[FL-2219, FL-2251] System, FuriCore, FuriHal: various bug fixes and improvements (#986)

* Replace irq shenanigans with critical section
* Power: halt system on power off instead of crash.
* Gui: properly handle input event on NULL current_view
* FuriHal: correct gpio configuration sequence
* FuriHal: cleanup uart initialization. Makefile: allow to disable thread support.
* Loader: improve locking, fix simultaneous app start crash, full command line args support for gui apps, more consistent insomnia
* Loader: correct spelling
* FuriHal: increase gpio configuration readability
* FuriHal: correct gpio configuration error when mode is GpioModeEventRiseFall
Co-authored-by: DrZlo13 <who.just.the.doctor@gmail.com>
This commit is contained in:
あく 2022-02-10 14:20:50 +03:00 committed by GitHub
parent 6b78a8ccfe
commit df2d1ad13f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
35 changed files with 1145 additions and 1962 deletions

View File

@ -31,9 +31,9 @@ int WIEGAND::getWiegandType() {
bool WIEGAND::available() {
bool ret;
__disable_irq();
FURI_CRITICAL_ENTER();
ret = DoWiegandConversion();
__enable_irq();
FURI_CRITICAL_EXIT();
return ret;
}

View File

@ -37,7 +37,7 @@ bool AccessorSceneStart::on_event(AccessorApp* app, AccessorEvent* event) {
data[i] = wiegand->getCodeHigh() >> ((i - 4) * 8);
}
} else {
__disable_irq();
FURI_CRITICAL_ENTER();
if(onewire->reset()) {
type = 255;
onewire->write(0x33);
@ -49,7 +49,7 @@ bool AccessorSceneStart::on_event(AccessorApp* app, AccessorEvent* event) {
data[i] = data[i + 1];
}
}
__enable_irq();
FURI_CRITICAL_EXIT();
}
if(type > 0) {

View File

@ -4,6 +4,8 @@
#include "../helpers/archive_browser.h"
#include "../views/archive_browser_view.h"
#define TAG "ArchiveSceneBrowser"
static const char* flipper_app_name[] = {
[ArchiveFileTypeIButton] = "iButton",
[ArchiveFileTypeNFC] = "NFC",
@ -25,7 +27,12 @@ static void archive_run_in_app(
} else {
string_init_set(full_path, selected->name);
}
LoaderStatus status =
loader_start(loader, flipper_app_name[selected->type], string_get_cstr(full_path));
if(status != LoaderStatusOk) {
FURI_LOG_E(TAG, "loader_start failed: %d", status);
}
string_clear(full_path);
furi_record_close("loader");

View File

@ -9,6 +9,8 @@
#include "desktop_scene.h"
#include "desktop_scene_i.h"
#define TAG "DesktopSrv"
#define MAIN_VIEW_DEFAULT (0UL)
static void desktop_scene_main_app_started_callback(const void* message, void* context) {
@ -142,10 +144,12 @@ bool desktop_scene_main_on_event(void* context, SceneManagerEvent event) {
Loader* loader = furi_record_open("loader");
LoaderStatus status =
loader_start(loader, FLIPPER_APPS[desktop->settings.favorite].name, NULL);
furi_check(status == LoaderStatusOk);
if(status != LoaderStatusOk) {
FURI_LOG_E(TAG, "loader_start failed: %d", status);
}
furi_record_close("loader");
} else {
FURI_LOG_E("DesktopSrv", "Can't find favorite application");
FURI_LOG_E(TAG, "Can't find favorite application");
}
consumed = true;
break;

