[FL-2245] Introduce Mifare Classic Emulation (#1242)

* digital signal: introduce digital signal
* nfca: add nfca signal encoder
* nfc: add mifare classic emulation scene
* nfca: add classic emulation support to lib and hal
* mifare classic: support basic read commands
* nfc: add mifare classic menu scene
* mifare classic: start parsing commands in emulation
* mifare classic: add nested auth
* nfc: fix errors
* mifare classic: add encrypt function
* nfc: fix mifare classic save
* lib hex: add hex uint64_t ASCII parser
* flipper format: add uint64 hex format support
* nfc: add mifare classic key map
* nfc: hide mifare classic keys on emulation
* mifare classic: add NACK responce
* nfc: add partial bytes support in transparent mode
* nfc: mifare classic add shadow file support
* digital signal: move arr buffer from BSS to heap
* mifare classic: process access bits more careful
* nfca: fix memory leack
* nfc: format sources
* mifare classic: cleun up

Co-authored-by: あく <alleteam@gmail.com>
This commit is contained in:
gornekich 2022-05-24 17:00:15 +03:00 committed by GitHub
parent 2017baac48
commit d31578508a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
28 changed files with 1150 additions and 28 deletions

View File

@ -173,6 +173,8 @@ int32_t nfc_app(void* p) {
if(nfc_device_load(nfc->dev, p)) {
if(nfc->dev->format == NfcDeviceSaveFormatMifareUl) {
scene_manager_next_scene(nfc->scene_manager, NfcSceneEmulateMifareUl);
} else if(nfc->dev->format == NfcDeviceSaveFormatMifareClassic) {
scene_manager_next_scene(nfc->scene_manager, NfcSceneEmulateMifareClassic);
} else {
scene_manager_next_scene(nfc->scene_manager, NfcSceneEmulateUid);
}

View File

@ -7,6 +7,9 @@
static const char* nfc_file_header = "Flipper NFC device";
static const uint32_t nfc_file_version = 2;
// Protocols format versions
static const uint32_t nfc_mifare_classic_data_format_version = 1;
NfcDevice* nfc_device_alloc() {
NfcDevice* nfc_dev = malloc(sizeof(NfcDevice));
nfc_dev->storage = furi_record_open("storage");
@ -624,6 +627,7 @@ static bool nfc_device_save_mifare_classic_data(FlipperFormat* file, NfcDevice*
// Save Mifare Classic specific data
do {
if(!flipper_format_write_comment_cstr(file, "Mifare Classic specific data")) break;
if(data->type == MfClassicType1k) {
if(!flipper_format_write_string_cstr(file, "Mifare Classic type", "1K")) break;
blocks = 64;
@ -631,8 +635,17 @@ static bool nfc_device_save_mifare_classic_data(FlipperFormat* file, NfcDevice*
if(!flipper_format_write_string_cstr(file, "Mifare Classic type", "4K")) break;
blocks = 256;
}
if(!flipper_format_write_comment_cstr(file, "Mifare Classic blocks")) break;
if(!flipper_format_write_uint32(
file, "Data format version", &nfc_mifare_classic_data_format_version, 1))
break;
if(!flipper_format_write_comment_cstr(
file, "Key map is the bit mask indicating valid key in each sector"))
break;
if(!flipper_format_write_hex_uint64(file, "Key A map", &data->key_a_mask, 1)) break;
if(!flipper_format_write_hex_uint64(file, "Key B map", &data->key_b_mask, 1)) break;
if(!flipper_format_write_comment_cstr(file, "Mifare Classic blocks")) break;
bool block_saved = true;
for(size_t i = 0; i < blocks; i++) {
string_printf(temp_str, "Block %d", i);
@ -654,6 +667,7 @@ static bool nfc_device_load_mifare_classic_data(FlipperFormat* file, NfcDevice*
bool parsed = false;
MfClassicData* data = &dev->dev_data.mf_classic_data;
string_t temp_str;
uint32_t data_format_version = 0;
string_init(temp_str);
uint16_t data_blocks = 0;
@ -669,6 +683,19 @@ static bool nfc_device_load_mifare_classic_data(FlipperFormat* file, NfcDevice*
} else {
break;
}
// Read Mifare Classic format version
if(!flipper_format_read_uint32(file, "Data format version", &data_format_version, 1)) {
// Load unread sectors with zero keys access for backward compatability
if(!flipper_format_rewind(file)) break;
data->key_a_mask = 0xffffffffffffffff;
data->key_b_mask = 0xffffffffffffffff;
} else {
if(data_format_version != nfc_mifare_classic_data_format_version) break;
if(!flipper_format_read_hex_uint64(file, "Key A map", &data->key_a_mask, 1)) break;
if(!flipper_format_read_hex_uint64(file, "Key B map", &data->key_b_mask, 1)) break;
}
// Read Mifare Classic blocks
bool block_read = true;
for(size_t i = 0; i < data_blocks; i++) {

View File

@ -7,6 +7,7 @@
#include <lib/nfc_protocols/mifare_ultralight.h>
#include <lib/nfc_protocols/mifare_classic.h>
#include <lib/nfc_protocols/mifare_desfire.h>
#include <lib/nfc_protocols/nfca.h>
#include "helpers/nfc_mf_classic_dict.h"
@ -104,6 +105,8 @@ int32_t nfc_worker_task(void* context) {
nfc_worker_emulate_mifare_ul(nfc_worker);
} else if(nfc_worker->state == NfcWorkerStateReadMifareClassic) {
nfc_worker_mifare_classic_dict_attack(nfc_worker);
} else if(nfc_worker->state == NfcWorkerStateEmulateMifareClassic) {
nfc_worker_emulate_mifare_classic(nfc_worker);
} else if(nfc_worker->state == NfcWorkerStateReadMifareDesfire) {
nfc_worker_read_mifare_desfire(nfc_worker);
}
@ -474,6 +477,34 @@ void nfc_worker_mifare_classic_dict_attack(NfcWorker* nfc_worker) {
stream_free(nfc_worker->dict_stream);
}
void nfc_worker_emulate_mifare_classic(NfcWorker* nfc_worker) {
FuriHalNfcTxRxContext tx_rx;
FuriHalNfcDevData* nfc_data = &nfc_worker->dev_data->nfc_data;
MfClassicEmulator emulator = {
.cuid = nfc_util_bytes2num(&nfc_data->uid[nfc_data->uid_len - 4], 4),
.data = nfc_worker->dev_data->mf_classic_data,
.data_changed = false,
};
NfcaSignal* nfca_signal = nfca_signal_alloc();
tx_rx.nfca_signal = nfca_signal;
while(nfc_worker->state == NfcWorkerStateEmulateMifareClassic) {
if(furi_hal_nfc_listen(
nfc_data->uid, nfc_data->uid_len, nfc_data->atqa, nfc_data->sak, true, 300)) {
mf_classic_emulator(&emulator, &tx_rx);
}
}
if(emulator.data_changed) {
nfc_worker->dev_data->mf_classic_data = emulator.data;
if(nfc_worker->callback) {
nfc_worker->callback(NfcWorkerEventSuccess, nfc_worker->context);
}
emulator.data_changed = false;
}
nfca_signal_free(nfca_signal);
}
void nfc_worker_read_mifare_desfire(NfcWorker* nfc_worker) {
ReturnCode err;
uint8_t tx_buff[64] = {};

View File

@ -19,6 +19,7 @@ typedef enum {
NfcWorkerStateReadMifareUltralight,
NfcWorkerStateEmulateMifareUltralight,
NfcWorkerStateReadMifareClassic,
NfcWorkerStateEmulateMifareClassic,
NfcWorkerStateReadMifareDesfire,
// Transition
NfcWorkerStateStop,

