[FL-85][FL-446][FL-720] Dallas key blanks and OneWire lib rework (#313)

* sepate one wire class
* TM2004 writer
* app mode write ds1990
* test another blanks protocol
* new ibutton slave
* one wire states
* tim1 capture compare and update interrupts
* interrupt mgr, new timers IRQ
* discard HAL_TIM_PeriodElapsedCallback from main
* add exti_14 line
* add external interrupt callback
* use int mgr in input
* better interrupt managment
* add interrupt callback enable and disable fns
* properly init app
* changed timings
* rename one wire classes
* use new owb classes
* properly remove interrupts
* new blanks writer
* remove unused tests
* new core includes
* extern c guard
* fix api_interrupt_remove usage
* remove debug info, new way to detect blanks writing
* remove copy constructor
* change keys template
* fix app sources recipe
This commit is contained in:
DrZlo13 2021-01-28 22:30:31 +10:00 committed by GitHub
parent a7951ade69
commit cf1c8fb223
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
31 changed files with 1099 additions and 869 deletions

View File

@ -286,7 +286,7 @@ endif
BUILD_IBUTTON ?= 0
ifeq ($(BUILD_IBUTTON), 1)
CFLAGS += -DBUILD_IBUTTON
CPP_SOURCES += $(APP_DIR)/ibutton/ibutton.cpp
CPP_SOURCES += $(wildcard $(APP_DIR)/ibutton/*.cpp)
endif
APP_SDNFC ?= 0

View File

@ -0,0 +1,319 @@
#include "blanks_writer.h"
class RW1990_1 {
public:
constexpr static const uint8_t CMD_WRITE_RECORD_FLAG = 0xD1;
constexpr static const uint8_t CMD_READ_RECORD_FLAG = 0xB5;
constexpr static const uint8_t CMD_WRITE_ROM = 0xD5;
};
class RW1990_2 {
public:
constexpr static const uint8_t CMD_WRITE_RECORD_FLAG = 0x1D;
constexpr static const uint8_t CMD_READ_RECORD_FLAG = 0x1E;
constexpr static const uint8_t CMD_WRITE_ROM = 0xD5;
};
class TM2004 {
public:
constexpr static const uint8_t CMD_READ_STATUS = 0xAA;
constexpr static const uint8_t CMD_READ_MEMORY = 0xF0;
constexpr static const uint8_t CMD_WRITE_ROM = 0x3C;
constexpr static const uint8_t CMD_FINALIZATION = 0x35;
constexpr static const uint8_t ANSWER_READ_MEMORY = 0xF5;
};
class TM01 {
public:
constexpr static const uint8_t CMD_WRITE_RECORD_FLAG = 0xC1;
constexpr static const uint8_t CMD_WRITE_ROM = 0xC5;
constexpr static const uint8_t CMD_SWITCH_TO_CYFRAL = 0xCA;
constexpr static const uint8_t CMD_SWITCH_TO_METAKOM = 0xCB;
};
class DS1990 {
public:
constexpr static const uint8_t CMD_READ_ROM = 0x33;
};
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
void BlanksWriter::onewire_release(void) {
gpio_write(gpio, true);
}
void BlanksWriter::onewire_write_one_bit(bool value, uint32_t delay = 10000) {
onewire->write_bit(value);
delay_us(delay);
onewire_release();
}
BlanksWriter::BlanksWriter(const GpioPin* one_wire_gpio) {
gpio = one_wire_gpio;
onewire = new OneWireMaster(gpio);
}
BlanksWriter::~BlanksWriter() {
free(onewire);
}
WriterResult BlanksWriter::write(KeyType type, const uint8_t* key, uint8_t key_length) {
uint8_t write_result = -1;
WriterResult result = WR_ERROR;
bool same_key = false;
osKernelLock();
bool presence = onewire->reset();
osKernelUnlock();
if(presence) {
switch(type) {
case KeyType::KEY_DS1990:
same_key = compare_key_ds1990(key, key_length);
if(!same_key) {
// currently we can write:
// RW1990, TM08v2, TM08vi-2 by write_1990_1()
// RW2004, RW2004 with EEPROM by write_TM2004();
if(write_result != 1) {
write_result = write_1990_1(key, key_length);
}
if(write_result != 1) {
write_result = write_1990_2(key, key_length);
}
if(write_result != 1) {
write_result = write_TM2004(key, key_length);
}
if(write_result == 1) {
result = WR_OK;
} else if(write_result == 0) {
result = WR_ERROR;
}
} else {
write_result = 0;
result = WR_SAME_KEY;
}
break;
default:
break;
}
}
return result;
}
bool BlanksWriter::write_TM2004(const uint8_t* key, uint8_t key_length) {
uint8_t answer;
bool result = true;
osKernelLock();
__disable_irq();
// write rom, addr is 0x0000
onewire->reset();
onewire->write(TM2004::CMD_WRITE_ROM);
onewire->write(0x00);
onewire->write(0x00);
// write key
for(uint8_t i = 0; i < key_length; i++) {
// write key byte
onewire->write(key[i]);
answer = onewire->read();
// TODO: check answer CRC
// pulse indicating that data is correct
delay_us(600);
onewire_write_one_bit(1, 50000);
// read writed key byte
answer = onewire->read();
// check that writed and readed are same
if(key[i] != answer) {
result = false;
break;
}
}
onewire->reset();
__enable_irq();
osKernelUnlock();
return result;
}
bool BlanksWriter::write_1990_1(const uint8_t* key, uint8_t key_length) {
bool result = true;
osKernelLock();
__disable_irq();
// unlock
onewire->reset();
onewire->write(RW1990_1::CMD_WRITE_RECORD_FLAG);
delay_us(10);
onewire_write_one_bit(0, 5000);
// write key
onewire->reset();
onewire->write(RW1990_1::CMD_WRITE_ROM);
for(uint8_t i = 0; i < key_length; i++) {
// inverted key for RW1990.1
write_byte_ds1990(~key[i]);
delay_us(30000);
}
// lock
onewire->write(RW1990_1::CMD_WRITE_RECORD_FLAG);
onewire_write_one_bit(1);
__enable_irq();
osKernelUnlock();
if(!compare_key_ds1990(key, key_length)) {
result = false;
}
return result;
}
bool BlanksWriter::write_1990_2(const uint8_t* key, uint8_t key_length) {
bool result = true;
osKernelLock();
__disable_irq();
// unlock
onewire->reset();
onewire->write(RW1990_2::CMD_WRITE_RECORD_FLAG);
delay_us(10);
onewire_write_one_bit(1, 5000);
// write key
onewire->reset();
onewire->write(RW1990_2::CMD_WRITE_ROM);
for(uint8_t i = 0; i < key_length; i++) {
write_byte_ds1990(key[i]);
delay_us(30000);
}
// lock
onewire->write(RW1990_2::CMD_WRITE_RECORD_FLAG);
onewire_write_one_bit(0);
__enable_irq();
osKernelUnlock();
if(!compare_key_ds1990(key, key_length)) {
result = false;
}
return result;
}
// TODO: untested
bool BlanksWriter::write_TM01(KeyType type, const uint8_t* key, uint8_t key_length) {
bool result = true;
osKernelLock();
__disable_irq();
// unlock
onewire->reset();
onewire->write(TM01::CMD_WRITE_RECORD_FLAG);
onewire_write_one_bit(1, 10000);
// write key
onewire->reset();
onewire->write(TM01::CMD_WRITE_ROM);
// TODO: key types
//if(type == KEY_METAKOM || type == KEY_CYFRAL) {
//} else {
for(uint8_t i = 0; i < key_length; i++) {
write_byte_ds1990(key[i]);
delay_us(10000);
}
//}
// lock
onewire->write(TM01::CMD_WRITE_RECORD_FLAG);
onewire_write_one_bit(0, 10000);
__enable_irq();
osKernelUnlock();
if(!compare_key_ds1990(key, key_length)) {
result = false;
}
osKernelLock();
__disable_irq();
if(type == KEY_METAKOM || type == KEY_CYFRAL) {
onewire->reset();
if(type == KEY_CYFRAL)
onewire->write(TM01::CMD_SWITCH_TO_CYFRAL);
else
onewire->write(TM01::CMD_SWITCH_TO_METAKOM);
onewire_write_one_bit(1);
}
__enable_irq();
osKernelUnlock();
return result;
}
void BlanksWriter::write_byte_ds1990(uint8_t data) {
for(uint8_t n_bit = 0; n_bit < 8; n_bit++) {
onewire->write_bit(data & 1);
onewire_release();
delay_us(5000);
data = data >> 1;
}
}
bool BlanksWriter::compare_key_ds1990(const uint8_t* key, uint8_t key_length) {
uint8_t buff[key_length];
bool result = false;
osKernelLock();
bool presence = onewire->reset();
osKernelUnlock();
if(presence) {
osKernelLock();
__disable_irq();
onewire->write(DS1990::CMD_READ_ROM);
onewire->read_bytes(buff, key_length);
__enable_irq();
osKernelUnlock();
result = true;
for(uint8_t i = 0; i < 8; i++) {
if(key[i] != buff[i]) {
result = false;
break;
}
}
}
return result;
}
void BlanksWriter::start() {
onewire->start();
}
void BlanksWriter::stop() {
onewire->stop();
}

