[FL-2219, FL-2251] System, FuriCore, FuriHal: various bug fixes and improvements (#986)
* Replace irq shenanigans with critical section * Power: halt system on power off instead of crash. * Gui: properly handle input event on NULL current_view * FuriHal: correct gpio configuration sequence * FuriHal: cleanup uart initialization. Makefile: allow to disable thread support. * Loader: improve locking, fix simultaneous app start crash, full command line args support for gui apps, more consistent insomnia * Loader: correct spelling * FuriHal: increase gpio configuration readability * FuriHal: correct gpio configuration error when mode is GpioModeEventRiseFall Co-authored-by: DrZlo13 <who.just.the.doctor@gmail.com>
This commit is contained in:
		@@ -22,6 +22,8 @@
 | 
			
		||||
 | 
			
		||||
#include <string.h>
 | 
			
		||||
 | 
			
		||||
#include <furi/common_defines.h>
 | 
			
		||||
 | 
			
		||||
#include "cmsis_os2.h"                  // ::CMSIS:RTOS2
 | 
			
		||||
#include "cmsis_compiler.h"             // Compiler agnostic definitions
 | 
			
		||||
#include "os_tick.h"                    // OS Tick API
 | 
			
		||||
@@ -455,11 +457,10 @@ uint32_t osKernelGetTickFreq (void) {
 | 
			
		||||
  Get the RTOS kernel system timer count.
 | 
			
		||||
*/
 | 
			
		||||
uint32_t osKernelGetSysTimerCount (void) {
 | 
			
		||||
  uint32_t irqmask = IS_IRQ_MASKED();
 | 
			
		||||
  TickType_t ticks;
 | 
			
		||||
  uint32_t val;
 | 
			
		||||
 | 
			
		||||
  __disable_irq();
 | 
			
		||||
  FURI_CRITICAL_ENTER();
 | 
			
		||||
 | 
			
		||||
  ticks = xTaskGetTickCount();
 | 
			
		||||
  val   = OS_Tick_GetCount();
 | 
			
		||||
@@ -471,9 +472,7 @@ uint32_t osKernelGetSysTimerCount (void) {
 | 
			
		||||
  }
 | 
			
		||||
  val += ticks * OS_Tick_GetInterval();
 | 
			
		||||
 | 
			
		||||
  if (irqmask == 0U) {
 | 
			
		||||
    __enable_irq();
 | 
			
		||||
  }
 | 
			
		||||
  FURI_CRITICAL_EXIT();
 | 
			
		||||
 | 
			
		||||
  /* Return system timer count */
 | 
			
		||||
  return (val);
 | 
			
		||||
 
 | 
			
		||||
@@ -1,96 +0,0 @@
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <furi.h>
 | 
			
		||||
#include <furi_hal.h>
 | 
			
		||||
 | 
			
		||||
class CyfralTiming {
 | 
			
		||||
public:
 | 
			
		||||
    constexpr static const uint8_t ZERO_HIGH = 50;
 | 
			
		||||
    constexpr static const uint8_t ZERO_LOW = 70;
 | 
			
		||||
    constexpr static const uint8_t ONE_HIGH = 100;
 | 
			
		||||
    constexpr static const uint8_t ONE_LOW = 70;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
class CyfralEmulator {
 | 
			
		||||
private:
 | 
			
		||||
    void send_nibble(uint8_t nibble);
 | 
			
		||||
    void send_byte(uint8_t data);
 | 
			
		||||
    inline void send_bit(bool bit);
 | 
			
		||||
    const GpioPin* emulate_pin_record;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
    CyfralEmulator(const GpioPin* emulate_pin);
 | 
			
		||||
    ~CyfralEmulator();
 | 
			
		||||
    void send(uint8_t* data, uint8_t count = 1, uint8_t repeat = 1);
 | 
			
		||||
    void start(void);
 | 
			
		||||
    void stop(void);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// 7 = 0 1 1 1
 | 
			
		||||
// B = 1 0 1 1
 | 
			
		||||
// D = 1 1 0 1
 | 
			
		||||
// E = 1 1 1 0
 | 
			
		||||
 | 
			
		||||
void CyfralEmulator::send_nibble(uint8_t nibble) {
 | 
			
		||||
    for(uint8_t i = 0; i < 4; i++) {
 | 
			
		||||
        bool bit = nibble & (0b1000 >> i);
 | 
			
		||||
        send_bit(bit);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CyfralEmulator::send_byte(uint8_t data) {
 | 
			
		||||
    for(uint8_t i = 0; i < 8; i++) {
 | 
			
		||||
        bool bit = data & (0b10000000 >> i);
 | 
			
		||||
        send_bit(bit);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CyfralEmulator::send_bit(bool bit) {
 | 
			
		||||
    if(!bit) {
 | 
			
		||||
        hal_gpio_write(&ibutton_gpio, false);
 | 
			
		||||
        delay_us(CyfralTiming::ZERO_LOW);
 | 
			
		||||
        hal_gpio_write(&ibutton_gpio, true);
 | 
			
		||||
        delay_us(CyfralTiming::ZERO_HIGH);
 | 
			
		||||
        hal_gpio_write(&ibutton_gpio, false);
 | 
			
		||||
        delay_us(CyfralTiming::ZERO_LOW);
 | 
			
		||||
    } else {
 | 
			
		||||
        hal_gpio_write(&ibutton_gpio, true);
 | 
			
		||||
        delay_us(CyfralTiming::ONE_HIGH);
 | 
			
		||||
        hal_gpio_write(&ibutton_gpio, false);
 | 
			
		||||
        delay_us(CyfralTiming::ONE_LOW);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
CyfralEmulator::CyfralEmulator(const GpioPin* emulate_pin) {
 | 
			
		||||
    emulate_pin_record = emulate_pin;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
CyfralEmulator::~CyfralEmulator() {
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CyfralEmulator::send(uint8_t* data, uint8_t count, uint8_t repeat) {
 | 
			
		||||
    osKernelLock();
 | 
			
		||||
    __disable_irq();
 | 
			
		||||
 | 
			
		||||
    for(uint8_t i = 0; i < repeat; i++) {
 | 
			
		||||
        // start sequence
 | 
			
		||||
        send_nibble(0x01);
 | 
			
		||||
 | 
			
		||||
        // send data
 | 
			
		||||
        for(uint8_t i = 0; i < count; i++) {
 | 
			
		||||
            send_byte(data[i]);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    __enable_irq();
 | 
			
		||||
    osKernelUnlock();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CyfralEmulator::start(void) {
 | 
			