View File

@ -34,4 +34,6 @@ ADD_SCENE(nfc, restore_original, RestoreOriginal)
ADD_SCENE(nfc, debug, Debug)
ADD_SCENE(nfc, field, Field)
ADD_SCENE(nfc, read_mifare_classic, ReadMifareClassic)
ADD_SCENE(nfc, emulate_mifare_classic, EmulateMifareClassic)
ADD_SCENE(nfc, mifare_classic_menu, MifareClassicMenu)
ADD_SCENE(nfc, dict_not_found, DictNotFound)

View File

@ -0,0 +1,64 @@
#include "../nfc_i.h"
#include <dolphin/dolphin.h>
#define NFC_MF_CLASSIC_DATA_NOT_CHANGED (0UL)
#define NFC_MF_CLASSIC_DATA_CHANGED (1UL)
void nfc_emulate_mifare_classic_worker_callback(NfcWorkerEvent event, void* context) {
UNUSED(event);
Nfc* nfc = context;
scene_manager_set_scene_state(
nfc->scene_manager, NfcSceneEmulateMifareClassic, NFC_MF_CLASSIC_DATA_CHANGED);
}
void nfc_scene_emulate_mifare_classic_on_enter(void* context) {
Nfc* nfc = context;
DOLPHIN_DEED(DolphinDeedNfcEmulate);
// Setup view
Popup* popup = nfc->popup;
if(strcmp(nfc->dev->dev_name, "")) {
nfc_text_store_set(nfc, "%s", nfc->dev->dev_name);
}
popup_set_icon(popup, 0, 3, &I_RFIDDolphinSend_97x61);
popup_set_header(popup, "Emulating\nMf Classic", 56, 31, AlignLeft, AlignTop);
// Setup and start worker
view_dispatcher_switch_to_view(nfc->view_dispatcher, NfcViewPopup);
nfc_worker_start(
nfc->worker,
NfcWorkerStateEmulateMifareClassic,
&nfc->dev->dev_data,
nfc_emulate_mifare_classic_worker_callback,
nfc);
}
bool nfc_scene_emulate_mifare_classic_on_event(void* context, SceneManagerEvent event) {
Nfc* nfc = context;
bool consumed = false;
if(event.type == SceneManagerEventTypeTick) {
notification_message(nfc->notifications, &sequence_blink_blue_10);
consumed = true;
} else if(event.type == SceneManagerEventTypeBack) {
// Stop worker
nfc_worker_stop(nfc->worker);
// Check if data changed and save in shadow file
if(scene_manager_get_scene_state(nfc->scene_manager, NfcSceneEmulateMifareClassic) ==
NFC_MF_CLASSIC_DATA_CHANGED) {
scene_manager_set_scene_state(
nfc->scene_manager, NfcSceneEmulateMifareClassic, NFC_MF_CLASSIC_DATA_NOT_CHANGED);
nfc_device_save_shadow(nfc->dev, nfc->dev->dev_name);
}
consumed = false;
}
return consumed;
}
void nfc_scene_emulate_mifare_classic_on_exit(void* context) {
Nfc* nfc = context;
// Clear view
popup_reset(nfc->popup);
}

View File

@ -0,0 +1,64 @@
#include "../nfc_i.h"
enum SubmenuIndex {
SubmenuIndexSave,
SubmenuIndexEmulate,
};
void nfc_scene_mifare_classic_menu_submenu_callback(void* context, uint32_t index) {
Nfc* nfc = context;
view_dispatcher_send_custom_event(nfc->view_dispatcher, index);
}
void nfc_scene_mifare_classic_menu_on_enter(void* context) {
Nfc* nfc = context;
Submenu* submenu = nfc->submenu;
submenu_add_item(
submenu, "Save", SubmenuIndexSave, nfc_scene_mifare_classic_menu_submenu_callback, nfc);
submenu_add_item(
submenu,
"Emulate",
SubmenuIndexEmulate,
nfc_scene_mifare_classic_menu_submenu_callback,
nfc);
submenu_set_selected_item(
nfc->submenu, scene_manager_get_scene_state(nfc->scene_manager, NfcSceneMifareUlMenu));
view_dispatcher_switch_to_view(nfc->view_dispatcher, NfcViewMenu);
}
bool nfc_scene_mifare_classic_menu_on_event(void* context, SceneManagerEvent event) {
Nfc* nfc = context;
bool consumed = false;
if(event.type == SceneManagerEventTypeCustom) {
if(event.event == SubmenuIndexSave) {
scene_manager_set_scene_state(
nfc->scene_manager, NfcSceneMifareUlMenu, SubmenuIndexSave);
nfc->dev->format = NfcDeviceSaveFormatMifareClassic;
// Clear device name
nfc_device_set_name(nfc->dev, "");
scene_manager_next_scene(nfc->scene_manager, NfcSceneSaveName);
consumed = true;
} else if(event.event == SubmenuIndexEmulate) {
scene_manager_set_scene_state(
nfc->scene_manager, NfcSceneMifareUlMenu, SubmenuIndexEmulate);
scene_manager_next_scene(nfc->scene_manager, NfcSceneEmulateMifareClassic);
consumed = true;
}
} else if(event.type == SceneManagerEventTypeBack) {
consumed =
scene_manager_search_and_switch_to_previous_scene(nfc->scene_manager, NfcSceneStart);
}
return consumed;
}
void nfc_scene_mifare_classic_menu_on_exit(void* context) {
Nfc* nfc = context;
// Clear view
submenu_reset(nfc->submenu);
}

View File

@ -47,7 +47,7 @@ bool nfc_scene_read_mifare_classic_on_event(void* context, SceneManagerEvent eve
consumed = true;
} else if(event.type == SceneManagerEventTypeCustom) {
if(event.event == NfcCustomEventDictAttackDone) {
scene_manager_next_scene(nfc->scene_manager, NfcSceneSaveName);
scene_manager_next_scene(nfc->scene_manager, NfcSceneMifareClassicMenu);
consumed = true;
} else if(event.event == NfcWorkerEventDetectedClassic1k) {
dict_attack_card_detected(nfc->dict_attack, MfClassicType1k);
@ -71,7 +71,6 @@ bool nfc_scene_read_mifare_classic_on_event(void* context, SceneManagerEvent eve
scene_manager_set_scene_state(
nfc->scene_manager, NfcSceneReadMifareClassic, NfcSceneReadMifareClassicStateDone);
notification_message(nfc->notifications, &sequence_success);
nfc->dev->format = NfcDeviceSaveFormatMifareClassic;
dict_attack_set_result(nfc->dict_attack, true);
consumed = true;
} else if(event.event == NfcWorkerEventFail) {

View File

@ -27,13 +27,11 @@ void nfc_scene_saved_menu_on_enter(void* context) {
SubmenuIndexEmulate,
nfc_scene_saved_menu_submenu_callback,
nfc);
} else if(nfc->dev->format == NfcDeviceSaveFormatMifareUl) {
} else if(
nfc->dev->format == NfcDeviceSaveFormatMifareUl ||
nfc->dev->format == NfcDeviceSaveFormatMifareClassic) {
submenu_add_item(
submenu,
"Emulate Ultralight",
SubmenuIndexEmulate,
nfc_scene_saved_menu_submenu_callback,
nfc);
submenu, "Emulate", SubmenuIndexEmulate, nfc_scene_saved_menu_submenu_callback, nfc);
}
submenu_add_item(
submenu, "Edit UID and Name", SubmenuIndexEdit, nfc_scene_saved_menu_submenu_callback, nfc);
@ -64,6 +62,8 @@ bool nfc_scene_saved_menu_on_event(void* context, SceneManagerEvent event) {
if(event.event == SubmenuIndexEmulate) {
if(nfc->dev->format == NfcDeviceSaveFormatMifareUl) {
scene_manager_next_scene(nfc->scene_manager, NfcSceneEmulateMifareUl);
} else if(nfc->dev->format == NfcDeviceSaveFormatMifareClassic) {
scene_manager_next_scene(nfc->scene_manager, NfcSceneEmulateMifareClassic);
} else {
scene_manager_next_scene(nfc->scene_manager, NfcSceneEmulateUid);
}

