtocolCommonLoadFromRAW)subghz_decoder_princeton_to_load_protocol;
instance->common.get_upload_protocol =
(SubGhzProtocolCommonEncoderGetUpLoad)subghz_protocol_princeton_send_key;
return instance;
}
void subghz_decoder_princeton_free(SubGhzDecoderPrinceton* instance) {
furi_assert(instance);
free(instance);
}
uint16_t subghz_protocol_princeton_get_te(void* context) {
SubGhzDecoderPrinceton* instance = context;
return instance->te;
}
bool subghz_protocol_princeton_send_key(
SubGhzDecoderPrinceton* instance,
SubGhzProtocolCommonEncoder* encoder) {
furi_assert(instance);
furi_assert(encoder);
size_t index = 0;
encoder->size_upload = (instance->common.code_last_count_bit * 2) + 2;
if(encoder->size_upload > SUBGHZ_ENCODER_UPLOAD_MAX_SIZE) return false;
//Send key data
for(uint8_t i = instance->common.code_last_count_bit; i > 0; i--) {
if(bit_read(instance->common.code_last_found, i - 1)) {
//send bit 1
encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->te * 3);
encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->te);
} else {
//send bit 0
encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->te);
encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->te * 3);
}
}
//Send Stop bit
encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->te);
//Send PT_GUARD
encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->te * 30);
return true;
}
void subghz_decoder_princeton_reset(SubGhzDecoderPrinceton* instance) {
instance->common.parser_step = PrincetonDecoderStepReset;
}
void subghz_decoder_princeton_parse(
SubGhzDecoderPrinceton* instance,
bool level,
uint32_t duration) {
switch(instance->common.parser_step) {
case PrincetonDecoderStepReset:
if((!level) && (DURATION_DIFF(duration, instance->common.te_short * 36) <
instance->common.te_delta * 36)) {
//Found Preambula
instance->common.parser_step = PrincetonDecoderStepSaveDuration;
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
instance->te = 0;
} else {
instance->common.parser_step = PrincetonDecoderStepReset;
}
break;
case PrincetonDecoderStepSaveDuration:
//save duration
if(level) {
instance->common.te_last = duration;
instance->te += duration;
instance->common.parser_step = PrincetonDecoderStepCheckDuration;
}
break;
case PrincetonDecoderStepCheckDuration:
if(!level) {
if(duration >= (instance->common.te_short * 10 + instance->common.te_delta)) {
instance->common.parser_step = PrincetonDecoderStepSaveDuration;
if(instance->common.code_count_bit ==
instance->common.code_min_count_bit_for_found) {
instance->te /= (instance->common.code_count_bit * 4 + 1);
instance->common.code_last_found = instance->common.code_found;
instance->common.code_last_count_bit = instance->common.code_count_bit;
instance->common.serial = instance->common.code_found >> 4;
instance->common.btn = (uint8_t)instance->common.code_found & 0x00000F;
if(instance->common.callback)
instance->common.callback(
(SubGhzProtocolCommon*)instance, instance->common.context);
}
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
instance->te = 0;
break;
}
instance->te += duration;
if((DURATION_DIFF(instance->common.te_last, instance->common.te_short) <
instance->common.te_delta) &&
(DURATION_DIFF(duration, instance->common.te_long) <
instance->common.te_delta * 3)) {
subghz_protocol_common_add_bit(&instance->common, 0);
instance->common.parser_step = PrincetonDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->common.te_last, instance->common.te_long) <
instance->common.te_delta * 3) &&
(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 1);
instance->common.parser_step = PrincetonDecoderStepSaveDuration;
} else {
instance->common.parser_step = PrincetonDecoderStepReset;
}
} else {
instance->common.parser_step = PrincetonDecoderStepReset;
}
break;
}
}
void subghz_decoder_princeton_to_str(SubGhzDecoderPrinceton* instance, string_t output) {
uint32_t code_found_lo = instance->common.code_last_found & 0x00000000ffffffff;
uint64_t code_found_reverse = subghz_protocol_common_reverse_key(
instance->common.code_last_found, instance->common.code_last_count_bit);
uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff;
string_cat_printf(
output,
"%s %dbit\r\n"
"Key:0x%08lX\r\n"
"Yek:0x%08lX\r\n"
"Sn:0x%05lX BTN:%02X\r\n"
"Te:%dus\r\n",
instance->common.name,
instance->common.code_last_count_bit,
code_found_lo,
code_found_reverse_lo,
instance->common.serial,
instance->common.btn,
instance->te);
}
void subghz_decoder_princeton_to_save_str(SubGhzDecoderPrinceton* instance, string_t output) {
string_printf(
output,
"Protocol: %s\n"
"Bit: %d\n"
"Te: %d\n"
"Key: %08lX\n",
instance->common.name,
instance->common.code_last_count_bit,
instance->te,
(uint32_t)(instance->common.code_last_found & 0x00000000ffffffff));
}
bool subghz_decoder_princeton_to_load_protocol_from_file(
FileWorker* file_worker,
SubGhzDecoderPrinceton* instance) {
bool loaded = false;
string_t temp_str;
string_init(temp_str);
int res = 0;
int data = 0;
do {
// Read and parse bit data from 2nd line
if(!file_worker_read_until(file_worker, temp_str, '\n')) {
break;
}
res = sscanf(string_get_cstr(temp_str), "Bit: %d\n", &data);
if(res != 1) {
break;
}
instance->common.code_last_count_bit = (uint8_t)data;
// Read and parse te data from 3nd line
if(!file_worker_read_until(file_worker, temp_str, '\n')) {
break;
}