View File

@ -0,0 +1,40 @@
#pragma once
#include "one_wire_master.h"
#include "maxim_crc.h"
typedef enum {
KEY_DS1990, /**< DS1990 */
KEY_CYFRAL, /**< CYFRAL*/
KEY_METAKOM, /**< METAKOM */
} KeyType;
typedef enum {
WR_OK,
WR_SAME_KEY,
WR_ERROR,
} WriterResult;
class BlanksWriter {
private:
const GpioPin* gpio;
OneWireMaster* onewire;
void onewire_release(void);
void onewire_write_one_bit(bool value, uint32_t delay);
bool write_TM2004(const uint8_t* key, uint8_t key_length);
bool write_1990_1(const uint8_t* key, uint8_t key_length);
bool write_1990_2(const uint8_t* key, uint8_t key_length);
bool write_TM01(KeyType type, const uint8_t* key, uint8_t key_length);
void write_byte_ds1990(uint8_t data);
bool compare_key_ds1990(const uint8_t* key, uint8_t key_length);
public:
BlanksWriter(const GpioPin* one_wire_gpio);
~BlanksWriter();
WriterResult write(KeyType type, const uint8_t* key, uint8_t key_length);
void start();
void stop();
};

View File

@ -1,6 +1,7 @@
#include "ibutton.h"
#include "ibutton_mode_dallas_read.h"
#include "ibutton_mode_dallas_emulate.h"
#include "ibutton_mode_dallas_write.h"
#include "ibutton_mode_cyfral_read.h"
#include "ibutton_mode_cyfral_emulate.h"
@ -8,8 +9,9 @@
void AppiButton::run() {
mode[0] = new AppiButtonModeDallasRead(this);
mode[1] = new AppiButtonModeDallasEmulate(this);
mode[2] = new AppiButtonModeCyfralRead(this);
mode[3] = new AppiButtonModeCyfralEmulate(this);
mode[2] = new AppiButtonModeDallasWrite(this);
mode[3] = new AppiButtonModeCyfralRead(this);
mode[4] = new AppiButtonModeCyfralEmulate(this);
switch_to_mode(0);
@ -21,6 +23,7 @@ void AppiButton::run() {
gpio_init(red_led_record, GpioModeOutputOpenDrain);
gpio_init(green_led_record, GpioModeOutputOpenDrain);
api_hal_timebase_insomnia_enter();
app_ready();
AppiButtonEvent event;
@ -29,9 +32,10 @@ void AppiButton::run() {
if(event.type == AppiButtonEvent::EventTypeKey) {
// press events
if(event.value.input.state && event.value.input.input == InputBack) {
printf("[ibutton] bye!\n");
// TODO remove all widgets create by app
widget_enabled_set(widget, false);
gui_remove_widget(gui, widget);
api_hal_timebase_insomnia_exit();
osThreadExit();
}

View File

@ -56,7 +56,7 @@ public:
const GpioPin* red_led_record;
const GpioPin* green_led_record;
static const uint8_t modes_count = 4;
static const uint8_t modes_count = 5;
AppTemplateMode<AppiButtonState, AppiButtonEvent>* mode[modes_count];
void run();

View File

@ -1,38 +1,50 @@
#pragma once
#include "ibutton.h"
#include "one_wire_slave_gpio.h"
#include "one_wire_slave.h"
#include "one_wire_device_ds_1990.h"
#include "callback-connector.h"
#include <atomic>
class AppiButtonModeDallasEmulate : public AppTemplateMode<AppiButtonState, AppiButtonEvent> {
private:
void result_callback(bool success, void* ctx);
public:
const char* name = "dallas emulate";
AppiButton* app;
OneWireGpioSlave* onewire_slave;
DS1990 key;
OneWireSlave* onewire_slave;
void event(AppiButtonEvent* event, AppiButtonState* state);
void render(Canvas* canvas, AppiButtonState* state);
void acquire();
void release();
std::atomic<bool> emulated_result{false};
AppiButtonModeDallasEmulate(AppiButton* parent_app)
: key(1, 2, 3, 4, 5, 6, 7) {
app = parent_app;
// TODO open record
const GpioPin* one_wire_pin_record = &ibutton_gpio;
onewire_slave = new OneWireGpioSlave(one_wire_pin_record);
onewire_slave->attach(key);
onewire_slave = new OneWireSlave(one_wire_pin_record);
onewire_slave->attach(&key);
auto cb = cbc::obtain_connector(this, &AppiButtonModeDallasEmulate::result_callback);
onewire_slave->set_result_callback(cb, this);
};
};
void AppiButtonModeDallasEmulate::result_callback(bool success, void* ctx) {
AppiButtonModeDallasEmulate* _this = static_cast<AppiButtonModeDallasEmulate*>(ctx);
_this->emulated_result = success;
}
void AppiButtonModeDallasEmulate::event(AppiButtonEvent* event, AppiButtonState* state) {
if(event->type == AppiButtonEvent::EventTypeTick) {
onewire_slave->detach(key);
memcpy(key.id_storage, state->dallas_address[state->dallas_address_index], 8);
onewire_slave->attach(key);
if(onewire_slave->emulate()) {
if(emulated_result) {
emulated_result = false;
app->blink_green();
}
} else if(event->type == AppiButtonEvent::EventTypeKey) {
@ -44,6 +56,10 @@ void AppiButtonModeDallasEmulate::event(AppiButtonEvent* event, AppiButtonState*
app->increase_dallas_address();
}
}
onewire_slave->deattach();
memcpy(key.id_storage, state->dallas_address[state->dallas_address_index], 8);
onewire_slave->attach(&key);
}
void AppiButtonModeDallasEmulate::render(Canvas* canvas, AppiButtonState* state) {

View File

@ -1,13 +1,13 @@
#pragma once
#include "ibutton.h"
#include "one_wire_gpio.h"
#include "one_wire_master.h"
#include "maxim_crc.h"
class AppiButtonModeDallasRead : public AppTemplateMode<AppiButtonState, AppiButtonEvent> {
public:
const char* name = "dallas read";
AppiButton* app;
OneWireGpio* onewire;
OneWireMaster* onewire;
void event(AppiButtonEvent* event, AppiButtonState* state);
void render(Canvas* canvas, AppiButtonState* state);
@ -19,7 +19,7 @@ public:
// TODO open record
const GpioPin* one_wire_pin_record = &ibutton_gpio;
onewire = new OneWireGpio(one_wire_pin_record);
onewire = new OneWireMaster(one_wire_pin_record);
};
};
@ -33,30 +33,17 @@ void AppiButtonModeDallasRead::event(AppiButtonEvent* event, AppiButtonState* st
osKernelUnlock();
if(result) {
printf("device on line\n");
delay(50);
osKernelLock();
__disable_irq();
onewire->write(0x33);
onewire->read_bytes(address, 8);
__enable_irq();
osKernelUnlock();
printf("address: %x", address[0]);
for(uint8_t i = 1; i < 8; i++) {
printf(":%x", address[i]);
}
printf("\n");
printf("crc8: %x\n", maxim_crc8(address, 7));
if(maxim_crc8(address, 8) == 0) {
printf("CRC valid\n");
memcpy(app->state.dallas_address[app->state.dallas_address_index], address, 8);
app->blink_green();
} else {
printf("CRC invalid\n");
}
} else {
}
} else if(event->type == AppiButtonEvent::EventTypeKey) {
if(event->value.input.state && event->value.input.input == InputUp) {

View File

@ -0,0 +1,64 @@
#pragma once
#include "ibutton.h"
#include "blanks_writer.h"
#include "maxim_crc.h"
class AppiButtonModeDallasWrite : public AppTemplateMode<AppiButtonState, AppiButtonEvent> {
public:
const char* name = "dallas read";
AppiButton* app;
BlanksWriter* writer;
void event(AppiButtonEvent* event, AppiButtonState* state);
void render(Canvas* canvas, AppiButtonState* state);
void acquire();
void release();
const GpioPin* one_wire_pin_record;
AppiButtonModeDallasWrite(AppiButton* parent_app) {
app = parent_app;
// TODO open record
one_wire_pin_record = &ibutton_gpio;
writer = new BlanksWriter(one_wire_pin_record);
};
};
void AppiButtonModeDallasWrite::event(AppiButtonEvent* event, AppiButtonState* state) {
if(event->type == AppiButtonEvent::EventTypeTick) {
WriterResult result =
writer->write(KEY_DS1990, state->dallas_address[state->dallas_address_index], 8);
if(result == WR_SAME_KEY) {
app->blink_green();
}
if(result == WR_OK) {
app->blink_red();
}
} else if(event->type == AppiButtonEvent::EventTypeKey) {
if(event->value.input.state && event->value.input.input == InputUp) {
app->decrease_dallas_address();
}
if(event->value.input.state && event->value.input.input == InputDown) {
app->increase_dallas_address();
}
}
}
void AppiButtonModeDallasWrite::render(Canvas* canvas, AppiButtonState* state) {
canvas_set_font(canvas, FontSecondary);
canvas_draw_str(canvas, 2, 25, "< Dallas write >");
app->render_dallas_list(canvas, state);
}
void AppiButtonModeDallasWrite::acquire() {
writer->start();
}
void AppiButtonModeDallasWrite::release() {
writer->stop();
}