View File

@ -46,7 +46,7 @@ static void dict_attack_draw_callback(Canvas* canvas, void* model) {
canvas_draw_str_aligned(canvas, 64, 2, AlignCenter, AlignTop, draw_str);
} else if(m->state == DictAttackStateSuccess) {
canvas_draw_str_aligned(canvas, 64, 2, AlignCenter, AlignTop, "Complete!");
elements_button_right(canvas, "Save");
elements_button_right(canvas, "More");
} else if(m->state == DictAttackStateFail) {
canvas_draw_str_aligned(
canvas, 64, 2, AlignCenter, AlignTop, "Failed to read any sector");

View File

@ -84,7 +84,7 @@ extern "C" {
#endif
#ifndef FURI_BIT
#define FURI_BIT(x, n) ((x) >> (n)&1)
#define FURI_BIT(x, n) (((x) >> (n)) & 1)
#endif
#ifndef FURI_IS_IRQ_MASKED

View File

@ -1,9 +1,12 @@
#include "furi_hal_nfc.h"
#include <st25r3916.h>
#include <st25r3916_irq.h>
#include <rfal_rf.h>
#include <furi.h>
#include <m-string.h>
#include <lib/nfc_protocols/nfca.h>
#include <lib/digital_signal/digital_signal.h>
#include <furi_hal_delay.h>
#define TAG "FuriHalNfc"
@ -394,6 +397,80 @@ ReturnCode furi_hal_nfc_data_exchange(
return ret;
}
static bool furi_hal_nfc_transparent_tx_rx(FuriHalNfcTxRxContext* tx_rx, uint16_t timeout_ms) {
furi_assert(tx_rx->nfca_signal);
platformDisableIrqCallback();
bool ret = false;
// Start transparent mode
st25r3916ExecuteCommand(ST25R3916_CMD_TRANSPARENT_MODE);
// Reconfigure gpio
furi_hal_spi_bus_handle_deinit(&furi_hal_spi_bus_handle_nfc);
furi_hal_gpio_init(&gpio_spi_r_sck, GpioModeInput, GpioPullUp, GpioSpeedLow);
furi_hal_gpio_init(&gpio_spi_r_miso, GpioModeInput, GpioPullUp, GpioSpeedLow);
furi_hal_gpio_init(&gpio_nfc_cs, GpioModeInput, GpioPullUp, GpioSpeedLow);
furi_hal_gpio_init(&gpio_spi_r_mosi, GpioModeOutputPushPull, GpioPullNo, GpioSpeedVeryHigh);
furi_hal_gpio_write(&gpio_spi_r_mosi, false);
// Send signal
nfca_signal_encode(tx_rx->nfca_signal, tx_rx->tx_data, tx_rx->tx_bits, tx_rx->tx_parity);
digital_signal_send(tx_rx->nfca_signal->tx_signal, &gpio_spi_r_mosi);
furi_hal_gpio_write(&gpio_spi_r_mosi, false);
// Configure gpio back to SPI and exit transparent
furi_hal_spi_bus_handle_init(&furi_hal_spi_bus_handle_nfc);
st25r3916ExecuteCommand(ST25R3916_CMD_UNMASK_RECEIVE_DATA);
// Manually wait for interrupt
furi_hal_gpio_init(&gpio_rfid_pull, GpioModeInput, GpioPullDown, GpioSpeedVeryHigh);
st25r3916ClearAndEnableInterrupts(ST25R3916_IRQ_MASK_RXE);
uint32_t irq = 0;
uint8_t rxe = 0;
uint32_t start = DWT->CYCCNT;
while(true) {
if(furi_hal_gpio_read(&gpio_rfid_pull) == true) {
st25r3916ReadRegister(ST25R3916_REG_IRQ_MAIN, &rxe);
if(rxe & (1 << 4)) {
irq = 1;
break;
}
}
uint32_t timeout = DWT->CYCCNT - start;
if(timeout / furi_hal_delay_instructions_per_microsecond() > timeout_ms * 1000) {
FURI_LOG_D(TAG, "Interrupt waiting timeout");
break;
}
}
if(irq) {
uint8_t fifo_stat[2];
st25r3916ReadMultipleRegisters(
ST25R3916_REG_FIFO_STATUS1, fifo_stat, ST25R3916_FIFO_STATUS_LEN);
uint16_t len =
((((uint16_t)fifo_stat[1] & ST25R3916_REG_FIFO_STATUS2_fifo_b_mask) >>
ST25R3916_REG_FIFO_STATUS2_fifo_b_shift)
<< RFAL_BITS_IN_BYTE);
len |= (((uint16_t)fifo_stat[0]) & 0x00FFU);
uint8_t rx[100];
st25r3916ReadFifo(rx, len);
tx_rx->rx_bits = len * 8;
memcpy(tx_rx->rx_data, rx, len);
ret = true;
} else {
FURI_LOG_E(TAG, "Timeout error");
ret = false;
}
st25r3916ClearInterrupts();
platformEnableIrqCallback();
return ret;
}
static uint32_t furi_hal_nfc_tx_rx_get_flag(FuriHalNfcTxRxType type) {
uint32_t flags = 0;
@ -405,6 +482,9 @@ static uint32_t furi_hal_nfc_tx_rx_get_flag(FuriHalNfcTxRxType type) {
} else if(type == FuriHalNfcTxRxTypeRaw) {
flags = RFAL_TXRX_FLAGS_CRC_TX_MANUAL | RFAL_TXRX_FLAGS_CRC_RX_KEEP |
RFAL_TXRX_FLAGS_PAR_RX_KEEP | RFAL_TXRX_FLAGS_PAR_TX_NONE;
} else if(type == FuriHalNfcTxRxTypeRxRaw) {
flags = RFAL_TXRX_FLAGS_CRC_TX_MANUAL | RFAL_TXRX_FLAGS_CRC_RX_KEEP |
RFAL_TXRX_FLAGS_PAR_RX_KEEP | RFAL_TXRX_FLAGS_PAR_TX_NONE;
}
return flags;
@ -470,6 +550,10 @@ bool furi_hal_nfc_tx_rx(FuriHalNfcTxRxContext* tx_rx, uint16_t timeout_ms) {
uint8_t* temp_rx_buff = NULL;
uint16_t* temp_rx_bits = NULL;
if(tx_rx->tx_rx_type == FuriHalNfcTxRxTransparent) {
return furi_hal_nfc_transparent_tx_rx(tx_rx, timeout_ms);
}
// Prepare data for FIFO if necessary
uint32_t flags = furi_hal_nfc_tx_rx_get_flag(tx_rx->tx_rx_type);
if(tx_rx->tx_rx_type == FuriHalNfcTxRxTypeRaw) {
@ -502,7 +586,8 @@ bool furi_hal_nfc_tx_rx(FuriHalNfcTxRxContext* tx_rx, uint16_t timeout_ms) {
osDelay(1);
}
if(tx_rx->tx_rx_type == FuriHalNfcTxRxTypeRaw) {
if(tx_rx->tx_rx_type == FuriHalNfcTxRxTypeRaw ||
tx_rx->tx_rx_type == FuriHalNfcTxRxTypeRxRaw) {
tx_rx->rx_bits = 8 * furi_hal_nfc_bitstream_to_data_and_parity(
temp_rx_buff, *temp_rx_bits, tx_rx->rx_data, tx_rx->rx_parity);
} else {