res = sscanf(string_get_cstr(temp_str), "Te: %d\n", &data);
if(res != 1) {
break;
}
instance->te = (uint16_t)data;
// Read and parse key data from 4nd line
if(!file_worker_read_until(file_worker, temp_str, '\n')) {
break;
}
uint32_t temp_key = 0;
res = sscanf(string_get_cstr(temp_str), "Key: %08lX\n", &temp_key);
if(res != 1) {
break;
}
instance->common.code_last_found = (uint64_t)temp_key;
instance->common.serial = instance->common.code_last_found >> 4;
instance->common.btn = (uint8_t)instance->common.code_last_found & 0x00000F;
loaded = true;
} while(0);
string_clear(temp_str);
return loaded;
}
void subghz_decoder_princeton_to_load_protocol(SubGhzDecoderPrinceton* instance, void* context) {
furi_assert(context);
furi_assert(instance);
SubGhzProtocolCommonLoad* data = context;
instance->common.code_last_found = data->code_found;
instance->common.code_last_count_bit = data->code_count_bit;
instance->te = data->param1;
instance->common.serial = instance->common.code_last_found >> 4;
instance->common.btn = (uint8_t)instance->common.code_last_found & 0x00000F;
}

View File

@@ -1,125 +1,125 @@
#pragma once
#include "subghz_protocol_common.h"
struct SubGhzDecoderPrinceton {
SubGhzProtocolCommon common;
uint32_t te;
};
/** SubGhzEncoderPrinceton anonymous type */
typedef struct SubGhzEncoderPrinceton SubGhzEncoderPrinceton;
/** Allocate SubGhzEncoderPrinceton
* @return pointer to SubGhzEncoderPrinceton instance
*/
SubGhzEncoderPrinceton* subghz_encoder_princeton_alloc();
/** Free SubGhzEncoderPrinceton instance
* @param instance - SubGhzEncoderPrinceton instance
*/
void subghz_encoder_princeton_free(SubGhzEncoderPrinceton* instance);
/** Set new encoder params
* @param instance - SubGhzEncoderPrinceton instance
* @param key - 24bit key
* @param repeat - how many times to repeat
*/
void subghz_encoder_princeton_set(SubGhzEncoderPrinceton* instance, uint32_t key, size_t repeat);
/** Get repeat count left
* @param instance - SubGhzEncoderPrinceton instance
* @return repeat count left
*/
size_t subghz_encoder_princeton_get_repeat_left(SubGhzEncoderPrinceton* instance);
/** Print encoder log
* @param instance - SubGhzEncoderPrinceton instance
*/
void subghz_encoder_princeton_print_log(void* context);
/** Get level duration
* @param instance - SubGhzEncoderPrinceton instance
* @return level duration
*/
LevelDuration subghz_encoder_princeton_yield(void* context);
/** SubGhzDecoderPrinceton anonymous type */
typedef struct SubGhzDecoderPrinceton SubGhzDecoderPrinceton;
void subghz_encoder_princeton_set_te(SubGhzEncoderPrinceton* instance, void* decoder);
/** Allocate SubGhzDecoderPrinceton
*
* @return SubGhzDecoderPrinceton*
*/
SubGhzDecoderPrinceton* subghz_decoder_princeton_alloc();
/** Free SubGhzDecoderPrinceton
*
* @param instance
*/
void subghz_decoder_princeton_free(SubGhzDecoderPrinceton* instance);
/** Get Te interval protocol
*
* @param context - SubGhzDecoderPrinceton context
* @return Te interval (us)
*/
uint16_t subghz_protocol_princeton_get_te(void* context);
/** Get upload protocol
*
* @param instance - SubGhzDecoderPrinceton instance
* @param encoder - SubGhzProtocolCommonEncoder encoder
* @return bool
*/
bool subghz_protocol_princeton_send_key(
SubGhzDecoderPrinceton* instance,
SubGhzProtocolCommonEncoder* encoder);
/** Reset internal state
* @param instance - SubGhzDecoderPrinceton instance
*/
void subghz_decoder_princeton_reset(SubGhzDecoderPrinceton* instance);
/** Parse accepted duration
*
* @param instance - SubGhzDecoderPrinceton instance
* @param data - LevelDuration level_duration
*/
void subghz_decoder_princeton_parse(
SubGhzDecoderPrinceton* instance,
bool level,
uint32_t duration);
/** Outputting information from the parser
*
* @param instance - SubGhzDecoderPrinceton* instance
* @param output - output string
*/
void subghz_decoder_princeton_to_str(SubGhzDecoderPrinceton* instance, string_t output);
/** Get a string to save the protocol
*
* @param instance - SubGhzDecoderPrinceton instance
* @param output - the resulting string
*/
void subghz_decoder_princeton_to_save_str(SubGhzDecoderPrinceton* instance, string_t output);
/** Loading protocol from file
*
* @param file_worker - FileWorker file_worker
* @param instance - SubGhzDecoderPrinceton instance
* @return bool
*/
bool subghz_decoder_princeton_to_load_protocol_from_file(FileWorker* file_worker, SubGhzDecoderPrinceton* instance);
/** Loading protocol from bin data
*
* @param instance - SubGhzDecoderPrinceton instance
* @param context - SubGhzProtocolCommonLoad context
*/
void subghz_decoder_princeton_to_load_protocol(
SubGhzDecoderPrinceton* instance,
void* context) ;
#pragma once
#include "subghz_protocol_common.h"
struct SubGhzDecoderPrinceton {
SubGhzProtocolCommon common;
uint32_t te;
};
/** SubGhzEncoderPrinceton anonymous type */
typedef struct SubGhzEncoderPrinceton SubGhzEncoderPrinceton;
/** Allocate SubGhzEncoderPrinceton
* @return pointer to SubGhzEncoderPrinceton instance
*/
SubGhzEncoderPrinceton* subghz_encoder_princeton_alloc();
/** Free SubGhzEncoderPrinceton instance
* @param instance - SubGhzEncoderPrinceton instance
*/
void subghz_encoder_princeton_free(SubGhzEncoderPrinceton* instance);
/** Set new encoder params
* @param instance - SubGhzEncoderPrinceton instance
* @param key - 24bit key
* @param repeat - how many times to repeat