View File

@ -18,6 +18,8 @@ static InputState input_state = {
false,
};
static void exti_input_callback(void* _pin, void* _ctx);
void input_task(void* p) {
uint32_t state_bits = 0;
uint8_t debounce_counters[INPUT_COUNT];
@ -38,6 +40,8 @@ void input_task(void* p) {
furi_record_create("input_state", &input_state_record);
furi_record_create("input_events", &input_events_record);
api_interrupt_add(exti_input_callback, InterruptTypeExternalInterrupt, NULL);
// we ready to work
initialized = true;
@ -103,7 +107,10 @@ void input_task(void* p) {
}
}
void HAL_GPIO_EXTI_Callback(uint16_t pin) {
static void exti_input_callback(void* _pin, void* _ctx) {
// interrupt manager get us pin constant, so...
uint32_t pin = (uint32_t)_pin;
#ifdef APP_NFC
if(pin == NFC_IRQ_Pin) {
nfc_isr();

View File

@ -330,7 +330,8 @@ void lf_rfid_workaround(void* p) {
api_interrupt_add(
comparator_trigger_callback, InterruptTypeComparatorTrigger, comp_ctx);
} else {
api_interrupt_remove(comparator_trigger_callback);
api_interrupt_remove(
comparator_trigger_callback, InterruptTypeComparatorTrigger);
}
hal_pwmn_set(

View File

@ -1,97 +0,0 @@
#include <stdio.h>
#include <string.h>
#include <furi.h>
#include "minunit.h"
#include "furi-new.h"
const int int_value_init = 0x1234;
const int int_value_changed = 0x5678;
osMessageQueueId_t test_messages;
typedef struct {
char text[256];
bool result;
} test_message;
#define SEND_MESSAGE(value, data) \
{ \
message.result = value; \
snprintf(message.text, 256, "Error at line %d, %s", __LINE__, data); \
osMessageQueuePut(test_messages, &message, 0U, 0U); \
}
void _furi_new_wait() {
osThreadFlagsWait(0x0001U, osFlagsWaitAny, osWaitForever);
}
void _furi_new_continue(FuriAppId thread_id) {
osThreadFlagsSet(thread_id, 0x0001U);
}
void _furi_new_main_app(void* p) {
test_message message;
_furi_new_wait();
int another_test_value = int_value_init;
furi_record_create("test/another_app_record", &another_test_value);
SEND_MESSAGE(false, "dummy text");
new_flapp_app_exit();
}
void test_furi_new() {
test_message message;
test_messages = osMessageQueueNew(1, sizeof(test_message), NULL);
// init core
new_furi_init();
// launch test thread
FuriAppId main_app = new_flapp_app_start(_furi_new_main_app, "main_app", 512, NULL);
_furi_new_continue(main_app);
while(1) {
if(osMessageQueueGet(test_messages, &message, NULL, osWaitForever) == osOK) {
if(message.result == true) {
break;
} else {
mu_assert(false, message.text);
}
}
};
/*
// test that "create" wont affect pointer value
furi_record_create("test/record", &test_value);
mu_assert_int_eq(test_value, int_value_init);
// test that we get correct pointer
int* test_value_pointer = furi_record_open("test/record");
mu_assert_pointers_not_eq(test_value_pointer, NULL);
mu_assert_pointers_eq(test_value_pointer, &test_value);
*test_value_pointer = int_value_changed;
mu_assert_int_eq(test_value, int_value_changed);
// start another app
new_record_available = osSemaphoreNew(1, 1, NULL);
osSemaphoreAcquire(new_record_available, osWaitForever);
osThreadAttr_t another_app_attr = {.name = "another_app", .stack_size = 512};
osThreadId_t player = osThreadNew(another_app, NULL, &another_app_attr);
// wait until app create record
osSemaphoreAcquire(new_record_available, osWaitForever);
// open record, test that record pointed to int_value_init
test_value_pointer = furi_record_open("test/another_app_record");
mu_assert_pointers_not_eq(test_value_pointer, NULL);
mu_assert_int_eq(*test_value_pointer, int_value_init);
// test that we can close, (unsubscribe) from record
bool close_result = new_furi_close("test/another_app_record");
mu_assert(close_result, "cannot close record");
*/
}

View File

@ -16,7 +16,6 @@ void test_furi_value_manager();
void test_furi_event();
void test_furi_memmgr();
void test_furi_new();
static int foo = 0;
@ -63,10 +62,6 @@ MU_TEST(mu_test_furi_memmgr) {
test_furi_memmgr();
}
MU_TEST(mu_test_furi_new) {
test_furi_new();
}
MU_TEST(mu_test_furi_value_expanders) {
test_furi_value_composer();
test_furi_value_manager();
@ -92,7 +87,6 @@ MU_TEST_SUITE(test_suite) {
MU_RUN_TEST(mu_test_furi_event);
MU_RUN_TEST(mu_test_furi_memmgr);
MU_RUN_TEST(mu_test_furi_new);
}
int run_minunit() {

View File

@ -1,23 +1,36 @@
#include "api-interrupt-mgr.h"
#include "mlib/m-dict.h"
#include <m-list.h>
#include <cmsis_os2.h>
LIST_DEF(list_interrupt, InterruptCallbackItem, M_POD_OPLIST);
list_interrupt_t interrupts;
osMutexId_t interrupt_list_mutex;
DICT_DEF2(dict_interrupt, uint32_t, M_DEFAULT_OPLIST, list_interrupt_t, M_A1_OPLIST);
dict_interrupt_t interrupts_dict;
osMutexId_t interrupt_mutex;
bool api_interrupt_init() {
interrupt_list_mutex = osMutexNew(NULL);
return (interrupt_list_mutex != NULL);
dict_interrupt_init(interrupts_dict);
interrupt_mutex = osMutexNew(NULL);
return (interrupt_mutex != NULL);
}
void api_interrupt_add(InterruptCallback callback, InterruptType type, void* context) {
if(osMutexAcquire(interrupt_list_mutex, osWaitForever) == osOK) {
if(osMutexAcquire(interrupt_mutex, osWaitForever) == osOK) {
list_interrupt_t* list = dict_interrupt_get(interrupts_dict, (uint32_t)type);
if(list == NULL) {
list_interrupt_t new_list;
list_interrupt_init(new_list);
dict_interrupt_set_at(interrupts_dict, (uint32_t)type, new_list);
list = dict_interrupt_get(interrupts_dict, (uint32_t)type);
}
// put uninitialized item to the list
// M_POD_OPLIST provide memset(&(a), 0, sizeof (a)) constructor
// so item will not be ready until we set ready flag
InterruptCallbackItem* item = list_interrupt_push_new(interrupts);
InterruptCallbackItem* item = list_interrupt_push_new(*list);
// initialize item
item->callback = callback;
@ -28,26 +41,66 @@ void api_interrupt_add(InterruptCallback callback, InterruptType type, void* con
// TODO remove on app exit
//flapp_on_exit(api_interrupt_remove, callback);
osMutexRelease(interrupt_list_mutex);
osMutexRelease(interrupt_mutex);
}
}
void api_interrupt_remove(InterruptCallback callback) {
if(osMutexAcquire(interrupt_list_mutex, osWaitForever) == osOK) {
// iterate over items
list_interrupt_it_t it;
for(list_interrupt_it(it, interrupts); !list_interrupt_end_p(it);
list_interrupt_next(it)) {
const InterruptCallbackItem* item = list_interrupt_cref(it);
void api_interrupt_remove(InterruptCallback callback, InterruptType type) {
if(osMutexAcquire(interrupt_mutex, osWaitForever) == osOK) {
list_interrupt_t* list = dict_interrupt_get(interrupts_dict, (uint32_t)type);
// if the iterator is equal to our element
if(item->callback == callback) {
list_interrupt_remove(interrupts, it);
break;
if(list != NULL) {
// iterate over items
list_interrupt_it_t it;
list_interrupt_it(it, *list);
while(!list_interrupt_end_p(it)) {
if(it->current->data.callback == callback) {
list_interrupt_remove(*list, it);
} else {
list_interrupt_next(it);
}
}
}
osMutexRelease(interrupt_list_mutex);
osMutexRelease(interrupt_mutex);
}
}
void api_interrupt_enable(InterruptCallback callback, InterruptType type) {
if(osMutexAcquire(interrupt_mutex, osWaitForever) == osOK) {
list_interrupt_t* list = dict_interrupt_get(interrupts_dict, (uint32_t)type);
if(list != NULL) {
// iterate over items
list_interrupt_it_t it;
for(list_interrupt_it(it, *list); !list_interrupt_end_p(it); list_interrupt_next(it)) {
// if the iterator is equal to our element
if(it->current->data.callback == callback) {
it->current->data.ready = true;
}
}
}
osMutexRelease(interrupt_mutex);
}
}
void api_interrupt_disable(InterruptCallback callback, InterruptType type) {
if(osMutexAcquire(interrupt_mutex, osWaitForever) == osOK) {
list_interrupt_t* list = dict_interrupt_get(interrupts_dict, (uint32_t)type);
if(list != NULL) {
// iterate over items
list_interrupt_it_t it;
for(list_interrupt_it(it, *list); !list_interrupt_end_p(it); list_interrupt_next(it)) {
// if the iterator is equal to our element
if(it->current->data.callback == callback) {
it->current->data.ready = false;
}
}
}
osMutexRelease(interrupt_mutex);
}
}
@ -55,14 +108,16 @@ void api_interrupt_call(InterruptType type, void* hw) {
// that executed in interrupt ctx so mutex don't needed
// but we need to check ready flag
// iterate over items
list_interrupt_it_t it;
for(list_interrupt_it(it, interrupts); !list_interrupt_end_p(it); list_interrupt_next(it)) {
const InterruptCallbackItem* item = list_interrupt_cref(it);
list_interrupt_t* list = dict_interrupt_get(interrupts_dict, (uint32_t)type);
// if the iterator is equal to our element
if(item->type == type && item->ready) {
item->callback(hw, item->context);
if(list != NULL) {
// iterate over items
list_interrupt_it_t it;
for(list_interrupt_it(it, *list); !list_interrupt_end_p(it); list_interrupt_next(it)) {
// if the iterator is equal to our element
if(it->current->data.ready) {
it->current->data.callback(hw, it->current->data.context);
}
}
}
}