View File

@ -10,6 +10,8 @@
#include <stdbool.h>
#include <stdint.h>
#include <lib/nfc_protocols/nfca.h>
#ifdef __cplusplus
extern "C" {
#endif
@ -39,6 +41,8 @@ typedef enum {
FuriHalNfcTxRxTypeRxNoCrc,
FuriHalNfcTxRxTypeRxKeepPar,
FuriHalNfcTxRxTypeRaw,
FuriHalNfcTxRxTypeRxRaw,
FuriHalNfcTxRxTransparent,
} FuriHalNfcTxRxType;
typedef bool (*FuriHalNfcEmulateCallback)(
@ -80,6 +84,7 @@ typedef struct {
uint8_t rx_parity[FURI_HAL_NFC_PARITY_BUFF_SIZE];
uint16_t rx_bits;
FuriHalNfcTxRxType tx_rx_type;
NfcaSignal* nfca_signal;
} FuriHalNfcTxRxContext;
/** Init nfc

View File

@ -0,0 +1,173 @@
#include "digital_signal.h"
#include <furi.h>
#include <stm32wbxx_ll_dma.h>
#include <stm32wbxx_ll_tim.h>
#include <math.h>
#define F_TIM (64000000.0)
#define T_TIM (1.0 / F_TIM)
DigitalSignal* digital_signal_alloc(uint32_t max_edges_cnt) {
DigitalSignal* signal = malloc(sizeof(DigitalSignal));
signal->start_level = true;
signal->edges_max_cnt = max_edges_cnt;
signal->edge_timings = malloc(max_edges_cnt * sizeof(float));
signal->reload_reg_buff = malloc(max_edges_cnt * sizeof(uint32_t));
signal->edge_cnt = 0;
return signal;
}
void digital_signal_free(DigitalSignal* signal) {
furi_assert(signal);
free(signal->edge_timings);
free(signal->reload_reg_buff);
free(signal);
}
bool digital_signal_append(DigitalSignal* signal_a, DigitalSignal* signal_b) {
furi_assert(signal_a);
furi_assert(signal_b);
if(signal_a->edges_max_cnt < signal_a->edge_cnt + signal_b->edge_cnt) {
return false;
}
bool end_level = signal_a->start_level;
if(signal_a->edge_cnt) {
end_level = signal_a->start_level ^ !(signal_a->edge_cnt % 2);
}
uint8_t start_copy = 0;
if(end_level == signal_b->start_level) {
if(signal_a->edge_cnt) {
signal_a->edge_timings[signal_a->edge_cnt - 1] += signal_b->edge_timings[0];
start_copy += 1;
} else {
signal_a->edge_timings[signal_a->edge_cnt] += signal_b->edge_timings[0];
}
}
memcpy(
&signal_a->edge_timings[signal_a->edge_cnt],
&signal_b->edge_timings[start_copy],
(signal_b->edge_cnt - start_copy) * sizeof(float));
signal_a->edge_cnt += signal_b->edge_cnt - start_copy;
return true;
}
bool digital_signal_get_start_level(DigitalSignal* signal) {
furi_assert(signal);
return signal->start_level;
}
uint32_t digital_signal_get_edges_cnt(DigitalSignal* signal) {
furi_assert(signal);
return signal->edge_cnt;
}
float digital_signal_get_edge(DigitalSignal* signal, uint32_t edge_num) {
furi_assert(signal);
furi_assert(edge_num < signal->edge_cnt);
return signal->edge_timings[edge_num];
}
static void digital_signal_prepare_arr(DigitalSignal* signal) {
float t_signal = 0;
float t_current = 0;
float r = 0;
float r_int = 0;
float r_dec = 0;
for(size_t i = 0; i < signal->edge_cnt - 1; i++) {
t_signal += signal->edge_timings[i];
r = (t_signal - t_current) / T_TIM;
r_dec = modff(r, &r_int);
if(r_dec < 0.5f) {
signal->reload_reg_buff[i] = (uint32_t)r_int - 1;
} else {
signal->reload_reg_buff[i] = (uint32_t)r_int;
}
t_current += (signal->reload_reg_buff[i] + 1) * T_TIM;
}
}
bool digital_signal_send(DigitalSignal* signal, const GpioPin* gpio) {
furi_assert(signal);
furi_assert(gpio);
// Configure gpio as output
furi_hal_gpio_init(gpio, GpioModeOutputPushPull, GpioPullNo, GpioSpeedVeryHigh);
// Init gpio buffer and DMA channel
uint16_t gpio_reg = gpio->port->ODR;
uint16_t gpio_buff[2];
if(signal->start_level) {
gpio_buff[0] = gpio_reg | gpio->pin;
gpio_buff[1] = gpio_reg & ~(gpio->pin);
} else {
gpio_buff[0] = gpio_reg & ~(gpio->pin);
gpio_buff[1] = gpio_reg | gpio->pin;
}
LL_DMA_InitTypeDef dma_config = {};
dma_config.MemoryOrM2MDstAddress = (uint32_t)gpio_buff;
dma_config.PeriphOrM2MSrcAddress = (uint32_t) & (gpio->port->ODR);
dma_config.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
dma_config.Mode = LL_DMA_MODE_CIRCULAR;
dma_config.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
dma_config.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
dma_config.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_HALFWORD;
dma_config.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_HALFWORD;
dma_config.NbData = 2;
dma_config.PeriphRequest = LL_DMAMUX_REQ_TIM2_UP;
dma_config.Priority = LL_DMA_PRIORITY_VERYHIGH;
LL_DMA_Init(DMA1, LL_DMA_CHANNEL_1, &dma_config);
LL_DMA_SetDataLength(DMA1, LL_DMA_CHANNEL_1, 2);
LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_1);
// Init timer arr register buffer and DMA channel
digital_signal_prepare_arr(signal);
dma_config.MemoryOrM2MDstAddress = (uint32_t)signal->reload_reg_buff;
dma_config.PeriphOrM2MSrcAddress = (uint32_t) & (TIM2->ARR);
dma_config.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
dma_config.Mode = LL_DMA_MODE_NORMAL;
dma_config.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
dma_config.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
dma_config.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_WORD;
dma_config.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_WORD;
dma_config.NbData = signal->edge_cnt - 2;
dma_config.PeriphRequest = LL_DMAMUX_REQ_TIM2_UP;
dma_config.Priority = LL_DMA_PRIORITY_HIGH;
LL_DMA_Init(DMA1, LL_DMA_CHANNEL_2, &dma_config);
LL_DMA_SetDataLength(DMA1, LL_DMA_CHANNEL_2, signal->edge_cnt - 2);
LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_2);
// Set up timer
LL_TIM_SetCounterMode(TIM2, LL_TIM_COUNTERMODE_UP);
LL_TIM_SetClockDivision(TIM2, LL_TIM_CLOCKDIVISION_DIV1);
LL_TIM_SetPrescaler(TIM2, 0);
LL_TIM_SetAutoReload(TIM2, 10);
LL_TIM_SetCounter(TIM2, 0);
LL_TIM_EnableUpdateEvent(TIM2);
LL_TIM_EnableDMAReq_UPDATE(TIM2);
// Start transactions
LL_TIM_GenerateEvent_UPDATE(TIM2); // Do we really need it?
LL_TIM_EnableCounter(TIM2);
while(!LL_DMA_IsActiveFlag_TC2(DMA1))
;
LL_DMA_ClearFlag_TC1(DMA1);
LL_DMA_ClearFlag_TC2(DMA1);
LL_TIM_DisableCounter(TIM2);
LL_TIM_SetCounter(TIM2, 0);
LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_1);
LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_2);
return true;
}

View File

@ -0,0 +1,29 @@
#pragma once
#include <stdint.h>
#include <stdlib.h>
#include <stdbool.h>
#include <furi_hal_gpio.h>
typedef struct {
bool start_level;
uint32_t edge_cnt;
uint32_t edges_max_cnt;
float* edge_timings;
uint32_t* reload_reg_buff;
} DigitalSignal;
DigitalSignal* digital_signal_alloc(uint32_t max_edges_cnt);
void digital_signal_free(DigitalSignal* signal);
bool digital_signal_append(DigitalSignal* signal_a, DigitalSignal* signal_b);
bool digital_signal_get_start_level(DigitalSignal* signal);
uint32_t digital_signal_get_edges_cnt(DigitalSignal* signal);
float digital_signal_get_edge(DigitalSignal* signal, uint32_t edge_num);
bool digital_signal_send(DigitalSignal* signal, const GpioPin* gpio);