		||||
    hal_gpio_init(emulate_pin_record, GpioModeOutputOpenDrain, GpioPullNo, GpioSpeedLow);
 | 
			
		||||
    hal_gpio_write(emulate_pin_record, false);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CyfralEmulator::stop(void) {
 | 
			
		||||
    hal_gpio_init(emulate_pin_record, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
 | 
			
		||||
}
 | 
			
		||||
@@ -1,272 +0,0 @@
 | 
			
		||||
#pragma once
 | 
			
		||||
#include <furi.h>
 | 
			
		||||
 | 
			
		||||
enum class CyfralReaderError : uint8_t {
 | 
			
		||||
    NO_ERROR = 0,
 | 
			
		||||
    UNABLE_TO_DETECT = 1,
 | 
			
		||||
    RAW_DATA_SIZE_ERROR = 2,
 | 
			
		||||
    UNKNOWN_NIBBLE_VALUE = 3,
 | 
			
		||||
    NO_START_NIBBLE = 4,
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
class CyfralReader {
 | 
			
		||||
private:
 | 
			
		||||
    ADC_HandleTypeDef adc_config;
 | 
			
		||||
    ADC_TypeDef* adc_instance;
 | 
			
		||||
    uint32_t adc_channel;
 | 
			
		||||
 | 
			
		||||
    void get_line_minmax(uint16_t times, uint32_t* min_level, uint32_t* max_level);
 | 
			
		||||
    void capture_data(bool* data, uint16_t capture_size, uint32_t line_min, uint32_t line_max);
 | 
			
		||||
    bool parse_data(bool* raw_data, uint16_t capture_size, uint8_t* data, uint8_t count);
 | 
			
		||||
    uint32_t search_array_in_array(
 | 
			
		||||
        const bool* haystack,
 | 
			
		||||
        const uint32_t haystack_size,
 | 
			
		||||
        const bool* needle,
 | 
			
		||||
        const uint32_t needle_size);
 | 
			
		||||
 | 
			
		||||
    // key is 9 nibbles
 | 
			
		||||
    static const uint16_t bits_in_nibble = 4;
 | 
			
		||||
    static const uint16_t key_length = 9;
 | 
			
		||||
    static const uint32_t capture_size = key_length * bits_in_nibble * 2;
 | 
			
		||||
    CyfralReaderError error;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
    CyfralReader(ADC_TypeDef* adc, uint32_t Channel);
 | 
			
		||||
    ~CyfralReader();
 | 
			
		||||
    void start(void);
 | 
			
		||||
    void stop(void);
 | 
			
		||||
    bool read(uint8_t* data, uint8_t count);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
void CyfralReader::get_line_minmax(uint16_t times, uint32_t* min_level, uint32_t* max_level) {
 | 
			
		||||
    uint32_t in = 0;
 | 
			
		||||
    uint32_t min = UINT_MAX;
 | 
			
		||||
    uint32_t max = 0;
 | 
			
		||||
 | 
			
		||||
    for(uint32_t i = 0; i < 256; i++) {
 | 
			
		||||
        HAL_ADC_Start(&adc_config);
 | 
			
		||||
        HAL_ADC_PollForConversion(&adc_config, 100);
 | 
			
		||||
        in = HAL_ADC_GetValue(&adc_config);
 | 
			
		||||
        if(in < min) min = in;
 | 
			
		||||
        if(in > max) max = in;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    *min_level = min;
 | 
			
		||||
    *max_level = max;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CyfralReader::capture_data(
 | 
			
		||||
    bool* data,
 | 
			
		||||
    uint16_t capture_size,
 | 
			
		||||
    uint32_t line_min,
 | 
			
		||||
    uint32_t line_max) {
 | 
			
		||||
    uint32_t input_value = 0;
 | 
			
		||||
    bool last_input_value = 0;
 | 
			
		||||
 | 
			
		||||
    uint32_t diff = line_max - line_min;
 | 
			
		||||
    uint32_t mid = line_min + diff / 2;
 | 
			
		||||
 | 
			
		||||
    uint32_t low_threshold = mid - (diff / 4);
 | 
			
		||||
    uint32_t high_threshold = mid - (diff / 4);
 | 
			
		||||
 | 
			
		||||
    uint16_t capture_position = 0;
 | 
			
		||||
    uint32_t instructions_per_us = (SystemCoreClock / 1000000.0f);
 | 
			
		||||
    uint32_t time_threshold = 75 * instructions_per_us;
 | 
			
		||||
    uint32_t capture_max_time = 140 * (capture_size * 2) * instructions_per_us;
 | 
			
		||||
 | 
			
		||||
    uint32_t start = DWT->CYCCNT;
 | 
			
		||||
    uint32_t end = DWT->CYCCNT;
 | 
			
		||||
 | 
			
		||||
    memset(data, 0, capture_size);
 | 
			
		||||
 | 
			
		||||
    osKernelLock();
 | 
			
		||||
 | 
			
		||||
    uint32_t capture_start = DWT->CYCCNT;
 | 
			
		||||
    while((capture_position < capture_size) &&
 | 
			
		||||
          ((DWT->CYCCNT - capture_start) < capture_max_time)) {
 | 
			
		||||
        // read adc
 | 
			
		||||
        HAL_ADC_Start(&adc_config);
 | 
			
		||||
        HAL_ADC_PollForConversion(&adc_config, 100);
 | 
			
		||||
        input_value = HAL_ADC_GetValue(&adc_config);
 | 
			
		||||
 | 
			
		||||
        // low to high transition
 | 
			
		||||
        if((input_value > high_threshold) && last_input_value == 0) {
 | 
			
		||||
            last_input_value = 1;
 | 
			
		||||
            start = DWT->CYCCNT;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // high to low transition
 | 
			
		||||
        if((input_value < low_threshold) && last_input_value == 1) {
 | 
			
		||||
            last_input_value = 0;
 | 
			
		||||
            end = DWT->CYCCNT;
 | 
			
		||||
 | 
			
		||||
            // check transition time
 | 
			
		||||
            if(end - start < time_threshold) {
 | 
			
		||||
                data[capture_position] = 1;
 | 
			
		||||
                capture_position++;
 | 
			
		||||
            } else {
 | 
			
		||||
                data[capture_position] = 0;
 | 
			
		||||
                capture_position++;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    osKernelUnlock();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
uint32_t CyfralReader::search_array_in_array(
 | 
			