View File

@ -11,6 +11,9 @@ typedef void (*InterruptCallback)(void*, void*);
typedef enum {
InterruptTypeComparatorTrigger,
InterruptTypeTimerCapture,
InterruptTypeTimerOutputCompare,
InterruptTypeTimerUpdate,
InterruptTypeExternalInterrupt,
} InterruptType;
typedef struct {
@ -22,7 +25,9 @@ typedef struct {
bool api_interrupt_init();
void api_interrupt_add(InterruptCallback callback, InterruptType type, void* context);
void api_interrupt_remove(InterruptCallback callback);
void api_interrupt_remove(InterruptCallback callback, InterruptType type);
void api_interrupt_enable(InterruptCallback callback, InterruptType type);
void api_interrupt_disable(InterruptCallback callback, InterruptType type);
void api_interrupt_call(InterruptType type, void* hw);
#ifdef __cplusplus

View File

@ -62,7 +62,9 @@ void ADC1_IRQHandler(void);
void USB_LP_IRQHandler(void);
void COMP_IRQHandler(void);
void EXTI9_5_IRQHandler(void);
void TIM1_UP_TIM16_IRQHandler(void);
void TIM1_TRG_COM_TIM17_IRQHandler(void);
void TIM1_CC_IRQHandler(void);
void TIM2_IRQHandler(void);
void EXTI15_10_IRQHandler(void);
void HSEM_IRQHandler(void);

View File

@ -64,6 +64,9 @@ extern COMP_HandleTypeDef hcomp1;
extern RTC_HandleTypeDef hrtc;
extern TIM_HandleTypeDef htim1;
extern TIM_HandleTypeDef htim2;
extern TIM_HandleTypeDef htim16;
extern TIM_HandleTypeDef htim17;
/* USER CODE BEGIN EV */
/* USER CODE END EV */
@ -292,6 +295,21 @@ void EXTI9_5_IRQHandler(void)
/* USER CODE END EXTI9_5_IRQn 1 */
}
/**
* @brief This function handles TIM1 update interrupt and TIM16 global interrupt.
*/
void TIM1_UP_TIM16_IRQHandler(void)
{
/* USER CODE BEGIN TIM1_UP_TIM16_IRQn 0 */
/* USER CODE END TIM1_UP_TIM16_IRQn 0 */
HAL_TIM_IRQHandler(&htim1);
HAL_TIM_IRQHandler(&htim16);
/* USER CODE BEGIN TIM1_UP_TIM16_IRQn 1 */
/* USER CODE END TIM1_UP_TIM16_IRQn 1 */
}
/**
* @brief This function handles TIM1 trigger and commutation interrupts and TIM17 global interrupt.
*/
@ -306,6 +324,20 @@ void TIM1_TRG_COM_TIM17_IRQHandler(void)
/* USER CODE END TIM1_TRG_COM_TIM17_IRQn 1 */
}
/**
* @brief This function handles TIM1 capture compare interrupt.
*/
void TIM1_CC_IRQHandler(void)
{
/* USER CODE BEGIN TIM1_CC_IRQn 0 */
/* USER CODE END TIM1_CC_IRQn 0 */
HAL_TIM_IRQHandler(&htim1);
/* USER CODE BEGIN TIM1_CC_IRQn 1 */
/* USER CODE END TIM1_CC_IRQn 1 */
}
/**
* @brief This function handles TIM2 global interrupt.
*/
@ -333,7 +365,7 @@ void EXTI15_10_IRQHandler(void)
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_12);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_13);
/* USER CODE BEGIN EXTI15_10_IRQn 1 */
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_14);
/* USER CODE END EXTI15_10_IRQn 1 */
}

View File

@ -2,6 +2,11 @@
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
/* Initialize timebase
* Configure and start tick timer
*/
@ -25,3 +30,8 @@ void api_hal_timebase_insomnia_enter();
* Must be paired with api_hal_timebase_insomnia_enter
*/
void api_hal_timebase_insomnia_exit();
#ifdef __cplusplus
}
#endif

View File

@ -4,10 +4,33 @@
extern void api_interrupt_call(InterruptType type, void* hw);
/* interrupts */
/* Comparator trigger event */
void HAL_COMP_TriggerCallback(COMP_HandleTypeDef* hcomp) {
api_interrupt_call(InterruptTypeComparatorTrigger, hcomp);
}
/* Timer input capture event */
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef* htim) {
api_interrupt_call(InterruptTypeTimerCapture, htim);
}
/* Output compare event */
void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef* htim) {
api_interrupt_call(InterruptTypeTimerOutputCompare, htim);
}
/* Timer update event */
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef* htim) {
api_interrupt_call(InterruptTypeTimerUpdate, htim);
// handle HAL ticks
if(htim->Instance == TIM17) {
HAL_IncTick();
}
}
/* External interrupt event */
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) {
api_interrupt_call(InterruptTypeExternalInterrupt, GPIO_Pin);
}

View File

@ -256,7 +256,7 @@ void CyfralReaderComp::stop(void) {
// disconnect comparator callback
auto cmp_cb = cbc::obtain_connector(this, &CyfralReaderComp::comparator_trigger_callback);
api_interrupt_remove(cmp_cb);
api_interrupt_remove(cmp_cb, InterruptTypeComparatorTrigger);
osMessageQueueDelete(comp_event_queue);
}

View File

@ -1,8 +1,5 @@
#include "one_wire_device.h"
// TODO fix GPL compability
// currently we use rework of OneWireHub
OneWireDevice::OneWireDevice(
uint8_t id_1,
uint8_t id_2,
@ -21,6 +18,22 @@ OneWireDevice::OneWireDevice(
id_storage[7] = maxim_crc8(id_storage, 7);
}
void OneWireDevice::send_id(OneWireGpioSlave* owner) const {
owner->send(id_storage, 8);
OneWireDevice::~OneWireDevice() {
if(bus != nullptr) {
bus->deattach();
}
}
void OneWireDevice::send_id() const {
if(bus != nullptr) {
bus->send(id_storage, 8);
}
}
void OneWireDevice::attach(OneWireSlave* _bus) {
bus = _bus;
}
void OneWireDevice::deattach(void) {
bus = nullptr;
}

View File

@ -1,10 +1,7 @@
#pragma once
#include <stdint.h>
#include "maxim_crc.h"
#include "one_wire_slave_gpio.h"
// TODO fix GPL compability
// currently we use rework of OneWireHub
#include "one_wire_slave.h"
class OneWireDevice {
public:
@ -17,18 +14,13 @@ public:
uint8_t id_6,
uint8_t id_7);
~OneWireDevice() = default; // TODO: detach if deleted before hub
// allow only move constructor
OneWireDevice(OneWireDevice&& one_wire_device) = default;
OneWireDevice(const OneWireDevice& one_wire_device) = delete;
OneWireDevice& operator=(OneWireDevice& one_wire_device) = delete;
OneWireDevice& operator=(const OneWireDevice& one_wire_device) = delete;
OneWireDevice& operator=(OneWireDevice&& one_wire_device) = delete;
~OneWireDevice();
uint8_t id_storage[8];
void send_id(OneWireGpioSlave* owner) const;
void send_id() const;
virtual void do_work(OneWireGpioSlave* owner) = 0;
OneWireSlave* bus = nullptr;
void attach(OneWireSlave* _bus);
void deattach(void);
};

View File

@ -1,8 +1,5 @@
#include "one_wire_device_ds_1990.h"
// TODO fix GPL compability
// currently we use rework of OneWireHub
DS1990::DS1990(
uint8_t ID1,
uint8_t ID2,
@ -13,15 +10,3 @@ DS1990::DS1990(
uint8_t ID7)
: OneWireDevice(ID1, ID2, ID3, ID4, ID5, ID6, ID7) {
}
void DS1990::do_work(OneWireGpioSlave* owner) {
uint8_t cmd;
if(owner->receive(&cmd)) return;
switch(cmd) {
default:
return;
//owner->raiseSlaveError(cmd);
}
}

View File

@ -1,9 +1,6 @@
#pragma once
#include "one_wire_device.h"
// TODO fix GPL compability
// currently we use rework of OneWireHub
class DS1990 : public OneWireDevice {
public:
static constexpr uint8_t family_code{0x01};
@ -16,6 +13,4 @@ public:
uint8_t ID5,
uint8_t ID6,
uint8_t ID7);
void do_work(OneWireGpioSlave* owner) final;
};