View File

@ -253,29 +253,28 @@ void view_dispatcher_handle_input(ViewDispatcher* view_dispatcher, InputEvent* e
}
// Deliver event
if(view_dispatcher->ongoing_input_view == view_dispatcher->current_view) {
bool is_consumed = false;
if(view_dispatcher->current_view) {
is_consumed = view_input(view_dispatcher->current_view, event);
}
if(!is_consumed && (event->type == InputTypeShort || event->type == InputTypeLong)) {
// TODO remove view navigation handlers
uint32_t view_id = VIEW_IGNORE;
if(event->key == InputKeyBack) {
view_id = view_previous(view_dispatcher->current_view);
if((view_id == VIEW_IGNORE) && (view_dispatcher->navigation_event_callback)) {
is_consumed =
view_dispatcher->navigation_event_callback(view_dispatcher->event_context);
if(!is_consumed) {
if(view_dispatcher->current_view &&
view_dispatcher->ongoing_input_view == view_dispatcher->current_view) {
// Dispatch input to current view
bool is_consumed = view_input(view_dispatcher->current_view, event);
// Navigate if input is not consumed
if(!is_consumed && (event->key == InputKeyBack) &&
(event->type == InputTypeShort || event->type == InputTypeLong)) {
// Navigate to previous
uint32_t view_id = view_previous(view_dispatcher->current_view);
if(view_id != VIEW_IGNORE) {
// Switch to returned view
view_dispatcher_switch_to_view(view_dispatcher, view_id);
} else if(view_dispatcher->navigation_event_callback) {
// Dispatch navigation event
if(!view_dispatcher->navigation_event_callback(view_dispatcher->event_context)) {
// TODO: should we allow view_dispatcher to stop without navigation_event_callback?
view_dispatcher_stop(view_dispatcher);
return;
}
}
}
if(!is_consumed) {
view_dispatcher_switch_to_view(view_dispatcher, view_id);
}
}
} else if(view_dispatcher->ongoing_input_view && event->type == InputTypeRelease) {
FURI_LOG_D(
TAG,

View File

@ -59,9 +59,8 @@ KeyReader::~KeyReader() {
bool KeyReader::read_key(iButtonKeyType* key_type, uint8_t* data, uint8_t data_size) {
bool readed = false;
switch(read_mode) {
case ReadMode::DALLAS:
__disable_irq();
if(read_mode == ReadMode::DALLAS) {
FURI_CRITICAL_ENTER();
if(onewire_master->search(data)) {
onewire_master->reset_search();
readed = true;
@ -69,9 +68,8 @@ bool KeyReader::read_key(iButtonKeyType* key_type, uint8_t* data, uint8_t data_s
} else {
onewire_master->reset_search();
}
__enable_irq();
break;
case ReadMode::CYFRAL_METAKOM:
FURI_CRITICAL_EXIT();
} else if(read_mode == ReadMode::CYFRAL_METAKOM) {
if(cyfral_decoder.read(data, 2)) {
readed = true;
*key_type = iButtonKeyType::KeyCyfral;
@ -79,7 +77,6 @@ bool KeyReader::read_key(iButtonKeyType* key_type, uint8_t* data, uint8_t data_s
readed = true;
*key_type = iButtonKeyType::KeyMetakom;
}
break;
}
return readed;
@ -88,10 +85,10 @@ bool KeyReader::read_key(iButtonKeyType* key_type, uint8_t* data, uint8_t data_s
bool KeyReader::verify_key(iButtonKeyType key_type, const uint8_t* const data, uint8_t data_size) {
bool result = true;
switch(key_type) {
case iButtonKeyType::KeyDallas:
if(key_type == iButtonKeyType::KeyDallas) {
switch_to(ReadMode::DALLAS);
__disable_irq();
FURI_CRITICAL_ENTER();
if(onewire_master->reset()) {
onewire_master->write(DS1990::CMD_READ_ROM);
for(uint8_t i = 0; i < data_size; i++) {
@ -101,14 +98,11 @@ bool KeyReader::verify_key(iButtonKeyType key_type, const uint8_t* const data, u
}
} else {
result = false;
break;
}
__enable_irq();
break;
FURI_CRITICAL_EXIT();
default:
} else {
result = false;
break;
}
return result;