		||||
    const bool* haystack,
 | 
			
		||||
    const uint32_t haystack_size,
 | 
			
		||||
    const bool* needle,
 | 
			
		||||
    const uint32_t needle_size) {
 | 
			
		||||
    uint32_t haystack_index = 0, needle_index = 0;
 | 
			
		||||
 | 
			
		||||
    while(haystack_index < haystack_size && needle_index < needle_size) {
 | 
			
		||||
        if(haystack[haystack_index] == needle[needle_index]) {
 | 
			
		||||
            haystack_index++;
 | 
			
		||||
            needle_index++;
 | 
			
		||||
            if(needle_index == needle_size) {
 | 
			
		||||
                return (haystack_index - needle_size);
 | 
			
		||||
            };
 | 
			
		||||
        } else {
 | 
			
		||||
            haystack_index = haystack_index - needle_index + 1;
 | 
			
		||||
            needle_index = 0;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return haystack_index;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool CyfralReader::parse_data(bool* raw_data, uint16_t capture_size, uint8_t* data, uint8_t count) {
 | 
			
		||||
    const bool start_nibble[bits_in_nibble] = {1, 1, 1, 0};
 | 
			
		||||
    uint32_t start_position =
 | 
			
		||||
        search_array_in_array(raw_data, capture_size, start_nibble, bits_in_nibble);
 | 
			
		||||
    uint32_t end_position = 0;
 | 
			
		||||
 | 
			
		||||
    memset(data, 0, count);
 | 
			
		||||
 | 
			
		||||
    if(start_position < capture_size) {
 | 
			
		||||
        start_position = start_position + bits_in_nibble;
 | 
			
		||||
        end_position = start_position + count * 2 * bits_in_nibble;
 | 
			
		||||
 | 
			
		||||
        if(end_position >= capture_size) {
 | 
			
		||||
            error = CyfralReaderError::RAW_DATA_SIZE_ERROR;
 | 
			
		||||
            return false;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        bool first_nibble = true;
 | 
			
		||||
        uint8_t data_position = 0;
 | 
			
		||||
        uint8_t nibble_value = 0;
 | 
			
		||||
 | 
			
		||||
        while(data_position < count) {
 | 
			
		||||
            nibble_value = !raw_data[start_position] << 3 | !raw_data[start_position + 1] << 2 |
 | 
			
		||||
                           !raw_data[start_position + 2] << 1 | !raw_data[start_position + 3];
 | 
			
		||||
 | 
			
		||||
            switch(nibble_value) {
 | 
			
		||||
            case(0x7):
 | 
			
		||||
            case(0xB):
 | 
			
		||||
            case(0xD):
 | 
			
		||||
            case(0xE):
 | 
			
		||||
                break;
 | 
			
		||||
            default:
 | 
			
		||||
                error = CyfralReaderError::UNKNOWN_NIBBLE_VALUE;
 | 
			
		||||
                return false;
 | 
			
		||||
                break;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            if(first_nibble) {
 | 
			
		||||
                data[data_position] |= nibble_value << 4;
 | 
			
		||||
            } else {
 | 
			
		||||
                data[data_position] |= nibble_value;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            first_nibble = !first_nibble;
 | 
			
		||||
 | 
			
		||||
            if(first_nibble) {
 | 
			
		||||
                data_position++;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            start_position = start_position + bits_in_nibble;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        error = CyfralReaderError::NO_ERROR;
 | 
			
		||||
        return true;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    error = CyfralReaderError::NO_START_NIBBLE;
 | 
			
		||||
    return false;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
CyfralReader::CyfralReader(ADC_TypeDef* adc, uint32_t channel) {
 | 
			
		||||
    adc_instance = adc;
 | 
			
		||||
    adc_channel = channel;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
CyfralReader::~CyfralReader() {
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CyfralReader::start(void) {
 | 
			
		||||
    ADC_ChannelConfTypeDef sConfig = {0};
 | 
			
		||||
 | 
			
		||||
    // init ADC
 | 
			
		||||
    adc_config.Instance = adc_instance;
 | 
			
		||||
    adc_config.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
 | 
			
		||||
    adc_config.Init.Resolution = ADC_RESOLUTION_12B;
 | 
			
		||||
    adc_config.Init.DataAlign = ADC_DATAALIGN_RIGHT;
 | 
			
		||||
    adc_config.Init.ScanConvMode = ADC_SCAN_DISABLE;
 | 
			
		||||
    adc_config.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
 | 
			
		||||
    adc_config.Init.LowPowerAutoWait = DISABLE;
 | 
			
		||||
    adc_config.Init.ContinuousConvMode = DISABLE;
 | 
			
		||||
    adc_config.Init.NbrOfConversion = 1;
 | 
			
		||||
    adc_config.Init.DiscontinuousConvMode = DISABLE;
 | 
			
		||||
    adc_config.Init.ExternalTrigConv = ADC_SOFTWARE_START;
 | 
			
		||||
    adc_config.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
 | 
			
		||||
    adc_config.Init.DMAContinuousRequests = DISABLE;
 | 
			
		||||
    adc_config.Init.Overrun = ADC_OVR_DATA_PRESERVED;
 | 
			
		||||
    adc_config.Init.OversamplingMode = DISABLE;
 | 
			
		||||
    if(HAL_ADC_Init(&adc_config) != HAL_OK) {
 | 
			
		||||
        Error_Handler();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // init channel
 | 
			
		||||
    sConfig.Channel = adc_channel;
 | 
			
		||||
    sConfig.Rank = ADC_REGULAR_RANK_1;
 | 
			
		||||
    sConfig.SamplingTime = ADC_SAMPLETIME_2CYCLES_5;
 | 
			
		||||
    sConfig.SingleDiff = ADC_SINGLE_ENDED;
 | 
			
		||||
    sConfig.OffsetNumber = ADC_OFFSET_NONE;
 | 
			
		||||
    sConfig.Offset = 0;
 | 
			
		||||
    if(HAL_ADC_ConfigChannel(&adc_config, &sConfig) != HAL_OK) {
 | 
			
		||||
        Error_Handler();
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CyfralReader::stop(void) {
 | 
			
		||||
    HAL_ADC_DeInit(&adc_config);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool CyfralReader::read(uint8_t* data, uint8_t count) {
 | 
			