View File

@ -1,41 +1,24 @@
#pragma once
#include <furi.h>
#include "one_wire_master.h"
#include "one_wire_timings.h"
class OneWireGpio {
private:
const GpioPin* gpio;
public:
OneWireGpio(const GpioPin* one_wire_gpio);
~OneWireGpio();
bool reset(void);
bool read_bit(void);
uint8_t read(void);
void read_bytes(uint8_t* buf, uint16_t count);
void write_bit(bool value);
void write(uint8_t value);
void start(void);
void stop(void);
};
OneWireGpio::OneWireGpio(const GpioPin* one_wire_gpio) {
OneWireMaster::OneWireMaster(const GpioPin* one_wire_gpio) {
gpio = one_wire_gpio;
}
OneWireGpio::~OneWireGpio() {
OneWireMaster::~OneWireMaster() {
stop();
}
void OneWireGpio::start(void) {
void OneWireMaster::start(void) {
gpio_init(gpio, GpioModeOutputOpenDrain);
}
void OneWireGpio::stop(void) {
void OneWireMaster::stop(void) {
gpio_init(gpio, GpioModeAnalog);
}
bool OneWireGpio::reset(void) {
bool OneWireMaster::reset(void) {
uint8_t r;
uint8_t retries = 125;
@ -64,7 +47,7 @@ bool OneWireGpio::reset(void) {
return r;
}
bool OneWireGpio::read_bit(void) {
bool OneWireMaster::read_bit(void) {
bool result;
// drive low
@ -82,7 +65,7 @@ bool OneWireGpio::read_bit(void) {
return result;
}
void OneWireGpio::write_bit(bool value) {
void OneWireMaster::write_bit(bool value) {
if(value) {
// drive low
gpio_write(gpio, false);
@ -102,7 +85,7 @@ void OneWireGpio::write_bit(bool value) {
}
}
uint8_t OneWireGpio::read(void) {
uint8_t OneWireMaster::read(void) {
uint8_t result = 0;
for(uint8_t bitMask = 0x01; bitMask; bitMask <<= 1) {
@ -114,16 +97,20 @@ uint8_t OneWireGpio::read(void) {
return result;
}
void OneWireGpio::read_bytes(uint8_t* buffer, uint16_t count) {
void OneWireMaster::read_bytes(uint8_t* buffer, uint16_t count) {
for(uint16_t i = 0; i < count; i++) {
buffer[i] = read();
}
}
void OneWireGpio::write(uint8_t value) {
void OneWireMaster::write(uint8_t value) {
uint8_t bitMask;
for(bitMask = 0x01; bitMask; bitMask <<= 1) {
write_bit((bitMask & value) ? 1 : 0);
}
}
void OneWireMaster::skip(void) {
write(0xCC);
}

View File

@ -0,0 +1,21 @@
#pragma once
#include <furi.h>
#include "one_wire_timings.h"
class OneWireMaster {
private:
const GpioPin* gpio;
public:
OneWireMaster(const GpioPin* one_wire_gpio);
~OneWireMaster();
bool reset(void);
bool read_bit(void);
uint8_t read(void);
void read_bytes(uint8_t* buf, uint16_t count);
void write_bit(bool value);
void write(uint8_t value);
void skip(void);
void start(void);
void stop(void);
};

View File

@ -0,0 +1,312 @@
#include "one_wire_slave.h"
#include "callback-connector.h"
#include "main.h"
#include "one_wire_device.h"
#define OWET OneWireEmulateTiming
void OneWireSlave::start(void) {
// add exti interrupt
api_interrupt_add(exti_cb, InterruptTypeExternalInterrupt, this);
// init gpio
gpio_init(one_wire_pin_record, GpioModeInterruptRiseFall);
pin_set_float();
// init instructions per us count
__instructions_per_us = (SystemCoreClock / 1000000.0f);
}
void OneWireSlave::stop(void) {
// deinit gpio
gpio_init_ex(one_wire_pin_record, GpioModeInput, GpioPullNo, GpioSpeedLow);
// remove exti interrupt
api_interrupt_remove(exti_cb, InterruptTypeExternalInterrupt);
// deattach devices
deattach();
}
OneWireSlave::OneWireSlave(const GpioPin* pin) {
one_wire_pin_record = pin;
exti_cb = cbc::obtain_connector(this, &OneWireSlave::exti_callback);
}
OneWireSlave::~OneWireSlave() {
stop();
}
void OneWireSlave::attach(OneWireDevice* attached_device) {
device = attached_device;
device->attach(this);
}
void OneWireSlave::deattach(void) {
device = nullptr;
device->deattach();
}
void OneWireSlave::set_result_callback(OneWireSlaveResultCallback result_cb, void* ctx) {
this->result_cb = result_cb;
this->result_cb_ctx = ctx;
}
void OneWireSlave::pin_set_float() {
gpio_write(one_wire_pin_record, true);
}
void OneWireSlave::pin_set_low() {
gpio_write(one_wire_pin_record, false);
}
void OneWireSlave::pin_init_interrupt_in_isr_ctx(void) {
hal_gpio_init(one_wire_pin_record, GpioModeInterruptRiseFall, GpioPullNo, GpioSpeedLow);
__HAL_GPIO_EXTI_CLEAR_IT(one_wire_pin_record->pin);
}
void OneWireSlave::pin_init_opendrain_in_isr_ctx(void) {
hal_gpio_init(one_wire_pin_record, GpioModeOutputOpenDrain, GpioPullNo, GpioSpeedLow);
__HAL_GPIO_EXTI_CLEAR_IT(one_wire_pin_record->pin);
}
OneWiteTimeType OneWireSlave::wait_while_gpio_is(OneWiteTimeType time, const bool pin_value) {
uint32_t start = DWT->CYCCNT;
uint32_t time_ticks = time * __instructions_per_us;
uint32_t time_captured;
do {
time_captured = DWT->CYCCNT;
if(gpio_read(one_wire_pin_record) != pin_value) {
OneWiteTimeType remaining_time = time_ticks - (time_captured - start);
remaining_time /= __instructions_per_us;
return remaining_time;
}
} while((time_captured - start) < time_ticks);
return 0;
}
bool OneWireSlave::show_presence(void) {
// wait while master delay presence check
wait_while_gpio_is(OWET::PRESENCE_TIMEOUT, true);
// show presence
pin_set_low();
delay_us(OWET::PRESENCE_MIN);
pin_set_float();
// somebody also can show presence
const OneWiteTimeType wait_low_time = OWET::PRESENCE_MAX - OWET::PRESENCE_MIN;
// so we will wait
if(wait_while_gpio_is(wait_low_time, false) == 0) {
error = OneWireSlaveError::PRESENCE_LOW_ON_LINE;
return false;
}
return true;
}
bool OneWireSlave::receive_bit(void) {
// wait while bus is low
OneWiteTimeType time = OWET::SLOT_MAX;
time = wait_while_gpio_is(time, false);
if(time == 0) {
error = OneWireSlaveError::RESET_IN_PROGRESS;
return false;
}
// wait while bus is high
time = OWET::MSG_HIGH_TIMEOUT;
time = wait_while_gpio_is(time, true);
if(time == 0) {
error = OneWireSlaveError::AWAIT_TIMESLOT_TIMEOUT_HIGH;
return false;
}
// wait a time of zero
time = OWET::READ_MIN;
time = wait_while_gpio_is(time, false);
return (time > 0);
}
bool OneWireSlave::send_bit(bool value) {
const bool write_zero = !value;
// wait while bus is low
OneWiteTimeType time = OWET::SLOT_MAX;
time = wait_while_gpio_is(time, false);
if(time == 0) {
error = OneWireSlaveError::RESET_IN_PROGRESS;
return false;
}
// wait while bus is high
time = OWET::MSG_HIGH_TIMEOUT;
time = wait_while_gpio_is(time, true);
if(time == 0) {
error = OneWireSlaveError::AWAIT_TIMESLOT_TIMEOUT_HIGH;
return false;
}
// choose write time
if(write_zero) {
pin_set_low();
time = OWET::WRITE_ZERO;
} else {
time = OWET::READ_MAX;
}
// hold line for ZERO or ONE time
delay_us(time);
pin_set_float();
return true;
}
bool OneWireSlave::send(const uint8_t* address, const uint8_t data_length) {
uint8_t bytes_sent = 0;
pin_set_float();
// bytes loop
for(; bytes_sent < data_length; ++bytes_sent) {
const uint8_t data_byte = address[bytes_sent];
// bit loop
for(uint8_t bit_mask = 0x01; bit_mask != 0; bit_mask <<= 1) {
if(!send_bit(static_cast<bool>(bit_mask & data_byte))) {
// if we cannot send first bit
if((bit_mask == 0x01) && (error == OneWireSlaveError::AWAIT_TIMESLOT_TIMEOUT_HIGH))
error = OneWireSlaveError::FIRST_BIT_OF_BYTE_TIMEOUT;
return false;
}
}
}
return true;
}
bool OneWireSlave::receive(uint8_t* data, const uint8_t data_length) {
uint8_t bytes_received = 0;
pin_set_float();
for(; bytes_received < data_length; ++bytes_received) {
uint8_t value = 0;
for(uint8_t bit_mask = 0x01; bit_mask != 0; bit_mask <<= 1) {
if(receive_bit()) value |= bit_mask;
}
data[bytes_received] = value;
}
return (bytes_received != data_length);
}
void OneWireSlave::cmd_search_rom(void) {
const uint8_t key_bytes = 8;
uint8_t* key = device->id_storage;
for(uint8_t i = 0; i < key_bytes; i++) {
uint8_t key_byte = key[i];
for(uint8_t j = 0; j < 8; j++) {
bool bit = (key_byte >> j) & 0x01;
if(!send_bit(bit)) return;
if(!send_bit(!bit)) return;
const bool bit_recv = receive_bit();
if(error != OneWireSlaveError::NO_ERROR) return;
}
}
}
bool OneWireSlave::receive_and_process_cmd(void) {
uint8_t cmd;
receive(&cmd, 1);
if(error == OneWireSlaveError::RESET_IN_PROGRESS) return true;
if(error != OneWireSlaveError::NO_ERROR) return false;
switch(cmd) {
case 0xF0:
// SEARCH ROM
cmd_search_rom();
return true;
case 0x33:
// READ ROM
device->send_id();
return false;
default: // Unknown command
error = OneWireSlaveError::INCORRECT_ONEWIRE_CMD;
}
if(error == OneWireSlaveError::RESET_IN_PROGRESS) return true;
return (error == OneWireSlaveError::NO_ERROR);
}
bool OneWireSlave::bus_start(void) {
bool result = true;
if(device == nullptr) {
result = false;
} else {
pin_init_opendrain_in_isr_ctx();
error = OneWireSlaveError::NO_ERROR;
if(show_presence()) {
__disable_irq();
// TODO think about multiple command cycles
bool return_to_reset = receive_and_process_cmd();
result =
(error == OneWireSlaveError::NO_ERROR ||
error == OneWireSlaveError::INCORRECT_ONEWIRE_CMD);
__enable_irq();
} else {
result = false;
}
pin_init_interrupt_in_isr_ctx();
}
return result;
}
void OneWireSlave::exti_callback(void* _pin, void* _ctx) {
// interrupt manager get us pin constant, so...
uint32_t pin = (uint32_t)_pin;
OneWireSlave* _this = static_cast<OneWireSlave*>(_ctx);
if(pin == _this->one_wire_pin_record->pin) {
volatile bool input_state = gpio_read(_this->one_wire_pin_record);
static uint32_t pulse_start = 0;
if(input_state) {
uint32_t pulse_length = (DWT->CYCCNT - pulse_start) / __instructions_per_us;
if(pulse_length >= OWET::RESET_MIN) {
if(pulse_length <= OWET::RESET_MAX) {
// reset cycle ok
bool result = _this->bus_start();
if(_this->result_cb != nullptr) {
_this->result_cb(result, _this->result_cb_ctx);
}
} else {
error = OneWireSlaveError::VERY_LONG_RESET;
}
} else {
error = OneWireSlaveError::VERY_SHORT_RESET;
}
} else {
//FALL event
pulse_start = DWT->CYCCNT;
}
}
}