*/
void subghz_encoder_princeton_set(SubGhzEncoderPrinceton* instance, uint32_t key, size_t repeat);
/** Get repeat count left
* @param instance - SubGhzEncoderPrinceton instance
* @return repeat count left
*/
size_t subghz_encoder_princeton_get_repeat_left(SubGhzEncoderPrinceton* instance);
/** Print encoder log
* @param instance - SubGhzEncoderPrinceton instance
*/
void subghz_encoder_princeton_print_log(void* context);
/** Get level duration
* @param instance - SubGhzEncoderPrinceton instance
* @return level duration
*/
LevelDuration subghz_encoder_princeton_yield(void* context);
/** SubGhzDecoderPrinceton anonymous type */
typedef struct SubGhzDecoderPrinceton SubGhzDecoderPrinceton;
void subghz_encoder_princeton_set_te(SubGhzEncoderPrinceton* instance, void* decoder);
/** Allocate SubGhzDecoderPrinceton
*
* @return SubGhzDecoderPrinceton*
*/
SubGhzDecoderPrinceton* subghz_decoder_princeton_alloc();
/** Free SubGhzDecoderPrinceton
*
* @param instance
*/
void subghz_decoder_princeton_free(SubGhzDecoderPrinceton* instance);
/** Get Te interval protocol
*
* @param context - SubGhzDecoderPrinceton context
* @return Te interval (us)
*/
uint16_t subghz_protocol_princeton_get_te(void* context);
/** Get upload protocol
*
* @param instance - SubGhzDecoderPrinceton instance
* @param encoder - SubGhzProtocolCommonEncoder encoder
* @return bool
*/
bool subghz_protocol_princeton_send_key(
SubGhzDecoderPrinceton* instance,
SubGhzProtocolCommonEncoder* encoder);
/** Reset internal state
* @param instance - SubGhzDecoderPrinceton instance
*/
void subghz_decoder_princeton_reset(SubGhzDecoderPrinceton* instance);
/** Parse accepted duration
*
* @param instance - SubGhzDecoderPrinceton instance
* @param data - LevelDuration level_duration
*/
void subghz_decoder_princeton_parse(
SubGhzDecoderPrinceton* instance,
bool level,
uint32_t duration);
/** Outputting information from the parser
*
* @param instance - SubGhzDecoderPrinceton* instance
* @param output - output string
*/
void subghz_decoder_princeton_to_str(SubGhzDecoderPrinceton* instance, string_t output);
/** Get a string to save the protocol
*
* @param instance - SubGhzDecoderPrinceton instance
* @param output - the resulting string
*/
void subghz_decoder_princeton_to_save_str(SubGhzDecoderPrinceton* instance, string_t output);
/** Loading protocol from file
*
* @param file_worker - FileWorker file_worker
* @param instance - SubGhzDecoderPrinceton instance
* @return bool
*/
bool subghz_decoder_princeton_to_load_protocol_from_file(FileWorker* file_worker, SubGhzDecoderPrinceton* instance);
/** Loading protocol from bin data
*
* @param instance - SubGhzDecoderPrinceton instance
* @param context - SubGhzProtocolCommonLoad context
*/
void subghz_decoder_princeton_to_load_protocol(
SubGhzDecoderPrinceton* instance,
void* context) ;

View File

@@ -1,342 +1,342 @@
#include "subghz_protocol_star_line.h"
#include "subghz_protocol_keeloq_common.h"
#include "../subghz_keystore.h"
#include <furi.h>
#include <m-string.h>
#include <m-array.h>
struct SubGhzProtocolStarLine {
SubGhzProtocolCommon common;
SubGhzKeystore* keystore;
const char* manufacture_name;
};
typedef enum {
StarLineDecoderStepReset = 0,
StarLineDecoderStepCheckPreambula,
StarLineDecoderStepSaveDuration,
StarLineDecoderStepCheckDuration,
} StarLineDecoderStep;
SubGhzProtocolStarLine* subghz_protocol_star_line_alloc(SubGhzKeystore* keystore) {
SubGhzProtocolStarLine* instance = furi_alloc(sizeof(SubGhzProtocolStarLine));
instance->keystore = keystore;
instance->common.name = "Star Line";
instance->common.code_min_count_bit_for_found = 64;
instance->common.te_short = 250;
instance->common.te_long = 500;
instance->common.te_delta = 120;
instance->common.type_protocol = SubGhzProtocolCommonTypeDynamic;
instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_protocol_star_line_to_str;
instance->common.to_load_protocol =
(SubGhzProtocolCommonLoadFromRAW)subghz_decoder_star_line_to_load_protocol;
return instance;
}
void subghz_protocol_star_line_free(SubGhzProtocolStarLine* instance) {
furi_assert(instance);
free(instance);
}
const char* subghz_protocol_star_line_find_and_get_manufacture_name(void* context) {
SubGhzProtocolStarLine* instance = context;
subghz_protocol_star_line_check_remote_controller(instance);
return instance->manufacture_name;
}
const char* subghz_protocol_star_line_get_manufacture_name(void* context) {
SubGhzProtocolStarLine* instance = context;
return instance->manufacture_name;
}
/** Send bit
*
* @param instance - SubGhzProtocolStarLine instance
* @param bit - bit
*/
void subghz_protocol_star_line_send_bit(SubGhzProtocolStarLine* instance, uint8_t bit) {
if(bit) {
//send bit 1
SUBGHZ_TX_PIN_HIGH();
delay_us(instance->common.te_long);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_long);
} else {
//send bit 0
SUBGHZ_TX_PIN_HIGH();
delay_us(instance->common.te_short);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_short);
}
}
void subghz_protocol_star_line_send_key(
SubGhzProtocolStarLine* instance,
uint64_t key,
uint8_t bit,
uint8_t repeat) {
while(repeat--) {
//Send header
for(uint8_t i = 0; i < 6; i++) {
SUBGHZ_TX_PIN_HIGH();
delay_us(instance->common.te_long * 2);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_long * 2);
}
//Send Start bit ??????????