View File

@ -74,7 +74,7 @@ bool KeyWriter::compare_key_ds1990(iButtonKey* key) {
bool result = false;
if(key->get_key_type() == iButtonKeyType::KeyDallas) {
__disable_irq();
FURI_CRITICAL_ENTER();
bool presence = onewire_master->reset();
if(presence) {
@ -89,7 +89,7 @@ bool KeyWriter::compare_key_ds1990(iButtonKey* key) {
}
}
__enable_irq();
FURI_CRITICAL_EXIT();
}
return result;
@ -99,7 +99,7 @@ bool KeyWriter::write_1990_1(iButtonKey* key) {
bool result = false;
if(key->get_key_type() == iButtonKeyType::KeyDallas) {
__disable_irq();
FURI_CRITICAL_ENTER();
// unlock
onewire_master->reset();
@ -120,7 +120,7 @@ bool KeyWriter::write_1990_1(iButtonKey* key) {
onewire_master->write(RW1990_1::CMD_WRITE_RECORD_FLAG);
onewire_write_one_bit(1);
__enable_irq();
FURI_CRITICAL_EXIT();
if(compare_key_ds1990(key)) {
result = true;
@ -134,7 +134,7 @@ bool KeyWriter::write_1990_2(iButtonKey* key) {
bool result = false;
if(key->get_key_type() == iButtonKeyType::KeyDallas) {
__disable_irq();
FURI_CRITICAL_ENTER();
// unlock
onewire_master->reset();
@ -154,7 +154,7 @@ bool KeyWriter::write_1990_2(iButtonKey* key) {
onewire_master->write(RW1990_2::CMD_WRITE_RECORD_FLAG);
onewire_write_one_bit(0);
__enable_irq();
FURI_CRITICAL_EXIT();
if(compare_key_ds1990(key)) {
result = true;
@ -169,7 +169,7 @@ bool KeyWriter::write_TM2004(iButtonKey* key) {
bool result = true;
if(key->get_key_type() == iButtonKeyType::KeyDallas) {
__disable_irq();
FURI_CRITICAL_ENTER();
// write rom, addr is 0x0000
onewire_master->reset();
@ -204,7 +204,7 @@ bool KeyWriter::write_TM2004(iButtonKey* key) {
onewire_master->reset();
__enable_irq();
FURI_CRITICAL_EXIT();
} else {
result = false;
}
@ -216,7 +216,7 @@ bool KeyWriter::write_TM01(iButtonKey* key) {
/*bool result = true;
// TODO test and encoding
__disable_irq();
FURI_CRITICAL_ENTER();
// unlock
onewire_master->reset();
@ -240,13 +240,13 @@ bool KeyWriter::write_TM01(iButtonKey* key) {
onewire_master->write(TM01::CMD_WRITE_RECORD_FLAG);
onewire_write_one_bit(0, 10000);
__enable_irq();
FURI_CRITICAL_EXIT();
if(!compare_key_ds1990(key)) {
result = false;
}
__disable_irq();
FURI_CRITICAL_ENTER();
if(key->get_key_type() == iButtonKeyType::KeyMetakom ||
key->get_key_type() == iButtonKeyType::KeyCyfral) {
@ -258,7 +258,7 @@ bool KeyWriter::write_TM01(iButtonKey* key) {
onewire_write_one_bit(1);
}
__enable_irq();
FURI_CRITICAL_EXIT();
return result;*/
return false;

View File

@ -121,12 +121,12 @@ void RfidWriter::write_em(const uint8_t em_data[5]) {
em_card.encode(em_data, 5, reinterpret_cast<uint8_t*>(&em_encoded_data), sizeof(uint64_t));
const uint32_t em_config_block_data = 0b00000000000101001000000001000000;
__disable_irq();
FURI_CRITICAL_ENTER();
write_block(0, 0, false, em_config_block_data);
write_block(0, 1, false, em_encoded_data);
write_block(0, 2, false, em_encoded_data >> 32);
write_reset();
__enable_irq();
FURI_CRITICAL_EXIT();
}
void RfidWriter::write_hid(const uint8_t hid_data[3]) {
@ -136,13 +136,13 @@ void RfidWriter::write_hid(const uint8_t hid_data[3]) {
const uint32_t hid_config_block_data = 0b00000000000100000111000001100000;
__disable_irq();
FURI_CRITICAL_ENTER();
write_block(0, 0, false, hid_config_block_data);
write_block(0, 1, false, card_data[0]);
write_block(0, 2, false, card_data[1]);
write_block(0, 3, false, card_data[2]);
write_reset();
__enable_irq();
FURI_CRITICAL_EXIT();
}
void RfidWriter::write_indala(const uint8_t indala_data[3]) {
@ -153,10 +153,10 @@ void RfidWriter::write_indala(const uint8_t indala_data[3]) {
const uint32_t indala_config_block_data = 0b00000000000010000001000001000000;
__disable_irq();
FURI_CRITICAL_ENTER();
write_block(0, 0, false, indala_config_block_data);
write_block(0, 1, false, card_data[0]);
write_block(0, 2, false, card_data[1]);
write_reset();
__enable_irq();
FURI_CRITICAL_EXIT();
}