View File

@ -185,6 +185,37 @@ bool flipper_format_write_string_cstr(
return result;
}
bool flipper_format_read_hex_uint64(
FlipperFormat* flipper_format,
const char* key,
uint64_t* data,
const uint16_t data_size) {
furi_assert(flipper_format);
return flipper_format_stream_read_value_line(
flipper_format->stream,
key,
FlipperStreamValueHexUint64,
data,
data_size,
flipper_format->strict_mode);
}
bool flipper_format_write_hex_uint64(
FlipperFormat* flipper_format,
const char* key,
const uint64_t* data,
const uint16_t data_size) {
furi_assert(flipper_format);
FlipperStreamWriteData write_data = {
.key = key,
.type = FlipperStreamValueHexUint64,
.data = data,
.data_size = data_size,
};
bool result = flipper_format_stream_write_value_line(flipper_format->stream, &write_data);
return result;
}
bool flipper_format_read_uint32(
FlipperFormat* flipper_format,
const char* key,

View File

@ -273,6 +273,34 @@ bool flipper_format_write_string_cstr(
const char* key,
const char* data);
/**
* Read array of uint64 in hex format by key
* @param flipper_format Pointer to a FlipperFormat instance
* @param key Key
* @param data Value
* @param data_size Values count
* @return True on success
*/
bool flipper_format_read_hex_uint64(
FlipperFormat* flipper_format,
const char* key,
uint64_t* data,
const uint16_t data_size);
/**
* Write key and array of uint64 in hex format
* @param flipper_format Pointer to a FlipperFormat instance
* @param key Key
* @param data Value
* @param data_size Values count
* @return True on success
*/
bool flipper_format_write_hex_uint64(
FlipperFormat* flipper_format,
const char* key,
const uint64_t* data,
const uint16_t data_size);
/**
* Read array of uint32 by key
* @param flipper_format Pointer to a FlipperFormat instance

View File

@ -287,6 +287,11 @@ bool flipper_format_stream_write_value_line(Stream* stream, FlipperStreamWriteDa
const uint32_t* data = write_data->data;
string_printf(value, "%" PRId32, data[i]);
}; break;
case FlipperStreamValueHexUint64: {
const uint64_t* data = write_data->data;
string_printf(
value, "%08lX%08lX", (uint32_t)(data[i] >> 32), (uint32_t)data[i]);
}; break;
case FlipperStreamValueBool: {
const bool* data = write_data->data;
string_printf(value, data[i] ? "true" : "false");
@ -380,6 +385,14 @@ bool flipper_format_stream_read_value_line(
uint32_t* data = _data;
scan_values = sscanf(string_get_cstr(value), "%" PRId32, &data[i]);
}; break;
case FlipperStreamValueHexUint64: {
uint64_t* data = _data;
if(string_size(value) >= 16) {
if(hex_chars_to_uint64(string_get_cstr(value), &data[i])) {
scan_values = 1;
}
}
}; break;
case FlipperStreamValueBool: {
bool* data = _data;
data[i] = !string_cmpi_str(value, "true");

View File

@ -15,6 +15,7 @@ typedef enum {
FlipperStreamValueFloat,
FlipperStreamValueInt32,
FlipperStreamValueUint32,
FlipperStreamValueHexUint64,
FlipperStreamValueBool,
} FlipperStreamValue;

View File

@ -95,6 +95,11 @@ C_SOURCES += $(wildcard $(LIB_DIR)/toolbox/*/*.c)
CPP_SOURCES += $(wildcard $(LIB_DIR)/toolbox/*.cpp)
CPP_SOURCES += $(wildcard $(LIB_DIR)/toolbox/*/*.cpp)
# Digital signal
CFLAGS += -I$(LIB_DIR)/digital_signal
C_SOURCES += $(wildcard $(LIB_DIR)/digital_signal/*.c)
# USB Stack
CFLAGS += -I$(LIB_DIR)/libusb_stm32/inc
C_SOURCES += $(LIB_DIR)/libusb_stm32/src/usbd_stm32wb55_devfs.c

View File

@ -58,7 +58,7 @@ uint8_t crypto1_byte(Crypto1* crypto1, uint8_t in, int is_encrypted) {
return out;
}
uint8_t crypto1_word(Crypto1* crypto1, uint32_t in, int is_encrypted) {
uint32_t crypto1_word(Crypto1* crypto1, uint32_t in, int is_encrypted) {
furi_assert(crypto1);
uint32_t out = 0;
for(uint8_t i = 0; i < 32; i++) {

View File

@ -16,7 +16,7 @@ uint8_t crypto1_bit(Crypto1* crypto1, uint8_t in, int is_encrypted);
uint8_t crypto1_byte(Crypto1* crypto1, uint8_t in, int is_encrypted);
uint8_t crypto1_word(Crypto1* crypto1, uint32_t in, int is_encrypted);
uint32_t crypto1_word(Crypto1* crypto1, uint32_t in, int is_encrypted);
uint32_t crypto1_filter(uint32_t in);