//Send key data
for(uint8_t i = bit; i > 0; i--) {
subghz_protocol_star_line_send_bit(instance, bit_read(key, i - 1));
}
//Send Stop bit ??????????
}
}
void subghz_protocol_star_line_reset(SubGhzProtocolStarLine* instance) {
instance->common.parser_step = StarLineDecoderStepReset;
}
/** Checking the accepted code against the database manafacture key
*
* @param instance SubGhzProtocolStarLine instance
* @param fix fix part of the parcel
* @param hop hop encrypted part of the parcel
* @return true on successful search
*/
uint8_t subghz_protocol_star_line_check_remote_controller_selector(
SubGhzProtocolStarLine* instance,
uint32_t fix,
uint32_t hop) {
uint16_t end_serial = (uint16_t)(fix & 0xFF);
uint8_t btn = (uint8_t)(fix >> 24);
uint32_t decrypt = 0;
uint64_t man_normal_learning;
for
M_EACH(manufacture_code, *subghz_keystore_get_data(instance->keystore), SubGhzKeyArray_t) {
switch(manufacture_code->type) {
case KEELOQ_LEARNING_SIMPLE:
//Simple Learning
decrypt = subghz_protocol_keeloq_common_decrypt(hop, manufacture_code->key);
if((decrypt >> 24 == btn) &&
((((uint16_t)(decrypt >> 16)) & 0x00FF) == end_serial)) {
instance->manufacture_name = string_get_cstr(manufacture_code->name);
instance->common.cnt = decrypt & 0x0000FFFF;
return 1;
}
break;
case KEELOQ_LEARNING_NORMAL:
// Normal_Learning
// https://phreakerclub.com/forum/showpost.php?p=43557&postcount=37
man_normal_learning =
subghz_protocol_keeloq_common_normal_learning(fix, manufacture_code->key);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man_normal_learning);
if((decrypt >> 24 == btn) &&
((((uint16_t)(decrypt >> 16)) & 0x00FF) == end_serial)) {
instance->manufacture_name = string_get_cstr(manufacture_code->name);
instance->common.cnt = decrypt & 0x0000FFFF;
return 1;
}
break;
case KEELOQ_LEARNING_UNKNOWN:
// Simple Learning
decrypt = subghz_protocol_keeloq_common_decrypt(hop, manufacture_code->key);
if((decrypt >> 24 == btn) &&
((((uint16_t)(decrypt >> 16)) & 0x00FF) == end_serial)) {
instance->manufacture_name = string_get_cstr(manufacture_code->name);
instance->common.cnt = decrypt & 0x0000FFFF;
return 1;
}
// Check for mirrored man
uint64_t man_rev = 0;
uint64_t man_rev_byte = 0;
for(uint8_t i = 0; i < 64; i += 8) {
man_rev_byte = (uint8_t)(manufacture_code->key >> i);
man_rev = man_rev | man_rev_byte << (56 - i);
}
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man_rev);
if((decrypt >> 24 == btn) &&
((((uint16_t)(decrypt >> 16)) & 0x00FF) == end_serial)) {
instance->manufacture_name = string_get_cstr(manufacture_code->name);
instance->common.cnt = decrypt & 0x0000FFFF;
return 1;
}
//###########################
// Normal_Learning
// https://phreakerclub.com/forum/showpost.php?p=43557&postcount=37
man_normal_learning =
subghz_protocol_keeloq_common_normal_learning(fix, manufacture_code->key);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man_normal_learning);
if((decrypt >> 24 == btn) &&
((((uint16_t)(decrypt >> 16)) & 0x00FF) == end_serial)) {
instance->manufacture_name = string_get_cstr(manufacture_code->name);
instance->common.cnt = decrypt & 0x0000FFFF;
return 1;
}
// Check for mirrored man
man_rev = 0;
man_rev_byte = 0;
for(uint8_t i = 0; i < 64; i += 8) {
man_rev_byte = (uint8_t)(manufacture_code->key >> i);
man_rev = man_rev | man_rev_byte << (56 - i);
}
man_normal_learning = subghz_protocol_keeloq_common_normal_learning(fix, man_rev);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man_normal_learning);
if((decrypt >> 24 == btn) &&
((((uint16_t)(decrypt >> 16)) & 0x00FF) == end_serial)) {
instance->manufacture_name = string_get_cstr(manufacture_code->name);
instance->common.cnt = decrypt & 0x0000FFFF;
return 1;
}
break;
}
}
instance->manufacture_name = "Unknown";
instance->common.cnt = 0;
return 0;
}
/** Analysis of received data
*
* @param instance SubGhzProtocolStarLine instance
*/
void subghz_protocol_star_line_check_remote_controller(SubGhzProtocolStarLine* instance) {
uint64_t key = subghz_protocol_common_reverse_key(
instance->common.code_last_found, instance->common.code_last_count_bit);
uint32_t key_fix = key >> 32;
uint32_t key_hop = key & 0x00000000ffffffff;
subghz_protocol_star_line_check_remote_controller_selector(instance, key_fix, key_hop);
instance->common.serial = key_fix & 0x00FFFFFF;
instance->common.btn = key_fix >> 24;
}
void subghz_protocol_star_line_parse(
SubGhzProtocolStarLine* instance,
bool level,
uint32_t duration) {
switch(instance->common.parser_step) {
case StarLineDecoderStepReset:
if(level) {
if(DURATION_DIFF(duration, instance->common.te_long * 2) <
instance->common.te_delta * 2) {
instance->common.parser_step = StarLineDecoderStepCheckPreambula;
instance->common.header_count++;