View File

@ -9,28 +9,46 @@
static Loader* loader_instance = NULL;
static bool
loader_start_application(const FlipperApplication* application, const char* arguments) {
loader_instance->application = application;
furi_assert(loader_instance->application_arguments == NULL);
if(arguments && strlen(arguments) > 0) {
loader_instance->application_arguments = strdup(arguments);
}
FURI_LOG_I(TAG, "Starting: %s", loader_instance->application->name);
furi_thread_set_name(loader_instance->application_thread, loader_instance->application->name);
furi_thread_set_stack_size(
loader_instance->application_thread, loader_instance->application->stack_size);
furi_thread_set_context(
loader_instance->application_thread, loader_instance->application_arguments);
furi_thread_set_callback(
loader_instance->application_thread, loader_instance->application->app);
bool result = furi_thread_start(loader_instance->application_thread);
if(!result) {
loader_instance->application = NULL;
}
return result;
}
static void loader_menu_callback(void* _ctx, uint32_t index) {
const FlipperApplication* flipper_app = _ctx;
const FlipperApplication* application = _ctx;
furi_assert(flipper_app->app);
furi_assert(flipper_app->name);
furi_assert(application->app);
furi_assert(application->name);
if(!loader_lock(loader_instance)) return;
if(furi_thread_get_state(loader_instance->thread) != FuriThreadStateStopped) {
FURI_LOG_E(TAG, "Can't start app. %s is running", loader_instance->current_app->name);
if(!loader_lock(loader_instance)) {
FURI_LOG_E(TAG, "Loader is locked");
return;
}
furi_hal_power_insomnia_enter();
loader_instance->current_app = flipper_app;
FURI_LOG_I(TAG, "Starting: %s", loader_instance->current_app->name);
furi_thread_set_name(loader_instance->thread, flipper_app->name);
furi_thread_set_stack_size(loader_instance->thread, flipper_app->stack_size);
furi_thread_set_context(loader_instance->thread, NULL);
furi_thread_set_callback(loader_instance->thread, flipper_app->app);
furi_thread_start(loader_instance->thread);
loader_start_application(application, NULL);
}
static void loader_submenu_callback(void* context, uint32_t index) {
@ -73,32 +91,36 @@ const FlipperApplication* loader_find_application_by_name(const char* name) {
}
void loader_cli_open(Cli* cli, string_t args, Loader* instance) {
string_strim(args);
string_t application_name;
string_init(application_name);
if(string_size(args) == 0) {
do {
if(!args_read_probably_quoted_string_and_trim(args, application_name)) {
printf("No application provided\r\n");
return;
break;
}
const FlipperApplication* application = loader_find_application_by_name(string_get_cstr(args));
const FlipperApplication* application =
loader_find_application_by_name(string_get_cstr(application_name));
if(!application) {
printf("%s doesn't exists\r\n", string_get_cstr(args));
return;
printf("%s doesn't exists\r\n", string_get_cstr(application_name));
break;
}
if(furi_thread_get_state(instance->thread) != FuriThreadStateStopped) {
string_strim(args);
if(!loader_start_application(application, string_get_cstr(args))) {
printf("Can't start, furi application is running");
return;
} else {
// We must to increment lock counter to keep balance
// TODO: rewrite whole thing, it's complex as hell
FURI_CRITICAL_ENTER();
instance->lock_count++;
FURI_CRITICAL_EXIT();
}
} while(false);
instance->lock_semaphore++;
furi_hal_power_insomnia_enter();
instance->current_app = application;
printf("Starting: %s\r\n", instance->current_app->name);
