SubGhz: refactoring frequency analyzer and MegaCode display changes (#1221)

* SubGhz: MegaCode display changes
* SubGhz: refactoring frequency analyzer
* SubGhz: use one stage detection in frequency analyzer, tune bw, datarate and etc
* SubGhz: tune analyzer threshold
* SubGhz: raise frequency analyzer threshold and rssi sampling config
* SubGhz: fix frequency analyzer, small step frequency analysis
* SubGhz: subghz_frequency_analyzer_worker
* SubGhz: fix SUBGHZ_FREQUENCY_ANALYZER_THRESHOLD
* SubGhz: debug logging in frequency analyzer, increase MAGN_TARGET to max value
* SubGhz: reduce RSSI delay in frequency scanner
* SubGhz: fix delays, remove trace logging from frequency analyzer
* SubGhz: cleanup variable names and add comments

Co-authored-by: Aleksandr Kutuzov <alleteam@gmail.com>
This commit is contained in:
Skorpionm 2022-05-19 00:38:06 +04:00 committed by GitHub
parent f6384116a1
commit d38dba4a26
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 121 additions and 43 deletions

View File

@ -1,24 +1,22 @@
#include "subghz_frequency_analyzer_worker.h" #include "subghz_frequency_analyzer_worker.h"
#include <lib/drivers/cc1101_regs.h> #include <lib/drivers/cc1101.h>
#include <furi.h> #include <furi.h>
#include "../subghz_i.h" #include "../subghz_i.h"
#define TAG "SubghzFrequencyAnalyzerWorker"
#define SUBGHZ_FREQUENCY_ANALYZER_THRESHOLD -95.0f
static const uint8_t subghz_preset_ook_58khz[][2] = { static const uint8_t subghz_preset_ook_58khz[][2] = {
{CC1101_FIFOTHR, 0x47}, // The only important bit is ADC_RETENTION, FIFO Tx=33 Rx=32 {CC1101_MDMCFG4, 0b11110111}, // Rx BW filter is 58.035714kHz
{CC1101_MDMCFG4, 0xF5}, // Rx BW filter is 58.035714kHz
{CC1101_TEST2, 0x81}, // FIFOTHR ADC_RETENTION=1 matched value
{CC1101_TEST1, 0x35}, // FIFOTHR ADC_RETENTION=1 matched value
/* End */ /* End */
{0, 0}, {0, 0},
}; };
static const uint8_t subghz_preset_ook_650khz[][2] = { static const uint8_t subghz_preset_ook_650khz[][2] = {
{CC1101_FIFOTHR, 0x07}, // The only important bit is ADC_RETENTION {CC1101_MDMCFG4, 0b00010111}, // Rx BW filter is 650.000kHz
{CC1101_MDMCFG4, 0x17}, // Rx BW filter is 650.000kHz
{CC1101_TEST2, 0x88},
{CC1101_TEST1, 0x31},
/* End */ /* End */
{0, 0}, {0, 0},
}; };
@ -27,7 +25,7 @@ struct SubGhzFrequencyAnalyzerWorker {
FuriThread* thread; FuriThread* thread;
volatile bool worker_running; volatile bool worker_running;
uint8_t count_repet; uint8_t sample_hold_counter;
FrequencyRSSI frequency_rssi_buf; FrequencyRSSI frequency_rssi_buf;
SubGhzSetting* setting; SubGhzSetting* setting;
@ -37,6 +35,16 @@ struct SubGhzFrequencyAnalyzerWorker {
void* context; void* context;
}; };
static void subghz_frequency_analyzer_worker_load_registers(const uint8_t data[][2]) {
furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz);
size_t i = 0;
while(data[i][0]) {
cc1101_write_reg(&furi_hal_spi_bus_handle_subghz, data[i][0], data[i][1]);
i++;
}
furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz);
}
// running average with adaptive coefficient // running average with adaptive coefficient
static uint32_t subghz_frequency_analyzer_worker_expRunningAverageAdaptive( static uint32_t subghz_frequency_analyzer_worker_expRunningAverageAdaptive(
SubGhzFrequencyAnalyzerWorker* instance, SubGhzFrequencyAnalyzerWorker* instance,
@ -62,32 +70,75 @@ static int32_t subghz_frequency_analyzer_worker_thread(void* context) {
SubGhzFrequencyAnalyzerWorker* instance = context; SubGhzFrequencyAnalyzerWorker* instance = context;
FrequencyRSSI frequency_rssi = {.frequency = 0, .rssi = 0}; FrequencyRSSI frequency_rssi = {.frequency = 0, .rssi = 0};