		||||
    uint32_t line_level_min, line_level_max;
 | 
			
		||||
    bool raw_data[capture_size];
 | 
			
		||||
    bool result = false;
 | 
			
		||||
    error = CyfralReaderError::NO_ERROR;
 | 
			
		||||
 | 
			
		||||
    // calibrate
 | 
			
		||||
    get_line_minmax(256, &line_level_min, &line_level_max);
 | 
			
		||||
 | 
			
		||||
    // TODO think about other detection method
 | 
			
		||||
    // key not on line
 | 
			
		||||
    if(line_level_max > 2000) {
 | 
			
		||||
        error = CyfralReaderError::UNABLE_TO_DETECT;
 | 
			
		||||
        return false;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // capturing raw data consisting of bits
 | 
			
		||||
    capture_data(raw_data, capture_size, line_level_min, line_level_max);
 | 
			
		||||
 | 
			
		||||
    // parse captured data
 | 
			
		||||
    if(parse_data(raw_data, capture_size, data, count)) {
 | 
			
		||||
        result = true;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return result;
 | 
			
		||||
}
 | 
			
		||||
@@ -1,283 +0,0 @@
 | 
			
		||||
#pragma once
 | 
			
		||||
#include <furi.h>
 | 
			
		||||
#include "callback-connector.h"
 | 
			
		||||
#include <atomic>
 | 
			
		||||
 | 
			
		||||
enum class CyfralReaderCompError : uint8_t {
 | 
			
		||||
    NO_ERROR = 0,
 | 
			
		||||
    UNABLE_TO_DETECT = 1,
 | 
			
		||||
    RAW_DATA_SIZE_ERROR = 2,
 | 
			
		||||
    UNKNOWN_NIBBLE_VALUE = 3,
 | 
			
		||||
    NO_START_NIBBLE = 4,
 | 
			
		||||
    NOT_ENOUGH_DATA = 5,
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
extern COMP_HandleTypeDef hcomp1;
 | 
			
		||||
 | 
			
		||||
typedef struct {
 | 
			
		||||
    bool value;
 | 
			
		||||
    uint32_t dwt_value;
 | 
			
		||||
} CompEvent;
 | 
			
		||||
 | 
			
		||||
class CyfralReaderComp {
 | 
			
		||||
private:
 | 
			
		||||
    bool capture_data(bool* data, uint16_t capture_size);
 | 
			
		||||
    bool parse_data(bool* raw_data, uint16_t capture_size, uint8_t* data, uint8_t count);
 | 
			
		||||
    uint32_t search_array_in_array(
 | 
			
		||||
        const bool* haystack,
 | 
			
		||||
        const uint32_t haystack_size,
 | 
			
		||||
        const bool* needle,
 | 
			
		||||
        const uint32_t needle_size);
 | 
			
		||||
 | 
			
		||||
    // key is 9 nibbles
 | 
			
		||||
    static const uint16_t bits_in_nibble = 4;
 | 
			
		||||
    static const uint16_t key_length = 9;
 | 
			
		||||
    static const uint32_t capture_size = key_length * bits_in_nibble * 2;
 | 
			
		||||
    CyfralReaderCompError error;
 | 
			
		||||
    const GpioPin* pin_record;
 | 
			
		||||
 | 
			
		||||
    std::atomic<bool> ready_to_process;
 | 
			
		||||
    void comparator_trigger_callback(void* hcomp, void* comp_ctx);
 | 
			
		||||
    osMessageQueueId_t comp_event_queue;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
    CyfralReaderComp(const GpioPin* emulate_pin);
 | 
			
		||||
    ~CyfralReaderComp();
 | 
			
		||||
    void start(void);
 | 
			
		||||
    void stop(void);
 | 
			
		||||
    bool read(uint8_t* data, uint8_t count);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
bool CyfralReaderComp::capture_data(bool* data, uint16_t capture_size) {
 | 
			
		||||
    uint32_t prev_timing = 0;
 | 
			
		||||
    uint16_t data_index = 0;
 | 
			
		||||
    CompEvent event_0, event_1;
 | 
			
		||||
    osStatus_t status;
 | 
			
		||||
 | 
			
		||||
    // read first event to get initial timing
 | 
			
		||||
    status = osMessageQueueGet(comp_event_queue, &event_0, NULL, 0);
 | 
			
		||||
 | 
			
		||||
    if(status != osOK) {
 | 
			
		||||
        return false;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    prev_timing = event_0.dwt_value;
 | 
			
		||||
 | 
			
		||||
    // read second event until we get 0
 | 
			
		||||
    while(1) {
 | 
			
		||||
        status = osMessageQueueGet(comp_event_queue, &event_0, NULL, 0);
 | 
			
		||||
        if(status != osOK) {
 | 
			
		||||
            return false;
 | 
			
		||||
        }
 | 
			
		||||
        prev_timing = event_0.dwt_value;
 | 
			
		||||
        if(event_0.value == 0) break;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    while(1) {
 | 
			
		||||
        // if event "zero" correct
 | 
			
		||||
        if(status == osOK && event_0.value == 0) {
 | 
			
		||||
            // get timing
 | 
			
		||||
            event_0.dwt_value -= prev_timing;
 | 
			
		||||
            prev_timing += event_0.dwt_value;
 | 
			
		||||
 | 
			
		||||
            // read next event
 | 
			
		||||
            status = osMessageQueueGet(comp_event_queue, &event_1, NULL, 0);
 | 
			
		||||
 | 
			
		||||
            // if event "one" correct
 | 
			
		||||
            if(status == osOK && event_1.value == 1) {
 | 
			
		||||
                // get timing
 | 
			
		||||
                event_1.dwt_value -= prev_timing;
 | 
			
		||||
                prev_timing += event_1.dwt_value;
 | 
			
		||||
 | 
			
		||||
                // calculate percentage of event "one" to full timing
 | 
			
		||||
                uint32_t full_timing = event_0.dwt_value + event_1.dwt_value;
 | 
			
		||||
                uint32_t percentage_1 = 1000000 / full_timing * event_1.dwt_value;
 | 
			
		||||
 | 
			
		||||
                // write captured data
 | 
			
		||||
                data[data_index] = percentage_1 > 500000 ? 0 : 1;
 | 
			
		||||
                data_index++;
 | 
			
		||||
                if(data_index >= capture_size) return true;
 | 
			
		||||
 | 
			
		||||
                status = osMessageQueueGet(comp_event_queue, &event_0, NULL, 0);
 | 
			
		||||
            } else {
 | 
			
		||||
                return false;
 | 
			
		||||
            }
 | 
			
		||||
        } else {
 | 
			
		||||
            return false;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    osMessageQueueReset(comp_event_queue);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
uint32_t CyfralReaderComp::search_array_in_array(
 | 
			