} else if(instance->common.header_count > 4) {
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
instance->common.te_last = duration;
instance->common.parser_step = StarLineDecoderStepCheckDuration;
}
} else {
instance->common.parser_step = StarLineDecoderStepReset;
instance->common.header_count = 0;
}
break;
case StarLineDecoderStepCheckPreambula:
if((!level) && (DURATION_DIFF(duration, instance->common.te_long * 2) <
instance->common.te_delta * 2)) {
//Found Preambula
instance->common.parser_step = StarLineDecoderStepReset;
} else {
instance->common.header_count = 0;
instance->common.parser_step = StarLineDecoderStepReset;
}
break;
case StarLineDecoderStepSaveDuration:
if(level) {
if(duration >= (instance->common.te_long + instance->common.te_delta)) {
instance->common.parser_step = StarLineDecoderStepReset;
if(instance->common.code_count_bit >=
instance->common.code_min_count_bit_for_found) {
if(instance->common.code_last_found != instance->common.code_found) {
instance->common.code_last_found = instance->common.code_found;
instance->common.code_last_count_bit = instance->common.code_count_bit;
if(instance->common.callback)
instance->common.callback(
(SubGhzProtocolCommon*)instance, instance->common.context);
}
}
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
instance->common.header_count = 0;
break;
} else {
instance->common.te_last = duration;
instance->common.parser_step = StarLineDecoderStepCheckDuration;
}
} else {
instance->common.parser_step = StarLineDecoderStepReset;
}
break;
case StarLineDecoderStepCheckDuration:
if(!level) {
if((DURATION_DIFF(instance->common.te_last, instance->common.te_short) <
instance->common.te_delta) &&
(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 0);
instance->common.parser_step = StarLineDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->common.te_last, instance->common.te_long) <
instance->common.te_delta) &&
(DURATION_DIFF(duration, instance->common.te_long) < instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 1);
instance->common.parser_step = StarLineDecoderStepSaveDuration;
} else {
instance->common.parser_step = StarLineDecoderStepReset;
}
} else {
instance->common.parser_step = StarLineDecoderStepReset;
}
break;
}
}
void subghz_protocol_star_line_to_str(SubGhzProtocolStarLine* instance, string_t output) {
subghz_protocol_star_line_check_remote_controller(instance);
uint32_t code_found_hi = instance->common.code_last_found >> 32;
uint32_t code_found_lo = instance->common.code_last_found & 0x00000000ffffffff;
uint64_t code_found_reverse = subghz_protocol_common_reverse_key(
instance->common.code_last_found, instance->common.code_last_count_bit);
uint32_t code_found_reverse_hi = code_found_reverse >> 32;
uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff;
string_cat_printf(
output,
"%s %dbit\r\n"
"Key:%08lX%08lX\r\n"
"Fix:0x%08lX Cnt:%04X\r\n"
"Hop:0x%08lX Btn:%02lX\r\n"
"MF:%s\r\n"
"Sn:0x%07lX \r\n",
instance->common.name,
instance->common.code_last_count_bit,
code_found_hi,
code_found_lo,
code_found_reverse_hi,
instance->common.cnt,
code_found_reverse_lo,
instance->common.btn,
instance->manufacture_name,
instance->common.serial);
}
void subghz_decoder_star_line_to_load_protocol(SubGhzProtocolStarLine* instance, void* context) {
furi_assert(context);
furi_assert(instance);
SubGhzProtocolCommonLoad* data = context;
instance->common.code_last_found = data->code_found;
instance->common.code_last_count_bit = data->code_count_bit;
subghz_protocol_star_line_check_remote_controller(instance);
#include "subghz_protocol_star_line.h"
#include "subghz_protocol_keeloq_common.h"
#include "../subghz_keystore.h"
#include <furi.h>
#include <m-string.h>
#include <m-array.h>
struct SubGhzProtocolStarLine {
SubGhzProtocolCommon common;
SubGhzKeystore* keystore;
const char* manufacture_name;
};
typedef enum {
StarLineDecoderStepReset = 0,
StarLineDecoderStepCheckPreambula,
StarLineDecoderStepSaveDuration,
StarLineDecoderStepCheckDuration,
} StarLineDecoderStep;
SubGhzProtocolStarLine* subghz_protocol_star_line_alloc(SubGhzKeystore* keystore) {
SubGhzProtocolStarLine* instance = furi_alloc(sizeof(SubGhzProtocolStarLine));
instance->keystore = keystore;
instance->common.name = "Star Line";
instance->common.code_min_count_bit_for_found = 64;
instance->common.te_short = 250;
instance->common.te_long = 500;
instance->common.te_delta = 120;
instance->common.type_protocol = SubGhzProtocolCommonTypeDynamic;
instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_protocol_star_line_to_str;
instance->common.to_load_protocol =
(SubGhzProtocolCommonLoadFromRAW)subghz_decoder_star_line_to_load_protocol;
return instance;
}