float rssi; float rssi = 0;
uint32_t frequency; uint32_t frequency = 0;
uint32_t frequency_start; CC1101Status status;
//Start CC1101 //Start CC1101
furi_hal_subghz_reset(); furi_hal_subghz_reset();
furi_hal_subghz_load_preset(FuriHalSubGhzPresetOok650Async);
furi_hal_subghz_set_frequency(433920000); furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz);
furi_hal_subghz_flush_rx(); cc1101_flush_rx(&furi_hal_spi_bus_handle_subghz);
cc1101_flush_tx(&furi_hal_spi_bus_handle_subghz);
cc1101_write_reg(&furi_hal_spi_bus_handle_subghz, CC1101_IOCFG0, CC1101IocfgHW);
cc1101_write_reg(&furi_hal_spi_bus_handle_subghz, CC1101_MDMCFG3,
0b11111111); // symbol rate
cc1101_write_reg(
&furi_hal_spi_bus_handle_subghz,
CC1101_AGCCTRL2,
0b00000111); // 00 - DVGA all; 000 - MAX LNA+LNA2; 111 - MAGN_TARGET 42 dB
cc1101_write_reg(
&furi_hal_spi_bus_handle_subghz,
CC1101_AGCCTRL1,
0b00001000); // 0; 0 - LNA 2 gain is decreased to minimum before decreasing LNA gain; 00 - Relative carrier sense threshold disabled; 1000 - Absolute carrier sense threshold disabled
cc1101_write_reg(
&furi_hal_spi_bus_handle_subghz,
CC1101_AGCCTRL0,
0b00110000); // 00 - No hysteresis, medium asymmetric dead zone, medium gain ; 11 - 64 samples agc; 00 - Normal AGC, 00 - 4dB boundary
furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz);
furi_hal_subghz_set_path(FuriHalSubGhzPathIsolate); furi_hal_subghz_set_path(FuriHalSubGhzPathIsolate);
furi_hal_subghz_rx();
while(instance->worker_running) { while(instance->worker_running) {
osDelay(10); osDelay(10);
float rssi_min = 26.0f;
float rssi_avg = 0;
size_t rssi_avg_samples = 0;
frequency_rssi.rssi = -127.0f; frequency_rssi.rssi = -127.0f;
furi_hal_subghz_idle(); furi_hal_subghz_idle();
furi_hal_subghz_load_registers(subghz_preset_ook_650khz); subghz_frequency_analyzer_worker_load_registers(subghz_preset_ook_650khz);
// First stage: coarse scan
for(size_t i = 0; i < subghz_setting_get_frequency_count(instance->setting); i++) { for(size_t i = 0; i < subghz_setting_get_frequency_count(instance->setting); i++) {
if(furi_hal_subghz_is_frequency_valid( if(furi_hal_subghz_is_frequency_valid(
subghz_setting_get_frequency(instance->setting, i))) { subghz_setting_get_frequency(instance->setting, i))) {
furi_hal_subghz_idle(); furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz);
frequency = furi_hal_subghz_set_frequency( cc1101_switch_to_idle(&furi_hal_spi_bus_handle_subghz);
frequency = cc1101_set_frequency(
&furi_hal_spi_bus_handle_subghz,
subghz_setting_get_frequency(instance->setting, i)); subghz_setting_get_frequency(instance->setting, i));
furi_hal_subghz_rx();
osDelay(3); cc1101_calibrate(&furi_hal_spi_bus_handle_subghz);
do {
status = cc1101_get_status(&furi_hal_spi_bus_handle_subghz);
} while(status.STATE != CC1101StateIDLE);
cc1101_switch_to_rx(&furi_hal_spi_bus_handle_subghz);
furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz);
// delay will be in range between 1 and 2ms
osDelay(2);
rssi = furi_hal_subghz_get_rssi(); rssi = furi_hal_subghz_get_rssi();
rssi_avg += rssi;
rssi_avg_samples++;
if(rssi < rssi_min) rssi_min = rssi;
if(frequency_rssi.rssi < rssi) { if(frequency_rssi.rssi < rssi) {
frequency_rssi.rssi = rssi; frequency_rssi.rssi = rssi;
frequency_rssi.frequency = frequency; frequency_rssi.frequency = frequency;
@ -95,19 +146,41 @@ static int32_t subghz_frequency_analyzer_worker_thread(void* context) {
} }
} }
if(frequency_rssi.rssi > -90.0) { FURI_LOG_T(
// -0.5 ... 433.92 ... +0.5 TAG,
frequency_start = frequency_rssi.frequency - 250000; "RSSI: avg %f, max %f at %u, min %f",
//step 10KHz (double)(rssi_avg / rssi_avg_samples),