		||||
    const bool* haystack,
 | 
			
		||||
    const uint32_t haystack_size,
 | 
			
		||||
    const bool* needle,
 | 
			
		||||
    const uint32_t needle_size) {
 | 
			
		||||
    uint32_t haystack_index = 0, needle_index = 0;
 | 
			
		||||
 | 
			
		||||
    while(haystack_index < haystack_size && needle_index < needle_size) {
 | 
			
		||||
        if(haystack[haystack_index] == needle[needle_index]) {
 | 
			
		||||
            haystack_index++;
 | 
			
		||||
            needle_index++;
 | 
			
		||||
            if(needle_index == needle_size) {
 | 
			
		||||
                return (haystack_index - needle_size);
 | 
			
		||||
            };
 | 
			
		||||
        } else {
 | 
			
		||||
            haystack_index = haystack_index - needle_index + 1;
 | 
			
		||||
            needle_index = 0;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return haystack_index;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CyfralReaderComp::comparator_trigger_callback(void* hcomp, void* comp_ctx) {
 | 
			
		||||
    CyfralReaderComp* _this = static_cast<CyfralReaderComp*>(comp_ctx);
 | 
			
		||||
    COMP_HandleTypeDef* _hcomp = static_cast<COMP_HandleTypeDef*>(hcomp);
 | 
			
		||||
 | 
			
		||||
    // check that hw is comparator 1
 | 
			
		||||
    if(_hcomp != &hcomp1) return;
 | 
			
		||||
 | 
			
		||||
    // if queue if not full
 | 
			
		||||
    if(_this->ready_to_process == false) {
 | 
			
		||||
        // send event to queue
 | 
			
		||||
        CompEvent event;
 | 
			
		||||
        // TOOD F4 and F5 differ
 | 
			
		||||
        event.value = (HAL_COMP_GetOutputLevel(_hcomp) == COMP_OUTPUT_LEVEL_LOW);
 | 
			
		||||
        event.dwt_value = DWT->CYCCNT;
 | 
			
		||||
        osStatus_t status = osMessageQueuePut(_this->comp_event_queue, &event, 0, 0);
 | 
			
		||||
 | 
			
		||||
        // queue is full, so we need to process data
 | 
			
		||||
        if(status != osOK) {
 | 
			
		||||
            _this->ready_to_process = true;
 | 
			
		||||
        };
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool CyfralReaderComp::parse_data(
 | 
			
		||||
    bool* raw_data,
 | 
			
		||||
    uint16_t capture_size,
 | 
			
		||||
    uint8_t* data,
 | 
			
		||||
    uint8_t count) {
 | 
			
		||||
    const bool start_nibble[bits_in_nibble] = {1, 1, 1, 0};
 | 
			
		||||
    uint32_t start_position =
 | 
			
		||||
        search_array_in_array(raw_data, capture_size, start_nibble, bits_in_nibble);
 | 
			
		||||
    uint32_t end_position = 0;
 | 
			
		||||
 | 
			
		||||
    memset(data, 0, count);
 | 
			
		||||
 | 
			
		||||
    if(start_position < capture_size) {
 | 
			
		||||
        start_position = start_position + bits_in_nibble;
 | 
			
		||||
        end_position = start_position + count * 2 * bits_in_nibble;
 | 
			
		||||
 | 
			
		||||
        if(end_position >= capture_size) {
 | 
			
		||||
            error = CyfralReaderCompError::RAW_DATA_SIZE_ERROR;
 | 
			
		||||
            return false;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        bool first_nibble = true;
 | 
			
		||||
        uint8_t data_position = 0;
 | 
			
		||||
        uint8_t nibble_value = 0;
 | 
			
		||||
 | 
			
		||||
        while(data_position < count) {
 | 
			
		||||
            nibble_value = !raw_data[start_position] << 3 | !raw_data[start_position + 1] << 2 |
 | 
			
		||||
                           !raw_data[start_position + 2] << 1 | !raw_data[start_position + 3];
 | 
			
		||||
 | 
			
		||||
            switch(nibble_value) {
 | 
			
		||||
            case(0x7):
 | 
			
		||||
            case(0xB):
 | 
			
		||||
            case(0xD):
 | 
			
		||||
            case(0xE):
 | 
			
		||||
                break;
 | 
			
		||||
            default:
 | 
			
		||||
                error = CyfralReaderCompError::UNKNOWN_NIBBLE_VALUE;
 | 
			
		||||
                return false;
 | 
			
		||||
                break;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            if(first_nibble) {
 | 
			
		||||
                data[data_position] |= nibble_value << 4;
 | 
			
		||||
            } else {
 | 
			
		||||
                data[data_position] |= nibble_value;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            first_nibble = !first_nibble;
 | 
			
		||||
 | 
			
		||||
            if(first_nibble) {
 | 
			
		||||
                data_position++;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            start_position = start_position + bits_in_nibble;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        error = CyfralReaderCompError::NO_ERROR;
 | 
			
		||||
        return true;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    error = CyfralReaderCompError::NO_START_NIBBLE;
 | 
			
		||||
    return false;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
CyfralReaderComp::CyfralReaderComp(const GpioPin* gpio_pin) {
 | 
			
		||||
    pin_record = gpio_pin;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
CyfralReaderComp::~CyfralReaderComp() {
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CyfralReaderComp::start(void) {
 | 
			
		||||
    // pulldown lf-rfid pins to prevent interference
 | 
			
		||||
    // TODO open record
 | 
			
		||||
    GpioPin rfid_pull_pin = {.port = RFID_PULL_GPIO_Port, .pin = RFID_PULL_Pin};
 | 
			
		||||
    hal_gpio_init((GpioPin*)&rfid_pull_pin, GpioModeOutputOpenDrain, GpioPullNo, GpioSpeedLow);
 | 
			
		||||
    hal_gpio_write((GpioPin*)&rfid_pull_pin, false);
 | 
			
		||||
 | 
			
		||||
    // TODO open record
 | 
			
		||||
    GpioPin rfid_out_pin = {.port = RFID_OUT_GPIO_Port, .pin = RFID_OUT_Pin};
 | 
			
		||||
    hal_gpio_init((GpioPin*)&rfid_out_pin, GpioModeOutputOpenDrain, GpioPullNo, GpioSpeedLow);
 | 
			
		||||
    hal_gpio_write((GpioPin*)&rfid_out_pin, false);
 | 
			
		||||
 | 
			
		||||
    // connect comparator callback
 | 
			
		||||
    void* comp_ctx = this;
 | 
			
		||||
    comp_event_queue = osMessageQueueNew(capture_size * 2 + 2, sizeof(CompEvent), NULL);
 | 
			