View File

@ -0,0 +1,74 @@
#pragma once
#include <furi.h>
#include "one_wire_timings.h"
class OneWireDevice;
typedef void (*OneWireSlaveResultCallback)(bool success, void* ctx);
class OneWireSlave {
private:
enum class OneWireSlaveError : uint8_t {
NO_ERROR = 0,
READ_TIMESLOT_TIMEOUT,
WRITE_TIMESLOT_TIMEOUT,
WAIT_RESET_TIMEOUT,
VERY_LONG_RESET,
VERY_SHORT_RESET,
PRESENCE_LOW_ON_LINE,
READ_TIMESLOT_TIMEOUT_LOW,
AWAIT_TIMESLOT_TIMEOUT_HIGH,
PRESENCE_HIGH_ON_LINE,
INCORRECT_ONEWIRE_CMD,
INCORRECT_SLAVE_USAGE,
TRIED_INCORRECT_WRITE,
FIRST_TIMESLOT_TIMEOUT,
FIRST_BIT_OF_BYTE_TIMEOUT,
RESET_IN_PROGRESS
};
const GpioPin* one_wire_pin_record;
// exti callback and its pointer
void exti_callback(void* _pin, void* _ctx);
void (*exti_cb)(void* _pin, void* _ctx);
uint32_t __instructions_per_us;
OneWireSlaveError error;
OneWireDevice* device = nullptr;
bool bus_start(void);
void pin_set_float(void);
void pin_set_low(void);
void pin_init_interrupt_in_isr_ctx(void);
void pin_init_opendrain_in_isr_ctx(void);
OneWiteTimeType wait_while_gpio_is(OneWiteTimeType time, const bool pin_value);
bool show_presence(void);
bool receive_and_process_cmd(void);
bool receive_bit(void);
bool send_bit(bool value);
void cmd_search_rom(void);
OneWireSlaveResultCallback result_cb = nullptr;
void* result_cb_ctx = nullptr;
public:
void start(void);
void stop(void);
bool send(const uint8_t* address, const uint8_t data_length);
bool receive(uint8_t* data, const uint8_t data_length = 1);
OneWireSlave(const GpioPin* pin);
~OneWireSlave();
void attach(OneWireDevice* device);
void deattach(void);
void set_result_callback(OneWireSlaveResultCallback result_cb, void* ctx);
};