View File

@ -1,6 +1,7 @@
#include "mifare_classic.h"
#include "nfca.h"
#include "nfc_util.h"
#include <furi_hal_rtc.h>
// Algorithm from https://github.com/RfidResearchGroup/proxmark3.git
@ -10,6 +11,20 @@
#define MF_CLASSIC_AUTH_KEY_B_CMD (0x61U)
#define MF_CLASSIC_READ_SECT_CMD (0x30)
typedef enum {
MfClassicActionDataRead,
MfClassicActionDataWrite,
MfClassicActionDataInc,
MfClassicActionDataDec,
MfClassicActionKeyARead,
MfClassicActionKeyAWrite,
MfClassicActionKeyBRead,
MfClassicActionKeyBWrite,
MfClassicActionACRead,
MfClassicActionACWrite,
} MfClassicAction;
static uint8_t mf_classic_get_first_block_num_of_sector(uint8_t sector) {
furi_assert(sector < 40);
if(sector < 32) {
@ -19,11 +34,31 @@ static uint8_t mf_classic_get_first_block_num_of_sector(uint8_t sector) {
}
}
static uint8_t mf_classic_get_sector_by_block(uint8_t block) {
if(block < 128) {
return (block | 0x03) / 4;
} else {
return 32 + ((block | 0xf) - 32 * 4) / 16;
}
}
static uint8_t mf_classic_get_blocks_num_in_sector(uint8_t sector) {
furi_assert(sector < 40);
return sector < 32 ? 4 : 16;
}
static uint8_t mf_classic_get_sector_trailer(uint8_t block) {
if(block < 128) {
return block | 0x03;
} else {
return block | 0x0f;
}
}
static bool mf_classic_is_sector_trailer(uint8_t block) {
return block == mf_classic_get_sector_trailer(block);
}
uint8_t mf_classic_get_total_sectors_num(MfClassicReader* reader) {
furi_assert(reader);
if(reader->type == MfClassicType1k) {
@ -35,6 +70,132 @@ uint8_t mf_classic_get_total_sectors_num(MfClassicReader* reader) {
}
}
static uint16_t mf_classic_get_total_block_num(MfClassicType type) {
if(type == MfClassicType1k) {
return 64;
} else if(type == MfClassicType4k) {
return 256;
} else {
return 0;
}
}
static bool mf_classic_is_allowed_access_sector_trailer(
MfClassicEmulator* emulator,
uint8_t block_num,
MfClassicKey key,
MfClassicAction action) {
uint8_t* sector_trailer = emulator->data.block[block_num].value;
uint8_t AC = ((sector_trailer[7] >> 5) & 0x04) | ((sector_trailer[8] >> 2) & 0x02) |
((sector_trailer[8] >> 7) & 0x01);
switch(action) {
case MfClassicActionKeyARead: {
return false;
}
case MfClassicActionKeyAWrite: {
return (
(key == MfClassicKeyA && (AC == 0x00 || AC == 0x01)) ||
(key == MfClassicKeyB && (AC == 0x04 || AC == 0x03)));
}
case MfClassicActionKeyBRead: {
return (key == MfClassicKeyA && (AC == 0x00 || AC == 0x02 || AC == 0x01));
}
case MfClassicActionKeyBWrite: {
return (
(key == MfClassicKeyA && (AC == 0x00 || AC == 0x01)) ||
(key == MfClassicKeyB && (AC == 0x04 || AC == 0x03)));
}
case MfClassicActionACRead: {
return (
(key == MfClassicKeyA) ||
(key == MfClassicKeyB && !(AC == 0x00 || AC == 0x02 || AC == 0x01)));
}
case MfClassicActionACWrite: {
return (
(key == MfClassicKeyA && (AC == 0x01)) ||
(key == MfClassicKeyB && (AC == 0x03 || AC == 0x05)));
}
default:
return false;
}
return true;
}
static bool mf_classic_is_allowed_access_data_block(
MfClassicEmulator* emulator,
uint8_t block_num,
MfClassicKey key,
MfClassicAction action) {
uint8_t* sector_trailer = emulator->data.block[mf_classic_get_sector_trailer(block_num)].value;
uint8_t sector_block;
if(block_num <= 128) {
sector_block = block_num & 0x03;
} else {
sector_block = (block_num & 0x0f) / 5;
}
uint8_t AC;
switch(sector_block) {
case 0x00: {
AC = ((sector_trailer[7] >> 2) & 0x04) | ((sector_trailer[8] << 1) & 0x02) |
((sector_trailer[8] >> 4) & 0x01);
break;
}
case 0x01: {
AC = ((sector_trailer[7] >> 3) & 0x04) | ((sector_trailer[8] >> 0) & 0x02) |
((sector_trailer[8] >> 5) & 0x01);
break;
}
case 0x02: {
AC = ((sector_trailer[7] >> 4) & 0x04) | ((sector_trailer[8] >> 1) & 0x02) |
((sector_trailer[8] >> 6) & 0x01);
break;
}
default:
return false;
}
switch(action) {
case MfClassicActionDataRead: {
return (
(key == MfClassicKeyA && !(AC == 0x03 || AC == 0x05 || AC == 0x07)) ||
(key == MfClassicKeyB && !(AC == 0x07)));
}
case MfClassicActionDataWrite: {
return (
(key == MfClassicKeyA && (AC == 0x00)) ||
(key == MfClassicKeyB && (AC == 0x00 || AC == 0x04 || AC == 0x06 || AC == 0x03)));
}
case MfClassicActionDataInc: {
return (
(key == MfClassicKeyA && (AC == 0x00)) ||
(key == MfClassicKeyB && (AC == 0x00 || AC == 0x06)));
}
case MfClassicActionDataDec: {
return (
(key == MfClassicKeyA && (AC == 0x00 || AC == 0x06 || AC == 0x01)) ||
(key == MfClassicKeyB && (AC == 0x00 || AC == 0x06 || AC == 0x01)));
}
default:
return false;
}
return false;
}
static bool mf_classic_is_allowed_access(
MfClassicEmulator* emulator,
uint8_t block_num,
MfClassicKey key,
MfClassicAction action) {
if(mf_classic_is_sector_trailer(block_num)) {
return mf_classic_is_allowed_access_sector_trailer(emulator, block_num, key, action);
} else {
return mf_classic_is_allowed_access_data_block(emulator, block_num, key, action);
}
}
bool mf_classic_check_card_type(uint8_t ATQA0, uint8_t ATQA1, uint8_t SAK) {
UNUSED(ATQA1);
if((ATQA0 == 0x44 || ATQA0 == 0x04) && (SAK == 0x08)) {
@ -120,7 +281,7 @@ static bool mf_classic_auth(
tx_rx->tx_data[1] = block;
tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRxNoCrc;
tx_rx->tx_bits = 2 * 8;
if(!furi_hal_nfc_tx_rx(tx_rx, 5)) break;
if(!furi_hal_nfc_tx_rx(tx_rx, 6)) break;
uint32_t nt = (uint32_t)nfc_util_bytes2num(tx_rx->rx_data, 4);
crypto1_init(crypto, key);
@ -142,7 +303,7 @@ static bool mf_classic_auth(
}
tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRaw;
tx_rx->tx_bits = 8 * 8;
if(!furi_hal_nfc_tx_rx(tx_rx, 5)) break;
if(!furi_hal_nfc_tx_rx(tx_rx, 6)) break;
if(tx_rx->rx_bits == 32) {
crypto1_word(crypto, 0, 0);
auth_success = true;
@ -296,6 +457,8 @@ uint8_t mf_classic_read_card(
uint8_t sectors_read = 0;
data->type = reader->type;
data->key_a_mask = 0;
data->key_b_mask = 0;
MfClassicSector temp_sector = {};
for(uint8_t i = 0; i < reader->sectors_to_read; i++) {
if(mf_classic_read_sector(
@ -305,9 +468,279 @@ uint8_t mf_classic_read_card(
for(uint8_t j = 0; j < temp_sector.total_blocks; j++) {
data->block[first_block + j] = temp_sector.block[j];
}
if(reader->sector_reader[i].key_a != MF_CLASSIC_NO_KEY) {
data->key_a_mask |= 1 << reader->sector_reader[i].sector_num;
}
if(reader->sector_reader[i].key_b != MF_CLASSIC_NO_KEY) {
data->key_b_mask |= 1 << reader->sector_reader[i].sector_num;
}
sectors_read++;
}
}
return sectors_read;
}
void mf_crypto1_decrypt(
Crypto1* crypto,
uint8_t* encrypted_data,
uint16_t encrypted_data_bits,
uint8_t* decrypted_data) {
if(encrypted_data_bits < 8) {
uint8_t decrypted_byte = 0;
decrypted_byte |= (crypto1_bit(crypto, 0, 0) ^ FURI_BIT(encrypted_data[0], 0)) << 0;
decrypted_byte |= (crypto1_bit(crypto, 0, 0) ^ FURI_BIT(encrypted_data[0], 1)) << 1;
decrypted_byte |= (crypto1_bit(crypto, 0, 0) ^ FURI_BIT(encrypted_data[0], 2)) << 2;
decrypted_byte |= (crypto1_bit(crypto, 0, 0) ^ FURI_BIT(encrypted_data[0], 3)) << 3;
decrypted_data[0] = decrypted_byte;
} else {
for(size_t i = 0; i < encrypted_data_bits / 8; i++) {
decrypted_data[i] = crypto1_byte(crypto, 0, 0) ^ encrypted_data[i];
}
}
}
void mf_crypto1_encrypt(
Crypto1* crypto,
uint8_t* keystream,