		||||
    ready_to_process = false;
 | 
			
		||||
 | 
			
		||||
    auto cmp_cb = cbc::obtain_connector(this, &CyfralReaderComp::comparator_trigger_callback);
 | 
			
		||||
    api_interrupt_add(cmp_cb, InterruptTypeComparatorTrigger, comp_ctx);
 | 
			
		||||
 | 
			
		||||
    // start comaparator
 | 
			
		||||
    HAL_COMP_Start(&hcomp1);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CyfralReaderComp::stop(void) {
 | 
			
		||||
    // stop comaparator
 | 
			
		||||
    HAL_COMP_Stop(&hcomp1);
 | 
			
		||||
 | 
			
		||||
    // disconnect comparator callback
 | 
			
		||||
    auto cmp_cb = cbc::obtain_connector(this, &CyfralReaderComp::comparator_trigger_callback);
 | 
			
		||||
    api_interrupt_remove(cmp_cb, InterruptTypeComparatorTrigger);
 | 
			
		||||
    osMessageQueueDelete(comp_event_queue);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool CyfralReaderComp::read(uint8_t* data, uint8_t count) {
 | 
			
		||||
    bool raw_data[capture_size];
 | 
			
		||||
    bool result = false;
 | 
			
		||||
    error = CyfralReaderCompError::NO_ERROR;
 | 
			
		||||
 | 
			
		||||
    if(ready_to_process == false) {
 | 
			
		||||
        error = CyfralReaderCompError::NOT_ENOUGH_DATA;
 | 
			
		||||
    } else {
 | 
			
		||||
        memset(raw_data, 0, sizeof(bool) * capture_size);
 | 
			
		||||
        if(capture_data(raw_data, capture_size)) {
 | 
			
		||||
            if(parse_data(raw_data, capture_size, data, count)) {
 | 
			
		||||
                result = true;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        ready_to_process = false;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return result;
 | 
			
		||||
}
 | 
			
		||||
@@ -1,320 +0,0 @@
 | 
			
		||||
#include "blanks_writer.h"
 | 
			
		||||
 | 
			
		||||
class RW1990_1 {
 | 
			
		||||
public:
 | 
			
		||||
    constexpr static const uint8_t CMD_WRITE_RECORD_FLAG = 0xD1;
 | 
			
		||||
    constexpr static const uint8_t CMD_READ_RECORD_FLAG = 0xB5;
 | 
			
		||||
    constexpr static const uint8_t CMD_WRITE_ROM = 0xD5;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
class RW1990_2 {
 | 
			
		||||
public:
 | 
			
		||||
    constexpr static const uint8_t CMD_WRITE_RECORD_FLAG = 0x1D;
 | 
			
		||||
    constexpr static const uint8_t CMD_READ_RECORD_FLAG = 0x1E;
 | 
			
		||||
    constexpr static const uint8_t CMD_WRITE_ROM = 0xD5;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
class TM2004 {
 | 
			
		||||
public:
 | 
			
		||||
    constexpr static const uint8_t CMD_READ_STATUS = 0xAA;
 | 
			
		||||
    constexpr static const uint8_t CMD_READ_MEMORY = 0xF0;
 | 
			
		||||
    constexpr static const uint8_t CMD_WRITE_ROM = 0x3C;
 | 
			
		||||
    constexpr static const uint8_t CMD_FINALIZATION = 0x35;
 | 
			
		||||
 | 
			
		||||
    constexpr static const uint8_t ANSWER_READ_MEMORY = 0xF5;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
class TM01 {
 | 
			
		||||
public:
 | 
			
		||||
    constexpr static const uint8_t CMD_WRITE_RECORD_FLAG = 0xC1;
 | 
			
		||||
    constexpr static const uint8_t CMD_WRITE_ROM = 0xC5;
 | 
			
		||||
    constexpr static const uint8_t CMD_SWITCH_TO_CYFRAL = 0xCA;
 | 
			
		||||
    constexpr static const uint8_t CMD_SWITCH_TO_METAKOM = 0xCB;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
class DS1990 {
 | 
			
		||||
public:
 | 
			
		||||
    constexpr static const uint8_t CMD_READ_ROM = 0x33;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#include <stdio.h>
 | 
			
		||||
#include <stdarg.h>
 | 
			
		||||
#include <string.h>
 | 
			
		||||
#include <furi_hal.h>
 | 
			
		||||
 | 
			
		||||
void BlanksWriter::onewire_release(void) {
 | 
			
		||||
    hal_gpio_write(gpio, true);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void BlanksWriter::onewire_write_one_bit(bool value, uint32_t delay = 10000) {
 | 
			
		||||
    onewire->write_bit(value);
 | 
			
		||||
    delay_us(delay);
 | 
			
		||||
    onewire_release();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
BlanksWriter::BlanksWriter(const GpioPin* one_wire_gpio) {
 | 
			
		||||
    gpio = one_wire_gpio;
 | 
			
		||||
    onewire = new OneWireMaster(gpio);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
BlanksWriter::~BlanksWriter() {
 | 
			
		||||
    free(onewire);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
WriterResult BlanksWriter::write(KeyType type, const uint8_t* key, uint8_t key_length) {
 | 
			
		||||
    uint8_t write_result = -1;
 | 
			
		||||
    WriterResult result = WR_ERROR;
 | 
			
		||||
 | 
			
		||||
    bool same_key = false;
 | 
			
		||||
 | 
			
		||||
    osKernelLock();
 | 
			
		||||
    bool presence = onewire->reset();
 | 
			
		||||
    osKernelUnlock();
 | 
			
		||||
 | 
			
		||||
    if(presence) {
 | 
			
		||||
        switch(type) {
 | 
			
		||||
        case KeyType::KEY_DS1990:
 | 
			
		||||
            same_key = compare_key_ds1990(key, key_length);
 | 
			
		||||
 | 
			
		||||
            if(!same_key) {
 | 
			
		||||
                // currently we can write:
 | 
			
		||||
                // RW1990, TM08v2, TM08vi-2 by write_1990_1()
 | 
			
		||||
                // RW2004, RW2004 with EEPROM by write_TM2004();
 | 
			
		||||
 | 
			
		||||
                if(write_result != 1) {
 | 
			
		||||
                    write_result = write_1990_1(key, key_length);
 | 
			
		||||
                }
 | 
			
		||||
                if(write_result != 1) {
 | 
			
		||||
                    write_result = write_1990_2(key, key_length);
 | 
			
		||||
                }
 | 
			
		||||
                if(write_result != 1) {
 | 
			
		||||
                    write_result = write_TM2004(key, key_length);
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
                if(write_result == 1) {
 | 
			