View File

@ -1,517 +0,0 @@
#include "one_wire_slave_gpio.h"
#include "one_wire_device.h"
#include "one_wire_device_ds_1990.h"
// TODO fix GPL compability
// currently we use rework of OneWireHub
static uint32_t __instructions_per_us = 0;
OneWireGpioSlave::OneWireGpioSlave(const GpioPin* one_wire_gpio) {
gpio = one_wire_gpio;
error = OneWireGpioSlaveError::NO_ERROR;
devices_count = 0;
device_selected = nullptr;
for(uint8_t i = 0; i < ONE_WIRE_MAX_DEVICES; ++i) {
devices[i] = nullptr;
}
__instructions_per_us = (SystemCoreClock / 1000000.0f);
}
OneWireGpioSlave::~OneWireGpioSlave() {
stop();
}
void OneWireGpioSlave::start(void) {
gpio_init(gpio, GpioModeOutputOpenDrain);
}
void OneWireGpioSlave::stop(void) {
gpio_init(gpio, GpioModeAnalog);
}
bool OneWireGpioSlave::emulate() {
bool anything_emulated = false;
error = OneWireGpioSlaveError::NO_ERROR;
while(1) {
if(devices_count == 0) return false;
if(!check_reset()) {
return anything_emulated;
} else {
}
// OK, we receive reset
osKernelLock();
if(!show_presence()) {
return anything_emulated;
} else {
anything_emulated = true;
}
// and we succefully show our presence on bus
__disable_irq();
// TODO think about return condition
if(!receive_and_process_cmd()) {
__enable_irq();
osKernelUnlock();
} else {
__enable_irq();
osKernelUnlock();
}
}
}
OneWiteTimeType OneWireGpioSlave::wait_while_gpio_is(OneWiteTimeType time, const bool pin_value) {
uint32_t start = DWT->CYCCNT;
uint32_t time_ticks = time * __instructions_per_us;
uint32_t time_captured;
do {
time_captured = DWT->CYCCNT;
if(gpio_read(gpio) != pin_value) {
OneWiteTimeType remaining_time = time_ticks - (time_captured - start);
remaining_time /= __instructions_per_us;
return remaining_time;
}
} while((time_captured - start) < time_ticks);
return 0;
}
void OneWireGpioSlave::pin_set_float() {
gpio_write(gpio, true);
}
void OneWireGpioSlave::pin_set_low() {
gpio_write(gpio, false);
}
const char* OneWireGpioSlave::decode_error() {
const char* error_text[16] = {
"NO_ERROR",
"READ_TIMESLOT_TIMEOUT",
"WRITE_TIMESLOT_TIMEOUT",
"WAIT_RESET_TIMEOUT",
"VERY_LONG_RESET",
"VERY_SHORT_RESET",
"PRESENCE_LOW_ON_LINE",
"READ_TIMESLOT_TIMEOUT_LOW",
"AWAIT_TIMESLOT_TIMEOUT_HIGH",
"PRESENCE_HIGH_ON_LINE",
"INCORRECT_ONEWIRE_CMD",
"INCORRECT_SLAVE_USAGE",
"TRIED_INCORRECT_WRITE",
"FIRST_TIMESLOT_TIMEOUT",
"FIRST_BIT_OF_BYTE_TIMEOUT",
"RESET_IN_PROGRESS"};
return error_text[static_cast<uint8_t>(error)];
}
uint8_t OneWireGpioSlave::attach(OneWireDevice& device) {
if(devices_count >= ONE_WIRE_MAX_DEVICES) return 255; // hub is full
uint8_t position = 255;
for(uint8_t i = 0; i < ONE_WIRE_MAX_DEVICES; ++i) {
if(devices[i] == &device) {
return i;
}
if((position > ONE_WIRE_MAX_DEVICES) && (devices[i] == nullptr)) {
position = i;
}
}
if(position == 255) return 255;
devices[position] = &device;
devices_count++;
build_id_tree();
return position;
}
bool OneWireGpioSlave::detach(const OneWireDevice& device) {
uint8_t position = 255;
for(uint8_t i = 0; i < ONE_WIRE_MAX_DEVICES; ++i) {
if(devices[i] == &device) {
position = i;
break;
}
}
if(position != 255) return detach(position);
return false;
}
bool OneWireGpioSlave::detach(uint8_t device_number) {
if(devices[device_number] == nullptr) return false;
if(devices_count == 0) return false;
if(device_number >= ONE_WIRE_MAX_DEVICES) return false;
devices[device_number] = nullptr;
devices_count--;
build_id_tree();
return true;
}
uint8_t OneWireGpioSlave::get_next_device_index(const uint8_t index_start) const {
for(uint8_t i = index_start; i < ONE_WIRE_MAX_DEVICES; ++i) {
if(devices[i] != nullptr) return i;
}
return 0;
}
uint8_t OneWireGpioSlave::build_id_tree(void) {
uint32_t device_mask = 0;
uint32_t bit_mask = 0x01;
// build mask
for(uint8_t i = 0; i < ONE_WIRE_MAX_DEVICES; ++i) {
if(devices[i] != nullptr) device_mask |= bit_mask;
bit_mask <<= 1;
}
for(uint8_t i = 0; i < ONE_WIRE_MAX_DEVICES; ++i) {
id_tree[i].id_position = 255;
}
// begin with root-element
build_id_tree(0, device_mask); // goto branch
return 0;
}
uint8_t OneWireGpioSlave::build_id_tree(uint8_t id_bit_position, uint32_t device_mask) {
if(device_mask == 0) return (255);
while(id_bit_position < 64) {
uint32_t mask_pos{0};
uint32_t mask_neg{0};
const uint8_t pos_byte{static_cast<uint8_t>(id_bit_position >> 3)};
const uint8_t mask_bit{static_cast<uint8_t>(1 << (id_bit_position & 7))};
uint32_t mask_id{1};
// searchid_tree through all active slaves
for(uint8_t id = 0; id < ONE_WIRE_MAX_DEVICES; ++id) {
if((device_mask & mask_id) != 0) {
// if slave is in mask differentiate the bitValue
if((devices[id]->id_storage[pos_byte] & mask_bit) != 0)
mask_pos |= mask_id;
else
mask_neg |= mask_id;
}
mask_id <<= 1;
}
if((mask_neg != 0) && (mask_pos != 0)) {
// there was found a junction
const uint8_t active_element = get_first_id_tree_el_position();
id_tree[active_element].id_position = id_bit_position;
id_tree[active_element].device_selected = get_first_bit_set_position(device_mask);
id_bit_position++;
id_tree[active_element].got_one = build_id_tree(id_bit_position, mask_pos);
id_tree[active_element].got_zero = build_id_tree(id_bit_position, mask_neg);
return active_element;
}
id_bit_position++;
}
// gone through the address, store this result
uint8_t active_element = get_first_id_tree_el_position();
id_tree[active_element].id_position = 128;
id_tree[active_element].device_selected = get_first_bit_set_position(device_mask);
id_tree[active_element].got_one = 255;
id_tree[active_element].got_zero = 255;
return active_element;
}
uint8_t OneWireGpioSlave::get_first_bit_set_position(uint32_t mask) const {
uint32_t _mask = mask;
for(uint8_t i = 0; i < ONE_WIRE_MAX_DEVICES; ++i) {
if((_mask & 1) != 0) return i;
_mask >>= 1;
}
return 0;
}
uint8_t OneWireGpioSlave::get_first_id_tree_el_position(void) const {
for(uint8_t i = 0; i < ONE_WIRE_MAX_DEVICES; ++i) {
if(id_tree[i].id_position == 255) return i;
}
return 0;
}
void OneWireGpioSlave::cmd_search_rom(void) {
uint8_t id_bit_position = 0;
uint8_t trigger_position = 0;
uint8_t active_slave = id_tree[trigger_position].device_selected;
uint8_t trigger_bit = id_tree[trigger_position].id_position;
while(id_bit_position < 64) {
// if junction is reached, act different
if(id_bit_position == trigger_bit) {
if(!send_bit(false)) return;
if(!send_bit(false)) return;
const bool bit_recv = receive_bit();
if(error != OneWireGpioSlaveError::NO_ERROR) return;
// switch to next junction
trigger_position = bit_recv ? id_tree[trigger_position].got_one :
id_tree[trigger_position].got_zero;
active_slave = id_tree[trigger_position].device_selected;
trigger_bit = (trigger_position == 255) ? uint8_t(255) :
id_tree[trigger_position].id_position;
} else {
const uint8_t pos_byte = (id_bit_position >> 3);
const uint8_t mask_bit = (static_cast<uint8_t>(1) << (id_bit_position & (7)));
bool bit_send;
if((devices[active_slave]->id_storage[pos_byte] & mask_bit) != 0) {
bit_send = true;
if(!send_bit(true)) return;
if(!send_bit(false)) return;
} else {
bit_send = false;
if(!send_bit(false)) return;
if(!send_bit(true)) return;
}
const bool bit_recv = receive_bit();
if(error != OneWireGpioSlaveError::NO_ERROR) return;
if(bit_send != bit_recv) return;
}
id_bit_position++;
}
device_selected = devices[active_slave];
}
bool OneWireGpioSlave::check_reset(void) {
pin_set_float();
if(error == OneWireGpioSlaveError::RESET_IN_PROGRESS) {
error = OneWireGpioSlaveError::NO_ERROR;
if(wait_while_gpio_is(
OWET::RESET_MIN[overdrive_mode] - OWET::SLOT_MAX[overdrive_mode] -
OWET::READ_MAX[overdrive_mode],
false) == 0) {
// we want to show_presence on high, so wait for it
const OneWiteTimeType time_remaining = wait_while_gpio_is(OWET::RESET_MAX[0], false);
if(overdrive_mode &&
((OWET::RESET_MAX[0] - OWET::RESET_MIN[overdrive_mode]) > time_remaining)) {
overdrive_mode = false;
};
return true;
}
}
// if line is low, then just leave
if(gpio_read(gpio) == 0) {
return false;
}
// wait while gpio is high
if(wait_while_gpio_is(OWET::RESET_TIMEOUT, true) == 0) {
return false;
}
// store low time
OneWiteTimeType time_remaining = wait_while_gpio_is(OWET::RESET_MAX[0], false);
// low time more than RESET_MAX time
if(time_remaining == 0) {
error = OneWireGpioSlaveError::VERY_LONG_RESET;
return false;
}
// get real reset time
time_remaining = OWET::RESET_MAX[0] - time_remaining;
// if time, while bus was low, fit in standart reset timings
if(overdrive_mode && ((OWET::RESET_MAX[0] - OWET::RESET_MIN[0]) <= time_remaining)) {
// normal reset detected
overdrive_mode = false;
};
bool result = (time_remaining <= OWET::RESET_MAX[0]) &&
time_remaining >= OWET::RESET_MIN[overdrive_mode];
return result;
}
bool OneWireGpioSlave::show_presence(void) {
// wait while master delay presence check
wait_while_gpio_is(OWET::PRESENCE_TIMEOUT, true);
// show presence
pin_set_low();
delay_us(OWET::PRESENCE_MIN[overdrive_mode]);
pin_set_float();
// somebody also can show presence
const OneWiteTimeType wait_low_time =
OWET::PRESENCE_MAX[overdrive_mode] - OWET::PRESENCE_MIN[overdrive_mode];
// so we will wait
if(wait_while_gpio_is(wait_low_time, false) == 0) {
error = OneWireGpioSlaveError::PRESENCE_LOW_ON_LINE;
return false;
}
return true;
}
bool OneWireGpioSlave::receive_and_process_cmd(void) {
receive(&cmd);
if(error == OneWireGpioSlaveError::RESET_IN_PROGRESS) return true;
if(error != OneWireGpioSlaveError::NO_ERROR) return false;
switch(cmd) {
case 0xF0:
// SEARCH ROM
device_selected = nullptr;
cmd_search_rom();
// trigger reinit
return true;
case 0x33:
// READ ROM
// work only when one slave on the bus
if((device_selected == nullptr) && (devices_count == 1)) {
device_selected = devices[get_next_device_index()];
}
if(device_selected != nullptr) {
device_selected->send_id(this);
}
return false;
default: // Unknown command
error = OneWireGpioSlaveError::INCORRECT_ONEWIRE_CMD;
//error_cmd = cmd;
}
if(error == OneWireGpioSlaveError::RESET_IN_PROGRESS) return true;
return (error == OneWireGpioSlaveError::NO_ERROR);
}
bool OneWireGpioSlave::receive_bit(void) {
// wait while bus is low
OneWiteTimeType time = OWET::SLOT_MAX[overdrive_mode];
time = wait_while_gpio_is(time, false);
if(time == 0) {
error = OneWireGpioSlaveError::RESET_IN_PROGRESS;
return false;
}
// wait while bus is high
time = OWET::MSG_HIGH_TIMEOUT;
time = wait_while_gpio_is(time, true);
if(time == 0) {
error = OneWireGpioSlaveError::AWAIT_TIMESLOT_TIMEOUT_HIGH;
error_place = 1;
return false;
}
// wait a time of zero
time = OWET::READ_MIN[overdrive_mode];
time = wait_while_gpio_is(time, false);
return (time > 0);
}
bool OneWireGpioSlave::send_bit(bool value) {
const bool write_zero = !value;
// wait while bus is low
OneWiteTimeType time = OWET::SLOT_MAX[overdrive_mode];
time = wait_while_gpio_is(time, false);
if(time == 0) {
error = OneWireGpioSlaveError::RESET_IN_PROGRESS;
return false;
}
// wait while bus is high
time = OWET::MSG_HIGH_TIMEOUT;
time = wait_while_gpio_is(time, true);
if(time == 0) {
error = OneWireGpioSlaveError::AWAIT_TIMESLOT_TIMEOUT_HIGH;
error_place = 2;
return false;
}
// choose write time
if(write_zero) {
pin_set_low();
time = OWET::WRITE_ZERO[overdrive_mode];
} else {
time = OWET::READ_MAX[overdrive_mode];
}
// hold line for ZERO or ONE time
delay_us(time);
pin_set_float();
return true;
}
bool OneWireGpioSlave::send(const uint8_t* address, const uint8_t data_length) {
uint8_t bytes_sent = 0;
pin_set_float();
// bytes loop
for(; bytes_sent < data_length; ++bytes_sent) {
const uint8_t data_byte = address[bytes_sent];
// bit loop
for(uint8_t bit_mask = 0x01; bit_mask != 0; bit_mask <<= 1) {
if(!send_bit(static_cast<bool>(bit_mask & data_byte))) {
// if we cannot send first bit
if((bit_mask == 0x01) &&
(error == OneWireGpioSlaveError::AWAIT_TIMESLOT_TIMEOUT_HIGH))
error = OneWireGpioSlaveError::FIRST_BIT_OF_BYTE_TIMEOUT;
return false;
}
}
}
return true;
}
bool OneWireGpioSlave::receive(uint8_t* data, const uint8_t data_length) {
uint8_t bytes_received = 0;
pin_set_float();
for(; bytes_received < data_length; ++bytes_received) {
uint8_t value = 0;
for(uint8_t bit_mask = 0x01; bit_mask != 0; bit_mask <<= 1) {
if(receive_bit()) value |= bit_mask;
}
data[bytes_received] = value;
}
return (bytes_received != data_length);
}