uint8_t* plain_data,
uint16_t plain_data_bits,
uint8_t* encrypted_data,
uint8_t* encrypted_parity) {
if(plain_data_bits < 8) {
encrypted_data[0] = 0;
for(size_t i = 0; i < plain_data_bits; i++) {
encrypted_data[0] |= (crypto1_bit(crypto, 0, 0) ^ FURI_BIT(plain_data[0], i)) << i;
}
} else {
memset(encrypted_parity, 0, plain_data_bits / 8 + 1);
for(uint8_t i = 0; i < plain_data_bits / 8; i++) {
encrypted_data[i] = crypto1_byte(crypto, keystream ? keystream[i] : 0, 0) ^
plain_data[i];
encrypted_parity[i / 8] |=
(((crypto1_filter(crypto->odd) ^ nfc_util_odd_parity8(plain_data[i])) & 0x01)
<< (7 - (i & 0x0007)));
}
}
}
bool mf_classic_emulator(MfClassicEmulator* emulator, FuriHalNfcTxRxContext* tx_rx) {
furi_assert(emulator);
furi_assert(tx_rx);
bool command_processed = false;
bool is_encrypted = false;
uint8_t plain_data[MF_CLASSIC_MAX_DATA_SIZE];
MfClassicKey access_key = MfClassicKeyA;
// Read command
while(!command_processed) {
if(!is_encrypted) {
// Read first frame
tx_rx->tx_bits = 0;
tx_rx->tx_rx_type = FuriHalNfcTxRxTypeDefault;
}
if(!furi_hal_nfc_tx_rx(tx_rx, 300)) {
FURI_LOG_D(
TAG, "Error in tx rx. Tx :%d bits, Rx: %d bits", tx_rx->tx_bits, tx_rx->rx_bits);
break;
}
if(!is_encrypted) {
memcpy(plain_data, tx_rx->rx_data, tx_rx->rx_bits / 8);
} else {
mf_crypto1_decrypt(&emulator->crypto, tx_rx->rx_data, tx_rx->rx_bits, plain_data);
}
// TODO Check crc
if(plain_data[0] == 0x50 && plain_data[1] == 00) {
FURI_LOG_T(TAG, "Halt received");
command_processed = true;
break;
} else if(plain_data[0] == 0x60 || plain_data[0] == 0x61) {
uint8_t block = plain_data[1];
uint64_t key = 0;
uint8_t sector_trailer_block = mf_classic_get_sector_trailer(block);
MfClassicSectorTrailer* sector_trailer =
(MfClassicSectorTrailer*)emulator->data.block[sector_trailer_block].value;
if(plain_data[0] == 0x61) {
key = nfc_util_bytes2num(sector_trailer->key_b, 6);
access_key = MfClassicKeyA;
} else {
key = nfc_util_bytes2num(sector_trailer->key_a, 6);
access_key = MfClassicKeyB;
}
uint32_t nonce = prng_successor(DWT->CYCCNT, 32);
uint8_t nt[4];
uint8_t nt_keystream[4];
nfc_util_num2bytes(nonce, 4, nt);
nfc_util_num2bytes(nonce ^ emulator->cuid, 4, nt_keystream);
crypto1_init(&emulator->crypto, key);
if(!is_encrypted) {
crypto1_word(&emulator->crypto, emulator->cuid ^ nonce, 0);
memcpy(tx_rx->tx_data, nt, sizeof(nt));
tx_rx->tx_bits = sizeof(nt) * 8;
tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRxRaw;
} else {
mf_crypto1_encrypt(
&emulator->crypto,
nt_keystream,
nt,
sizeof(nt) * 8,
tx_rx->tx_data,
tx_rx->tx_parity);
tx_rx->tx_bits = sizeof(nt) * 8;
tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
}
if(!furi_hal_nfc_tx_rx(tx_rx, 500)) {
FURI_LOG_E(TAG, "Error in NT exchange");
command_processed = true;
break;
}
if(tx_rx->rx_bits != 64) {
FURI_LOG_W(TAG, "Incorrect nr + ar");
command_processed = true;
break;
}
// Check if we store valid key
if(access_key == MfClassicKeyA) {
if(FURI_BIT(emulator->data.key_a_mask, mf_classic_get_sector_by_block(block)) ==
0) {
FURI_LOG_D(TAG, "Unsupported sector key A for block %d", sector_trailer_block);
break;
}
} else if(access_key == MfClassicKeyB) {
if(FURI_BIT(emulator->data.key_b_mask, mf_classic_get_sector_by_block(block)) ==
0) {
FURI_LOG_D(TAG, "Unsupported sector key B for block %d", sector_trailer_block);
break;
}
}
uint32_t nr = nfc_util_bytes2num(tx_rx->rx_data, 4);
uint32_t ar = nfc_util_bytes2num(&tx_rx->rx_data[4], 4);
crypto1_word(&emulator->crypto, nr, 1);
uint32_t cardRr = ar ^ crypto1_word(&emulator->crypto, 0, 0);
if(cardRr != prng_successor(nonce, 64)) {
FURI_LOG_T(TAG, "Wrong AUTH! %08X != %08X", cardRr, prng_successor(nonce, 64));
// Don't send NACK, as tag don't send it
command_processed = true;
break;
}
uint32_t ans = prng_successor(nonce, 96);
uint8_t responce[4] = {};
nfc_util_num2bytes(ans, 4, responce);
mf_crypto1_encrypt(
&emulator->crypto,
NULL,
responce,
sizeof(responce) * 8,
tx_rx->tx_data,
tx_rx->tx_parity);
tx_rx->tx_bits = sizeof(responce) * 8;
tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
is_encrypted = true;
} else if(is_encrypted && plain_data[0] == 0x30) {
uint8_t block = plain_data[1];
uint8_t block_data[18] = {};
memcpy(block_data, emulator->data.block[block].value, MF_CLASSIC_BLOCK_SIZE);
if(mf_classic_is_sector_trailer(block)) {
if(!mf_classic_is_allowed_access(
emulator, block, access_key, MfClassicActionKeyARead)) {
memset(block_data, 0, 6);
}
if(!mf_classic_is_allowed_access(
emulator, block, access_key, MfClassicActionKeyBRead)) {
memset(&block_data[10], 0, 6);
}
if(!mf_classic_is_allowed_access(
emulator, block, access_key, MfClassicActionACRead)) {
memset(&block_data[6], 0, 4);
}
} else {
if(!mf_classic_is_allowed_access(
emulator, block, access_key, MfClassicActionDataRead)) {
memset(block_data, 0, 16);
}
}
nfca_append_crc16(block_data, 16);
mf_crypto1_encrypt(
&emulator->crypto,
NULL,
block_data,
sizeof(block_data) * 8,
tx_rx->tx_data,
tx_rx->tx_parity);
tx_rx->tx_bits = 18 * 8;
tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
} else if(is_encrypted && plain_data[0] == 0xA0) {
uint8_t block = plain_data[1];
if(block > mf_classic_get_total_block_num(emulator->data.type)) {
break;
}
// Send ACK
uint8_t ack = 0x0A;
mf_crypto1_encrypt(&emulator->crypto, NULL, &ack, 4, tx_rx->tx_data, tx_rx->tx_parity);
tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
tx_rx->tx_bits = 4;
if(!furi_hal_nfc_tx_rx(tx_rx, 300)) break;
if(tx_rx->rx_bits != 18 * 8) break;
mf_crypto1_decrypt(&emulator->crypto, tx_rx->rx_data, tx_rx->rx_bits, plain_data);
uint8_t block_data[16] = {};
memcpy(block_data, emulator->data.block[block].value, MF_CLASSIC_BLOCK_SIZE);
if(mf_classic_is_sector_trailer(block)) {
if(mf_classic_is_allowed_access(
emulator, block, access_key, MfClassicActionKeyAWrite)) {
memcpy(block_data, plain_data, 6);
}
if(mf_classic_is_allowed_access(
emulator, block, access_key, MfClassicActionKeyBWrite)) {
memcpy(&block_data[10], &plain_data[10], 6);
}
if(mf_classic_is_allowed_access(
emulator, block, access_key, MfClassicActionACWrite)) {
memcpy(&block_data[6], &plain_data[6], 4);
}
} else {
if(mf_classic_is_allowed_access(
emulator, block, access_key, MfClassicActionDataWrite)) {
memcpy(block_data, plain_data, MF_CLASSIC_BLOCK_SIZE);
}
}
if(memcmp(block_data, emulator->data.block[block].value, MF_CLASSIC_BLOCK_SIZE)) {
memcpy(emulator->data.block[block].value, block_data, MF_CLASSIC_BLOCK_SIZE);
emulator->data_changed = true;
}
// Send ACK
ack = 0x0A;
mf_crypto1_encrypt(&emulator->crypto, NULL, &ack, 4, tx_rx->tx_data, tx_rx->tx_parity);
tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
tx_rx->tx_bits = 4;
} else {
// Unknown command
break;
}
}
if(!command_processed) {
// Send NACK
uint8_t nack = 0x04;
if(is_encrypted) {
mf_crypto1_encrypt(
&emulator->crypto, NULL, &nack, 4, tx_rx->tx_data, tx_rx->tx_parity);
} else {
tx_rx->tx_data[0] = nack;
}
tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
tx_rx->tx_bits = 4;
furi_hal_nfc_tx_rx(tx_rx, 300);
}
return true;
}