		||||
                    result = WR_OK;
 | 
			
		||||
                } else if(write_result == 0) {
 | 
			
		||||
                    result = WR_ERROR;
 | 
			
		||||
                }
 | 
			
		||||
            } else {
 | 
			
		||||
                write_result = 0;
 | 
			
		||||
                result = WR_SAME_KEY;
 | 
			
		||||
            }
 | 
			
		||||
            break;
 | 
			
		||||
 | 
			
		||||
        default:
 | 
			
		||||
            break;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return result;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool BlanksWriter::write_TM2004(const uint8_t* key, uint8_t key_length) {
 | 
			
		||||
    uint8_t answer;
 | 
			
		||||
    bool result = true;
 | 
			
		||||
 | 
			
		||||
    osKernelLock();
 | 
			
		||||
    __disable_irq();
 | 
			
		||||
 | 
			
		||||
    // write rom, addr is 0x0000
 | 
			
		||||
    onewire->reset();
 | 
			
		||||
    onewire->write(TM2004::CMD_WRITE_ROM);
 | 
			
		||||
    onewire->write(0x00);
 | 
			
		||||
    onewire->write(0x00);
 | 
			
		||||
 | 
			
		||||
    // write key
 | 
			
		||||
    for(uint8_t i = 0; i < key_length; i++) {
 | 
			
		||||
        // write key byte
 | 
			
		||||
        onewire->write(key[i]);
 | 
			
		||||
        answer = onewire->read();
 | 
			
		||||
        // TODO: check answer CRC
 | 
			
		||||
 | 
			
		||||
        // pulse indicating that data is correct
 | 
			
		||||
        delay_us(600);
 | 
			
		||||
        onewire_write_one_bit(1, 50000);
 | 
			
		||||
 | 
			
		||||
        // read writed key byte
 | 
			
		||||
        answer = onewire->read();
 | 
			
		||||
 | 
			
		||||
        // check that writed and readed are same
 | 
			
		||||
        if(key[i] != answer) {
 | 
			
		||||
            result = false;
 | 
			
		||||
            break;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    onewire->reset();
 | 
			
		||||
 | 
			
		||||
    __enable_irq();
 | 
			
		||||
    osKernelUnlock();
 | 
			
		||||
 | 
			
		||||
    return result;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool BlanksWriter::write_1990_1(const uint8_t* key, uint8_t key_length) {
 | 
			
		||||
    bool result = true;
 | 
			
		||||
 | 
			
		||||
    osKernelLock();
 | 
			
		||||
    __disable_irq();
 | 
			
		||||
 | 
			
		||||
    // unlock
 | 
			
		||||
    onewire->reset();
 | 
			
		||||
    onewire->write(RW1990_1::CMD_WRITE_RECORD_FLAG);
 | 
			
		||||
    delay_us(10);
 | 
			
		||||
    onewire_write_one_bit(0, 5000);
 | 
			
		||||
 | 
			
		||||
    // write key
 | 
			
		||||
    onewire->reset();
 | 
			
		||||
    onewire->write(RW1990_1::CMD_WRITE_ROM);
 | 
			
		||||
    for(uint8_t i = 0; i < key_length; i++) {
 | 
			
		||||
        // inverted key for RW1990.1
 | 
			
		||||
        write_byte_ds1990(~key[i]);
 | 
			
		||||
        delay_us(30000);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // lock
 | 
			
		||||
    onewire->write(RW1990_1::CMD_WRITE_RECORD_FLAG);
 | 
			
		||||
    onewire_write_one_bit(1);
 | 
			
		||||
 | 
			
		||||
    __enable_irq();
 | 
			
		||||
    osKernelUnlock();
 | 
			
		||||
 | 
			
		||||
    if(!compare_key_ds1990(key, key_length)) {
 | 
			
		||||
        result = false;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return result;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool BlanksWriter::write_1990_2(const uint8_t* key, uint8_t key_length) {
 | 
			
		||||
    bool result = true;
 | 
			
		||||
 | 
			
		||||
    osKernelLock();
 | 
			
		||||
    __disable_irq();
 | 
			
		||||
 | 
			
		||||
    // unlock
 | 
			
		||||
    onewire->reset();
 | 
			
		||||
    onewire->write(RW1990_2::CMD_WRITE_RECORD_FLAG);
 | 
			
		||||
    delay_us(10);
 | 
			
		||||
    onewire_write_one_bit(1, 5000);
 | 
			
		||||
 | 
			
		||||
    // write key
 | 
			
		||||
    onewire->reset();
 | 
			
		||||
    onewire->write(RW1990_2::CMD_WRITE_ROM);
 | 
			
		||||
    for(uint8_t i = 0; i < key_length; i++) {
 | 
			
		||||
        write_byte_ds1990(key[i]);
 | 
			
		||||
        delay_us(30000);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // lock
 | 
			
		||||
    onewire->write(RW1990_2::CMD_WRITE_RECORD_FLAG);
 | 
			
		||||
    onewire_write_one_bit(0);
 | 
			
		||||
 | 
			
		||||
    __enable_irq();
 | 
			
		||||
    osKernelUnlock();
 | 
			
		||||
 | 
			
		||||
    if(!compare_key_ds1990(key, key_length)) {
 | 
			
		||||
        result = false;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return result;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// TODO: untested
 | 
			
		||||
bool BlanksWriter::write_TM01(KeyType type, const uint8_t* key, uint8_t key_length) {
 | 
			
		||||
    bool result = true;
 | 
			
		||||
 | 
			
		||||
    osKernelLock();
 | 
			
		||||
    __disable_irq();
 | 
			
		||||
 | 
			
		||||
    // unlock
 | 
			
		||||
    onewire->reset();
 | 
			
		||||
    onewire->write(TM01::CMD_WRITE_RECORD_FLAG);
 | 
			
		||||
    onewire_write_one_bit(1, 10000);
 | 
			
		||||
 | 
			
		||||
    // write key
 | 
			
		||||
    onewire->reset();
 | 
			
		||||
    onewire->write(TM01::CMD_WRITE_ROM);
 | 
			
		||||
 | 
			
		||||
    // TODO: key types
 | 
			
		||||
    //if(type == KEY_METAKOM || type == KEY_CYFRAL) {
 | 
			
		||||
    //} else {
 | 
			
		||||
    for(uint8_t i = 0; i < key_length; i++) {
 | 
			
		||||
        write_byte_ds1990(key[i]);
 | 
			
		||||
        delay_us(10000);
 | 
			
		||||
    }
 | 
			
		||||
    //}
 | 
			
		||||
 | 
			
		||||
    // lock
 | 
			
		||||
    onewire->write(TM01::CMD_WRITE_RECORD_FLAG);
 | 
			
		||||
    onewire_write_one_bit(0, 10000);
 | 
			
		||||
 | 
			
		||||
    __enable_irq();
 | 
			
		||||
    osKernelUnlock();
 | 
			
		||||
 | 
			
		||||
    if(!compare_key_ds1990(key, key_length)) {
 | 
			
		||||
        result = false;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    osKernelLock();
 | 
			