void subghz_protocol_star_line_free(SubGhzProtocolStarLine* instance) {
furi_assert(instance);
free(instance);
}
const char* subghz_protocol_star_line_find_and_get_manufacture_name(void* context) {
SubGhzProtocolStarLine* instance = context;
subghz_protocol_star_line_check_remote_controller(instance);
return instance->manufacture_name;
}
const char* subghz_protocol_star_line_get_manufacture_name(void* context) {
SubGhzProtocolStarLine* instance = context;
return instance->manufacture_name;
}
/** Send bit
*
* @param instance - SubGhzProtocolStarLine instance
* @param bit - bit
*/
void subghz_protocol_star_line_send_bit(SubGhzProtocolStarLine* instance, uint8_t bit) {
if(bit) {
//send bit 1
SUBGHZ_TX_PIN_HIGH();
delay_us(instance->common.te_long);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_long);
} else {
//send bit 0
SUBGHZ_TX_PIN_HIGH();
delay_us(instance->common.te_short);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_short);
}
}
void subghz_protocol_star_line_send_key(
SubGhzProtocolStarLine* instance,
uint64_t key,
uint8_t bit,
uint8_t repeat) {
while(repeat--) {
//Send header
for(uint8_t i = 0; i < 6; i++) {
SUBGHZ_TX_PIN_HIGH();
delay_us(instance->common.te_long * 2);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_long * 2);
}
//Send Start bit ??????????
//Send key data
for(uint8_t i = bit; i > 0; i--) {
subghz_protocol_star_line_send_bit(instance, bit_read(key, i - 1));
}
//Send Stop bit ??????????
}
}
void subghz_protocol_star_line_reset(SubGhzProtocolStarLine* instance) {
instance->common.parser_step = StarLineDecoderStepReset;
}
/** Checking the accepted code against the database manafacture key
*
* @param instance SubGhzProtocolStarLine instance
* @param fix fix part of the parcel
* @param hop hop encrypted part of the parcel
* @return true on successful search
*/
uint8_t subghz_protocol_star_line_check_remote_controller_selector(
SubGhzProtocolStarLine* instance,
uint32_t fix,
uint32_t hop) {
uint16_t end_serial = (uint16_t)(fix & 0xFF);
uint8_t btn = (uint8_t)(fix >> 24);
uint32_t decrypt = 0;
uint64_t man_normal_learning;
for
M_EACH(manufacture_code, *subghz_keystore_get_data(instance->keystore), SubGhzKeyArray_t) {
switch(manufacture_code->type) {
case KEELOQ_LEARNING_SIMPLE:
//Simple Learning
decrypt = subghz_protocol_keeloq_common_decrypt(hop, manufacture_code->key);
if((decrypt >> 24 == btn) &&
((((uint16_t)(decrypt >> 16)) & 0x00FF) == end_serial)) {
instance->manufacture_name = string_get_cstr(manufacture_code->name);
instance->common.cnt = decrypt & 0x0000FFFF;
return 1;
}
break;
case KEELOQ_LEARNING_NORMAL:
// Normal_Learning
// https://phreakerclub.com/forum/showpost.php?p=43557&postcount=37
man_normal_learning =
subghz_protocol_keeloq_common_normal_learning(fix, manufacture_code->key);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man_normal_learning);
if((decrypt >> 24 == btn) &&
((((uint16_t)(decrypt >> 16)) & 0x00FF) == end_serial)) {
instance->manufacture_name = string_get_cstr(manufacture_code->name);
instance->common.cnt = decrypt & 0x0000FFFF;
return 1;
}
break;
case KEELOQ_LEARNING_UNKNOWN:
// Simple Learning
decrypt = subghz_protocol_keeloq_common_decrypt(hop, manufacture_code->key);
if((decrypt >> 24 == btn) &&
((((uint16_t)(decrypt >> 16)) & 0x00FF) == end_serial)) {
instance->manufacture_name = string_get_cstr(manufacture_code->name);
instance->common.cnt = decrypt & 0x0000FFFF;
return 1;
}
// Check for mirrored man
uint64_t man_rev = 0;
uint64_t man_rev_byte = 0;
for(uint8_t i = 0; i < 64; i += 8) {
man_rev_byte = (uint8_t)(manufacture_code->key >> i);
man_rev = man_rev | man_rev_byte << (56 - i);
}
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man_rev);
if((decrypt >> 24 == btn) &&
((((uint16_t)(decrypt >> 16)) & 0x00FF) == end_serial)) {
instance->manufacture_name = string_get_cstr(manufacture_code->name);
instance->common.cnt = decrypt & 0x0000FFFF;
return 1;
}
//###########################
// Normal_Learning
// https://phreakerclub.com/forum/showpost.php?p=43557&postcount=37
man_normal_learning =
subghz_protocol_keeloq_common_normal_learning(fix, manufacture_code->key);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man_normal_learning);
if((decrypt >> 24 == btn) &&
((((uint16_t)(decrypt >> 16)) & 0x00FF) == end_serial)) {
instance->manufacture_name = string_get_cstr(manufacture_code->name);
instance->common.cnt = decrypt & 0x0000FFFF;
return 1;
}
// Check for mirrored man
man_rev = 0;
man_rev_byte = 0;
for(uint8_t i = 0; i < 64; i += 8) {
man_rev_byte = (uint8_t)(manufacture_code->key >> i);
man_rev = man_rev | man_rev_byte << (56 - i);
}
man_normal_learning = subghz_protocol_keeloq_common_normal_learning(fix, man_rev);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man_normal_learning);