View File

@ -1,92 +0,0 @@
#pragma once
#include <furi.h>
#include "one_wire_timings.h"
// TODO fix GPL compability
// currently we use rework of OneWireHub
#define ONE_WIRE_MAX_DEVICES 1
#define ONE_WIRE_TREE_SIZE ((2 * ONE_WIRE_MAX_DEVICES) - 1)
#define OWET OneWireEmulateTiming
class OneWireDevice;
enum class OneWireGpioSlaveError : uint8_t {
NO_ERROR = 0,
READ_TIMESLOT_TIMEOUT = 1,
WRITE_TIMESLOT_TIMEOUT = 2,
WAIT_RESET_TIMEOUT = 3,
VERY_LONG_RESET = 4,
VERY_SHORT_RESET = 5,
PRESENCE_LOW_ON_LINE = 6,
READ_TIMESLOT_TIMEOUT_LOW = 7,
AWAIT_TIMESLOT_TIMEOUT_HIGH = 8,
PRESENCE_HIGH_ON_LINE = 9,
INCORRECT_ONEWIRE_CMD = 10,
INCORRECT_SLAVE_USAGE = 11,
TRIED_INCORRECT_WRITE = 12,
FIRST_TIMESLOT_TIMEOUT = 13,
FIRST_BIT_OF_BYTE_TIMEOUT = 14,
RESET_IN_PROGRESS = 15
};
class OneWireGpioSlave {
private:
const GpioPin* gpio;
bool overdrive_mode = false;
uint8_t cmd;
OneWireGpioSlaveError error;
uint8_t error_place;
uint8_t devices_count;
OneWireDevice* devices[ONE_WIRE_MAX_DEVICES];
OneWireDevice* device_selected;
struct IDTree {
uint8_t device_selected; // for which slave is this jump-command relevant
uint8_t id_position; // where does the algorithm has to look for a junction
uint8_t got_zero; // if 0 switch to which tree branch
uint8_t got_one; // if 1 switch to which tree branch
} id_tree[ONE_WIRE_TREE_SIZE];
public:
OneWireGpioSlave(const GpioPin* one_wire_gpio);
~OneWireGpioSlave();
void start(void);
void stop(void);
bool emulate();
bool check_reset(void);
bool show_presence(void);
bool receive_and_process_cmd(void);
bool receive(uint8_t* data, const uint8_t data_length = 1);
bool receive_bit(void);
bool send_bit(bool value);
bool send(const uint8_t* address, const uint8_t data_length = 1);
OneWiteTimeType wait_while_gpio_is(volatile OneWiteTimeType retries, const bool pin_value);
// set pin state
inline void pin_set_float();
inline void pin_set_low();
// get error text
const char* decode_error();
// devices managment
uint8_t attach(OneWireDevice& device);
bool detach(const OneWireDevice& device);
bool detach(uint8_t device_number);
uint8_t get_next_device_index(const uint8_t index_start = 0) const;
// id tree managment
uint8_t build_id_tree(void);
uint8_t build_id_tree(uint8_t id_bit_position, uint32_t device_mask);
uint8_t get_first_bit_set_position(uint32_t mask) const;
uint8_t get_first_id_tree_el_position(void) const;
// commands
void cmd_search_rom(void);
};

View File

@ -1,17 +1,16 @@
#include "one_wire_timings.h"
// fix pre C++17 "undefined reference" errors
constexpr const OneWiteTimeType OneWireEmulateTiming::RESET_TIMEOUT;
constexpr const OneWiteTimeType OneWireEmulateTiming::RESET_MIN[2];
constexpr const OneWiteTimeType OneWireEmulateTiming::RESET_MAX[2];
constexpr const OneWiteTimeType OneWireEmulateTiming::RESET_MIN;
constexpr const OneWiteTimeType OneWireEmulateTiming::RESET_MAX;
constexpr const OneWiteTimeType OneWireEmulateTiming::PRESENCE_TIMEOUT;
constexpr const OneWiteTimeType OneWireEmulateTiming::PRESENCE_MIN[2];
constexpr const OneWiteTimeType OneWireEmulateTiming::PRESENCE_MAX[2];
constexpr const OneWiteTimeType OneWireEmulateTiming::PRESENCE_MIN;
constexpr const OneWiteTimeType OneWireEmulateTiming::PRESENCE_MAX;
constexpr const OneWiteTimeType OneWireEmulateTiming::MSG_HIGH_TIMEOUT;
constexpr const OneWiteTimeType OneWireEmulateTiming::SLOT_MAX[2];
constexpr const OneWiteTimeType OneWireEmulateTiming::SLOT_MAX;
constexpr const OneWiteTimeType OneWireEmulateTiming::READ_MIN[2];
constexpr const OneWiteTimeType OneWireEmulateTiming::READ_MAX[2];
constexpr const OneWiteTimeType OneWireEmulateTiming::WRITE_ZERO[2];
constexpr const OneWiteTimeType OneWireEmulateTiming::READ_MIN;
constexpr const OneWiteTimeType OneWireEmulateTiming::READ_MAX;
constexpr const OneWiteTimeType OneWireEmulateTiming::WRITE_ZERO;

View File

@ -3,10 +3,10 @@
class __OneWireTiming {
public:
constexpr static const uint16_t TIMING_A = 6;
constexpr static const uint16_t TIMING_A = 9;
constexpr static const uint16_t TIMING_B = 64;
constexpr static const uint16_t TIMING_C = 60;
constexpr static const uint16_t TIMING_D = 10;
constexpr static const uint16_t TIMING_C = 64;
constexpr static const uint16_t TIMING_D = 14;
constexpr static const uint16_t TIMING_E = 9;
constexpr static const uint16_t TIMING_F = 55;
constexpr static const uint16_t TIMING_G = 0;
@ -23,7 +23,7 @@ public:
constexpr static const uint16_t WRITE_0_DRIVE = __OneWireTiming::TIMING_C;
constexpr static const uint16_t WRITE_0_RELEASE = __OneWireTiming::TIMING_D;
constexpr static const uint16_t READ_DRIVE = __OneWireTiming::TIMING_A;
constexpr static const uint16_t READ_DRIVE = 3;
constexpr static const uint16_t READ_RELEASE = __OneWireTiming::TIMING_E;
constexpr static const uint16_t READ_DELAY_POST = __OneWireTiming::TIMING_F;
@ -37,18 +37,17 @@ typedef uint32_t OneWiteTimeType;
class OneWireEmulateTiming {
public:
constexpr static const OneWiteTimeType RESET_TIMEOUT = {5000};
constexpr static const OneWiteTimeType RESET_MIN[2] = {430, 48};
constexpr static const OneWiteTimeType RESET_MAX[2] = {960, 80};
constexpr static const OneWiteTimeType RESET_MIN = 430;
constexpr static const OneWiteTimeType RESET_MAX = 960;
constexpr static const OneWiteTimeType PRESENCE_TIMEOUT = {20};
constexpr static const OneWiteTimeType PRESENCE_MIN[2] = {160, 8};
constexpr static const OneWiteTimeType PRESENCE_MAX[2] = {480, 32};
constexpr static const OneWiteTimeType PRESENCE_TIMEOUT = 20;
constexpr static const OneWiteTimeType PRESENCE_MIN = 160;
constexpr static const OneWiteTimeType PRESENCE_MAX = 480;
constexpr static const OneWiteTimeType MSG_HIGH_TIMEOUT = {15000};
constexpr static const OneWiteTimeType SLOT_MAX[2] = {135, 30};
constexpr static const OneWiteTimeType MSG_HIGH_TIMEOUT = 15000;
constexpr static const OneWiteTimeType SLOT_MAX = 135;
constexpr static const OneWiteTimeType READ_MIN[2] = {20, 4};
constexpr static const OneWiteTimeType READ_MAX[2] = {60, 10};
constexpr static const OneWiteTimeType WRITE_ZERO[2] = {30, 8};
constexpr static const OneWiteTimeType READ_MIN = 20;
constexpr static const OneWiteTimeType READ_MAX = 60;
constexpr static const OneWiteTimeType WRITE_ZERO = 30;
};