View File

@ -13,6 +13,7 @@
#define MF_CLASSIC_BLOCKS_IN_SECTOR_MAX (16)
#define MF_CLASSIC_NO_KEY (0xFFFFFFFFFFFFFFFF)
#define MF_CLASSIC_MAX_DATA_SIZE (16)
typedef enum {
MfClassicType1k,
@ -41,6 +42,8 @@ typedef struct {
typedef struct {
MfClassicType type;
uint64_t key_a_mask;
uint64_t key_b_mask;
MfClassicBlock block[MF_CLASSIC_TOTAL_BLOCKS_MAX];
} MfClassicData;
@ -65,6 +68,13 @@ typedef struct {
MfClassicSectorReader sector_reader[MF_CLASSIC_SECTORS_MAX];
} MfClassicReader;
typedef struct {
uint32_t cuid;
Crypto1 crypto;
MfClassicData data;
bool data_changed;
} MfClassicEmulator;
bool mf_classic_check_card_type(uint8_t ATQA0, uint8_t ATQA1, uint8_t SAK);
bool mf_classic_get_type(
@ -100,3 +110,5 @@ uint8_t mf_classic_read_card(
FuriHalNfcTxRxContext* tx_rx,
MfClassicReader* reader,
MfClassicData* data);
bool mf_classic_emulator(MfClassicEmulator* emulator, FuriHalNfcTxRxContext* tx_rx);

View File

@ -1,11 +1,17 @@
#include "nfca.h"
#include <string.h>
#include <stdio.h>
#include <furi.h>
#define NFCA_CMD_RATS (0xE0U)
#define NFCA_CRC_INIT (0x6363)
#define NFCA_F_SIG (13560000.0)
#define NFCA_T_SIG (1.0 / NFCA_F_SIG)
#define NFCA_SIGNAL_MAX_EDGES (1350)
typedef struct {
uint8_t cmd;
uint8_t param;
@ -53,3 +59,81 @@ bool nfca_emulation_handler(
return sleep;
}
static void nfca_add_bit(DigitalSignal* signal, bool bit) {
if(bit) {
signal->start_level = true;
for(size_t i = 0; i < 7; i++) {
signal->edge_timings[i] = 8 * NFCA_T_SIG;
}
signal->edge_timings[7] = 9 * 8 * NFCA_T_SIG;
signal->edge_cnt = 8;
} else {
signal->start_level = false;
signal->edge_timings[0] = 8 * 8 * NFCA_T_SIG;
for(size_t i = 1; i < 9; i++) {
signal->edge_timings[i] = 8 * NFCA_T_SIG;
}
signal->edge_cnt = 9;
}
}
static void nfca_add_byte(NfcaSignal* nfca_signal, uint8_t byte, bool parity) {
for(uint8_t i = 0; i < 8; i++) {
if(byte & (1 << i)) {
digital_signal_append(nfca_signal->tx_signal, nfca_signal->one);
} else {
digital_signal_append(nfca_signal->tx_signal, nfca_signal->zero);
}
}
if(parity) {
digital_signal_append(nfca_signal->tx_signal, nfca_signal->one);
} else {
digital_signal_append(nfca_signal->tx_signal, nfca_signal->zero);
}
}
NfcaSignal* nfca_signal_alloc() {
NfcaSignal* nfca_signal = malloc(sizeof(NfcaSignal));
nfca_signal->one = digital_signal_alloc(10);
nfca_signal->zero = digital_signal_alloc(10);
nfca_add_bit(nfca_signal->one, true);
nfca_add_bit(nfca_signal->zero, false);
nfca_signal->tx_signal = digital_signal_alloc(NFCA_SIGNAL_MAX_EDGES);
return nfca_signal;
}
void nfca_signal_free(NfcaSignal* nfca_signal) {
furi_assert(nfca_signal);
digital_signal_free(nfca_signal->one);
digital_signal_free(nfca_signal->zero);
digital_signal_free(nfca_signal->tx_signal);
free(nfca_signal);
}
void nfca_signal_encode(NfcaSignal* nfca_signal, uint8_t* data, uint16_t bits, uint8_t* parity) {
furi_assert(nfca_signal);
furi_assert(data);
furi_assert(parity);
nfca_signal->tx_signal->edge_cnt = 0;
nfca_signal->tx_signal->start_level = true;
// Start of frame
digital_signal_append(nfca_signal->tx_signal, nfca_signal->one);
if(bits < 8) {
for(size_t i = 0; i < bits; i++) {
if(FURI_BIT(data[0], i)) {
digital_signal_append(nfca_signal->tx_signal, nfca_signal->one);
} else {
digital_signal_append(nfca_signal->tx_signal, nfca_signal->zero);
}
}
} else {
for(size_t i = 0; i < bits / 8; i++) {
nfca_add_byte(nfca_signal, data[i], parity[i / 8] & (1 << (7 - (i & 0x07))));
}
}
}

View File

@ -3,6 +3,14 @@
#include <stdint.h>
#include <stdbool.h>
#include <lib/digital_signal/digital_signal.h>
typedef struct {
DigitalSignal* one;
DigitalSignal* zero;
DigitalSignal* tx_signal;
} NfcaSignal;
uint16_t nfca_get_crc16(uint8_t* buff, uint16_t len);
void nfca_append_crc16(uint8_t* buff, uint16_t len);
@ -12,3 +20,9 @@ bool nfca_emulation_handler(
uint16_t buff_rx_len,
uint8_t* buff_tx,
uint16_t* buff_tx_len);
NfcaSignal* nfca_signal_alloc();
void nfca_signal_free(NfcaSignal* nfca_signal);
void nfca_signal_encode(NfcaSignal* nfca_signal, uint8_t* data, uint16_t bits, uint8_t* parity);

View File

@ -26,3 +26,14 @@ bool hex_chars_to_uint8(char hi, char low, uint8_t* value) {
return false;
}
}
bool hex_chars_to_uint64(const char* value_str, uint64_t* value) {
uint8_t* _value = (uint8_t*)value;
bool parse_success = false;
for(uint8_t i = 0; i < 8; i++) {
parse_success = hex_chars_to_uint8(value_str[i * 2], value_str[i * 2 + 1], &_value[7 - i]);
if(!parse_success) break;
}
return parse_success;
}

View File

@ -6,23 +6,31 @@
extern "C" {
#endif
/**
* Convert ASCII hex value to nibble
/** Convert ASCII hex value to nibble
* @param c ASCII character
* @param nibble nibble pointer, output
*
* @return bool conversion status
*/
bool hex_char_to_hex_nibble(char c, uint8_t* nibble);
/**
* Convert ASCII hex values to byte
/** Convert ASCII hex values to byte
* @param hi hi nibble text
* @param low low nibble text
* @param value output value
*
* @return bool conversion status
*/
bool hex_chars_to_uint8(char hi, char low, uint8_t* value);
/** Convert ASCII hex values to uint64_t
* @param value_str ASCII 64 bi data
* @param value output value
*
* @return bool conversion status
*/
bool hex_chars_to_uint64(const char* value_str, uint64_t* value);
#ifdef __cplusplus
}
#endif