if((decrypt >> 24 == btn) &&
((((uint16_t)(decrypt >> 16)) & 0x00FF) == end_serial)) {
instance->manufacture_name = string_get_cstr(manufacture_code->name);
instance->common.cnt = decrypt & 0x0000FFFF;
return 1;
}
break;
}
}
instance->manufacture_name = "Unknown";
instance->common.cnt = 0;
return 0;
}
/** Analysis of received data
*
* @param instance SubGhzProtocolStarLine instance
*/
void subghz_protocol_star_line_check_remote_controller(SubGhzProtocolStarLine* instance) {
uint64_t key = subghz_protocol_common_reverse_key(
instance->common.code_last_found, instance->common.code_last_count_bit);
uint32_t key_fix = key >> 32;
uint32_t key_hop = key & 0x00000000ffffffff;
subghz_protocol_star_line_check_remote_controller_selector(instance, key_fix, key_hop);
instance->common.serial = key_fix & 0x00FFFFFF;
instance->common.btn = key_fix >> 24;
}
void subghz_protocol_star_line_parse(
SubGhzProtocolStarLine* instance,
bool level,
uint32_t duration) {
switch(instance->common.parser_step) {
case StarLineDecoderStepReset:
if(level) {
if(DURATION_DIFF(duration, instance->common.te_long * 2) <
instance->common.te_delta * 2) {
instance->common.parser_step = StarLineDecoderStepCheckPreambula;
instance->common.header_count++;
} else if(instance->common.header_count > 4) {
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
instance->common.te_last = duration;
instance->common.parser_step = StarLineDecoderStepCheckDuration;
}
} else {
instance->common.parser_step = StarLineDecoderStepReset;
instance->common.header_count = 0;
}
break;
case StarLineDecoderStepCheckPreambula:
if((!level) && (DURATION_DIFF(duration, instance->common.te_long * 2) <
instance->common.te_delta * 2)) {
//Found Preambula
instance->common.parser_step = StarLineDecoderStepReset;
} else {
instance->common.header_count = 0;
instance->common.parser_step = StarLineDecoderStepReset;
}
break;
case StarLineDecoderStepSaveDuration:
if(level) {
if(duration >= (instance->common.te_long + instance->common.te_delta)) {
instance->common.parser_step = StarLineDecoderStepReset;
if(instance->common.code_count_bit >=
instance->common.code_min_count_bit_for_found) {
if(instance->common.code_last_found != instance->common.code_found) {
instance->common.code_last_found = instance->common.code_found;
instance->common.code_last_count_bit = instance->common.code_count_bit;
if(instance->common.callback)
instance->common.callback(
(SubGhzProtocolCommon*)instance, instance->common.context);
}
}
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
instance->common.header_count = 0;
break;
} else {
instance->common.te_last = duration;
instance->common.parser_step = StarLineDecoderStepCheckDuration;
}
} else {
instance->common.parser_step = StarLineDecoderStepReset;
}
break;
case StarLineDecoderStepCheckDuration:
if(!level) {
if((DURATION_DIFF(instance->common.te_last, instance->common.te_short) <
instance->common.te_delta) &&
(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 0);
instance->common.parser_step = StarLineDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->common.te_last, instance->common.te_long) <
instance->common.te_delta) &&
(DURATION_DIFF(duration, instance->common.te_long) < instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 1);
instance->common.parser_step = StarLineDecoderStepSaveDuration;
} else {
instance->common.parser_step = StarLineDecoderStepReset;
}
} else {
instance->common.parser_step = StarLineDecoderStepReset;
}
break;
}
}
void subghz_protocol_star_line_to_str(SubGhzProtocolStarLine* instance, string_t output) {
subghz_protocol_star_line_check_remote_controller(instance);
uint32_t code_found_hi = instance->common.code_last_found >> 32;
uint32_t code_found_lo = instance->common.code_last_found & 0x00000000ffffffff;
uint64_t code_found_reverse = subghz_protocol_common_reverse_key(
instance->common.code_last_found, instance->common.code_last_count_bit);
uint32_t code_found_reverse_hi = code_found_reverse >> 32;
uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff;
string_cat_printf(
output,
"%s %dbit\r\n"
"Key:%08lX%08lX\r\n"
"Fix:0x%08lX Cnt:%04X\r\n"
"Hop:0x%08lX Btn:%02lX\r\n"
"MF:%s\r\n"
"Sn:0x%07lX \r\n",
instance->common.name,
instance->common.code_last_count_bit,
code_found_hi,
code_found_lo,
code_found_reverse_hi,
instance->common.cnt,
code_found_reverse_lo,
instance->common.btn,
instance->manufacture_name,
instance->common.serial);
}
void subghz_decoder_star_line_to_load_protocol(SubGhzProtocolStarLine* instance, void* context) {
furi_assert(context);
furi_assert(instance);
SubGhzProtocolCommonLoad* data = context;
instance->common.code_last_found = data->code_found;