		||||
    __disable_irq();
 | 
			
		||||
 | 
			
		||||
    if(type == KEY_METAKOM || type == KEY_CYFRAL) {
 | 
			
		||||
        onewire->reset();
 | 
			
		||||
        if(type == KEY_CYFRAL)
 | 
			
		||||
            onewire->write(TM01::CMD_SWITCH_TO_CYFRAL);
 | 
			
		||||
        else
 | 
			
		||||
            onewire->write(TM01::CMD_SWITCH_TO_METAKOM);
 | 
			
		||||
        onewire_write_one_bit(1);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    __enable_irq();
 | 
			
		||||
    osKernelUnlock();
 | 
			
		||||
 | 
			
		||||
    return result;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void BlanksWriter::write_byte_ds1990(uint8_t data) {
 | 
			
		||||
    for(uint8_t n_bit = 0; n_bit < 8; n_bit++) {
 | 
			
		||||
        onewire->write_bit(data & 1);
 | 
			
		||||
        onewire_release();
 | 
			
		||||
        delay_us(5000);
 | 
			
		||||
        data = data >> 1;
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool BlanksWriter::compare_key_ds1990(const uint8_t* key, uint8_t key_length) {
 | 
			
		||||
    uint8_t buff[key_length];
 | 
			
		||||
    bool result = false;
 | 
			
		||||
 | 
			
		||||
    osKernelLock();
 | 
			
		||||
    bool presence = onewire->reset();
 | 
			
		||||
    osKernelUnlock();
 | 
			
		||||
 | 
			
		||||
    if(presence) {
 | 
			
		||||
        osKernelLock();
 | 
			
		||||
        __disable_irq();
 | 
			
		||||
        onewire->write(DS1990::CMD_READ_ROM);
 | 
			
		||||
        onewire->read_bytes(buff, key_length);
 | 
			
		||||
        __enable_irq();
 | 
			
		||||
        osKernelUnlock();
 | 
			
		||||
 | 
			
		||||
        result = true;
 | 
			
		||||
        for(uint8_t i = 0; i < 8; i++) {
 | 
			
		||||
            if(key[i] != buff[i]) {
 | 
			
		||||
                result = false;
 | 
			
		||||
                break;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    return result;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void BlanksWriter::start() {
 | 
			
		||||
    onewire->start();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void BlanksWriter::stop() {
 | 
			
		||||
    onewire->stop();
 | 
			
		||||
}
 | 
			
		||||
@@ -1,40 +0,0 @@
 | 
			
		||||
#pragma once
 | 
			
		||||
#include "one_wire_master.h"
 | 
			
		||||
#include "maxim_crc.h"
 | 
			
		||||
 | 
			
		||||
typedef enum {
 | 
			
		||||
    KEY_DS1990, /**< DS1990 */
 | 
			
		||||
    KEY_CYFRAL, /**< CYFRAL*/
 | 
			
		||||
    KEY_METAKOM, /**< METAKOM */
 | 
			
		||||
} KeyType;
 | 
			
		||||
 | 
			
		||||
typedef enum {
 | 
			
		||||
    WR_OK,
 | 
			
		||||
    WR_SAME_KEY,
 | 
			
		||||
    WR_ERROR,
 | 
			
		||||
} WriterResult;
 | 
			
		||||
 | 
			
		||||
class BlanksWriter {
 | 
			
		||||
private:
 | 
			
		||||
    const GpioPin* gpio;
 | 
			
		||||
    OneWireMaster* onewire;
 | 
			
		||||
 | 
			
		||||
    void onewire_release(void);
 | 
			
		||||
    void onewire_write_one_bit(bool value, uint32_t delay);
 | 
			
		||||
 | 
			
		||||
    bool write_TM2004(const uint8_t* key, uint8_t key_length);
 | 
			
		||||
    bool write_1990_1(const uint8_t* key, uint8_t key_length);
 | 
			
		||||
    bool write_1990_2(const uint8_t* key, uint8_t key_length);
 | 
			
		||||
    bool write_TM01(KeyType type, const uint8_t* key, uint8_t key_length);
 | 
			
		||||
 | 
			
		||||
    void write_byte_ds1990(uint8_t data);
 | 
			
		||||
    bool compare_key_ds1990(const uint8_t* key, uint8_t key_length);
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
    BlanksWriter(const GpioPin* one_wire_gpio);
 | 
			
		||||
    ~BlanksWriter();
 | 
			
		||||
 | 
			
		||||
    WriterResult write(KeyType type, const uint8_t* key, uint8_t key_length);
 | 
			
		||||
    void start();
 | 
			
		||||
    void stop();
 | 
			
		||||
};
 | 
			
		||||
@@ -258,7 +258,7 @@ bool OneWireSlave::bus_start(void) {
 | 
			
		||||
    if(device == nullptr) {
 | 
			
		||||
        result = false;
 | 
			
		||||
    } else {
 | 
			
		||||
        __disable_irq();
 | 
			
		||||
        FURI_CRITICAL_ENTER();
 | 
			
		||||
        pin_init_opendrain_in_isr_ctx();
 | 
			
		||||
        error = OneWireSlaveError::NO_ERROR;
 | 
			
		||||
 | 
			
		||||
@@ -274,7 +274,7 @@ bool OneWireSlave::bus_start(void) {
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        pin_init_interrupt_in_isr_ctx();
 | 
			
		||||
        __enable_irq();
 | 
			
		||||
        FURI_CRITICAL_EXIT();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return result;
 | 
			
		||||
@@ -305,4 +305,4 @@ void OneWireSlave::exti_callback(void* _ctx) {
 | 
			
		||||
        //FALL event
 | 
			
		||||
        pulse_start = DWT->CYCCNT;
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user