(double)frequency_rssi.rssi,
frequency_rssi.frequency,
(double)rssi_min);
// Second stage: fine scan
if(frequency_rssi.rssi > SUBGHZ_FREQUENCY_ANALYZER_THRESHOLD) {
FURI_LOG_D(TAG, "~:%u:%f", frequency_rssi.frequency, (double)frequency_rssi.rssi);
frequency_rssi.rssi = -127.0; frequency_rssi.rssi = -127.0;
furi_hal_subghz_idle(); furi_hal_subghz_idle();
furi_hal_subghz_load_registers(subghz_preset_ook_58khz); subghz_frequency_analyzer_worker_load_registers(subghz_preset_ook_58khz);
for(uint32_t i = frequency_start; i < frequency_start + 500000; i += 10000) { //-0.3 ... 433.92 ... +0.3 step 10KHz
for(uint32_t i = frequency_rssi.frequency - 300000;
i < frequency_rssi.frequency + 300000;
i += 20000) {
if(furi_hal_subghz_is_frequency_valid(i)) { if(furi_hal_subghz_is_frequency_valid(i)) {
furi_hal_subghz_idle(); furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz);
frequency = furi_hal_subghz_set_frequency(i); cc1101_switch_to_idle(&furi_hal_spi_bus_handle_subghz);
furi_hal_subghz_rx(); frequency = cc1101_set_frequency(&furi_hal_spi_bus_handle_subghz, i);
osDelay(3);
cc1101_calibrate(&furi_hal_spi_bus_handle_subghz);
do {
status = cc1101_get_status(&furi_hal_spi_bus_handle_subghz);
} while(status.STATE != CC1101StateIDLE);
cc1101_switch_to_rx(&furi_hal_spi_bus_handle_subghz);
furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz);
// delay will be in range between 1 and 2ms
osDelay(2);
rssi = furi_hal_subghz_get_rssi(); rssi = furi_hal_subghz_get_rssi();
if(frequency_rssi.rssi < rssi) { if(frequency_rssi.rssi < rssi) {
frequency_rssi.rssi = rssi; frequency_rssi.rssi = rssi;
@ -117,20 +190,24 @@ static int32_t subghz_frequency_analyzer_worker_thread(void* context) {
} }
} }
if(frequency_rssi.rssi > -90.0) { // Deliver results
instance->count_repet = 20; if(frequency_rssi.rssi > SUBGHZ_FREQUENCY_ANALYZER_THRESHOLD) {
FURI_LOG_D(TAG, "=:%u:%f", frequency_rssi.frequency, (double)frequency_rssi.rssi);
instance->sample_hold_counter = 20;
if(instance->filVal) { if(instance->filVal) {
frequency_rssi.frequency = frequency_rssi.frequency =
subghz_frequency_analyzer_worker_expRunningAverageAdaptive( subghz_frequency_analyzer_worker_expRunningAverageAdaptive(
instance, frequency_rssi.frequency); instance, frequency_rssi.frequency);
} }
if(instance->pair_callback) // Deliver callback
if(instance->pair_callback) {
instance->pair_callback( instance->pair_callback(
instance->context, frequency_rssi.frequency, frequency_rssi.rssi); instance->context, frequency_rssi.frequency, frequency_rssi.rssi);
}
} else { } else {
if(instance->count_repet > 0) { if(instance->sample_hold_counter > 0) {
instance->count_repet--; instance->sample_hold_counter--;
} else { } else {
instance->filVal = 0; instance->filVal = 0;
if(instance->pair_callback) instance->pair_callback(instance->context, 0, 0); if(instance->pair_callback) instance->pair_callback(instance->context, 0, 0);

View File

@ -401,13 +401,14 @@ void subghz_protocol_decoder_megacode_get_string(void* context, string_t output)
string_cat_printf( string_cat_printf(
output, output,
"%s %dbit\r\n" "%s %dbit\r\n"
"Key:%06lX\r\n" "Key:0x%06lX\r\n"
"Sn:%04lX Btn:%X\r\n" "Sn:0x%04lX - %d\r\n"
"Facility:%X\r\n", "Facility:%X Btn:%X\r\n",
instance->generic.protocol_name, instance->generic.protocol_name,
instance->generic.data_count_bit, instance->generic.data_count_bit,
(uint32_t)instance->generic.data, (uint32_t)instance->generic.data,
instance->generic.serial, instance->generic.serial,
instance->generic.btn, instance->generic.serial,
instance->generic.cnt); instance->generic.cnt,
instance->generic.btn);
} }