instance->common.code_last_count_bit = data->code_count_bit;
subghz_protocol_star_line_check_remote_controller(instance);
}

View File

@@ -1,74 +1,74 @@
#pragma once
#include "subghz_protocol_common.h"
typedef struct SubGhzKeystore SubGhzKeystore;
typedef struct SubGhzProtocolStarLine SubGhzProtocolStarLine;
/** Allocate SubGhzProtocolStarLine
*
* @return SubGhzProtocolStarLine*
*/
SubGhzProtocolStarLine* subghz_protocol_star_line_alloc(SubGhzKeystore* keystore);
/** Free SubGhzProtocolStarLine
*
* @param instance
*/
void subghz_protocol_star_line_free(SubGhzProtocolStarLine* instance);
/** Find and get manufacture name
*
* @param context - SubGhzProtocolStarLine context
* @return name - char* manufacture name
*/
const char* subghz_protocol_star_line_find_and_get_manufacture_name(void* context);
/** Get manufacture name
*
* @param context - SubGhzProtocolStarLine context
* @return name - char* manufacture name
*/
const char* subghz_protocol_star_line_get_manufacture_name(void* context);
/** Sends the key on the air
*
* @param instance - SubGhzProtocolStarLine instance
* @param key - key send
* @param bit - count bit key
* @param repeat - repeat send key
*/
void subghz_protocol_star_line_send_key(SubGhzProtocolStarLine* instance, uint64_t key, uint8_t bit, uint8_t repeat);
/** Reset internal state
* @param instance - SubGhzProtocolStarLine instance
*/
void subghz_protocol_star_line_reset(SubGhzProtocolStarLine* instance);
/** Analysis of received data
*
* @param instance SubGhzProtocolStarLine instance
*/
void subghz_protocol_star_line_check_remote_controller(SubGhzProtocolStarLine* instance);
/** Parse accepted duration
*
* @param instance - SubGhzProtocolStarLine instance
* @param data - LevelDuration level_duration
*/
void subghz_protocol_star_line_parse(SubGhzProtocolStarLine* instance, bool level, uint32_t duration);
/** Outputting information from the parser
*
* @param instance - SubGhzProtocolStarLine* instance
* @param output - output string
*/
void subghz_protocol_star_line_to_str(SubGhzProtocolStarLine* instance, string_t output);
/** Loading protocol from bin data
*
* @param instance - SubGhzDecoderPrinceton instance
* @param context - SubGhzProtocolCommonLoad context
*/
void subghz_decoder_star_line_to_load_protocol(SubGhzProtocolStarLine* instance, void* context);
#pragma once
#include "subghz_protocol_common.h"
typedef struct SubGhzKeystore SubGhzKeystore;
typedef struct SubGhzProtocolStarLine SubGhzProtocolStarLine;
/** Allocate SubGhzProtocolStarLine
*
* @return SubGhzProtocolStarLine*
*/
SubGhzProtocolStarLine* subghz_protocol_star_line_alloc(SubGhzKeystore* keystore);
/** Free SubGhzProtocolStarLine
*
* @param instance
*/
void subghz_protocol_star_line_free(SubGhzProtocolStarLine* instance);
/** Find and get manufacture name
*
* @param context - SubGhzProtocolStarLine context
* @return name - char* manufacture name
*/
const char* subghz_protocol_star_line_find_and_get_manufacture_name(void* context);
/** Get manufacture name
*
* @param context - SubGhzProtocolStarLine context
* @return name - char* manufacture name
*/
const char* subghz_protocol_star_line_get_manufacture_name(void* context);
/** Sends the key on the air
*
* @param instance - SubGhzProtocolStarLine instance
* @param key - key send
* @param bit - count bit key
* @param repeat - repeat send key
*/
void subghz_protocol_star_line_send_key(SubGhzProtocolStarLine* instance, uint64_t key, uint8_t bit, uint8_t repeat);
/** Reset internal state
* @param instance - SubGhzProtocolStarLine instance
*/
void subghz_protocol_star_line_reset(SubGhzProtocolStarLine* instance);
/** Analysis of received data
*
* @param instance SubGhzProtocolStarLine instance
*/
void subghz_protocol_star_line_check_remote_controller(SubGhzProtocolStarLine* instance);
/** Parse accepted duration
*
* @param instance - SubGhzProtocolStarLine instance
* @param data - LevelDuration level_duration
*/
void subghz_protocol_star_line_parse(SubGhzProtocolStarLine* instance, bool level, uint32_t duration);
/** Outputting information from the parser
*
* @param instance - SubGhzProtocolStarLine* instance
* @param output - output string
*/
void subghz_protocol_star_line_to_str(SubGhzProtocolStarLine* instance, string_t output);
/** Loading protocol from bin data
*
* @param instance - SubGhzDecoderPrinceton instance
* @param context - SubGhzProtocolCommonLoad context
*/
void subghz_decoder_star_line_to_load_protocol(SubGhzProtocolStarLine* instance, void* context);

View File

@@ -255,7 +255,7 @@ const uint8_t u8g2_font_m2icon_9_tf[353] U8G2_FONT_SECTION("u8g2_font_m2icon_9_t
"";
/*
Fontname: Emoticons21
Copyright: public domain,
Copyright: public domain,
Glyphs: 32/32
BBX Build Mode: 0