furi_thread_set_name(instance->thread, application->name);
furi_thread_set_stack_size(instance->thread, application->stack_size);
furi_thread_set_callback(instance->thread, application->app);
furi_thread_start(instance->thread);
string_clear(application_name);
}
void loader_cli_list(Cli* cli, string_t args, Loader* instance) {
@ -152,62 +174,44 @@ void loader_cli(Cli* cli, string_t args, void* _ctx) {
LoaderStatus loader_start(Loader* instance, const char* name, const char* args) {
furi_assert(name);
const FlipperApplication* flipper_app = loader_find_application_by_name(name);
const FlipperApplication* application = loader_find_application_by_name(name);
if(!flipper_app) {
if(!application) {
FURI_LOG_E(TAG, "Can't find application with name %s", name);
return LoaderStatusErrorUnknownApp;
}
bool locked = loader_lock(instance);
if(!locked || (furi_thread_get_state(instance->thread) != FuriThreadStateStopped)) {
FURI_LOG_E(TAG, "Can't start app. %s is running", instance->current_app->name);
/* no need to call loader_unlock() - it is called as soon as application stops */
if(!loader_lock(loader_instance)) {
FURI_LOG_E(TAG, "Loader is locked");
return LoaderStatusErrorAppStarted;
}
instance->current_app = flipper_app;
void* thread_args = NULL;
if(args) {
string_set_str(instance->args, args);
string_strim(instance->args);
thread_args = (void*)string_get_cstr(instance->args);
FURI_LOG_I(TAG, "Start %s app with args: %s", name, args);
} else {
string_reset(instance->args);
FURI_LOG_I(TAG, "Start %s app with no args", name);
if(!loader_start_application(application, args)) {
return LoaderStatusErrorInternal;
}
furi_thread_set_name(instance->thread, flipper_app->name);
furi_thread_set_stack_size(instance->thread, flipper_app->stack_size);
furi_thread_set_context(instance->thread, thread_args);
furi_thread_set_callback(instance->thread, flipper_app->app);
bool thread_started = furi_thread_start(instance->thread);
return thread_started ? LoaderStatusOk : LoaderStatusErrorInternal;
return LoaderStatusOk;
}
bool loader_lock(Loader* instance) {
bool ret = false;
furi_check(osMutexAcquire(instance->mutex, osWaitForever) == osOK);
if(instance->lock_semaphore == 0) {
instance->lock_semaphore++;
ret = true;
FURI_CRITICAL_ENTER();
bool result = false;
if(instance->lock_count == 0) {
instance->lock_count++;
result = true;
}
furi_check(osMutexRelease(instance->mutex) == osOK);
return ret;
FURI_CRITICAL_EXIT();
return result;
}
void loader_unlock(Loader* instance) {
furi_check(osMutexAcquire(instance->mutex, osWaitForever) == osOK);
furi_check(instance->lock_semaphore > 0);
instance->lock_semaphore--;
furi_check(osMutexRelease(instance->mutex) == osOK);
FURI_CRITICAL_ENTER();
if(instance->lock_count > 0) instance->lock_count--;
FURI_CRITICAL_EXIT();
}
bool loader_is_locked(Loader* instance) {
return (instance->lock_semaphore > 0);
return instance->lock_count > 0;
}
static void loader_thread_state_callback(FuriThreadState thread_state, void* context) {
@ -219,6 +223,7 @@ static void loader_thread_state_callback(FuriThreadState thread_state, void* con
if(thread_state == FuriThreadStateRunning) {
event.type = LoaderEventTypeApplicationStarted;
furi_pubsub_publish(loader_instance->pubsub, &event);
furi_hal_power_insomnia_enter();
// Snapshot current memory usage
instance->free_heap_size = memmgr_get_free_heap();
@ -239,7 +244,13 @@ static void loader_thread_state_callback(FuriThreadState thread_state, void* con
TAG,
"Application thread stopped. Heap allocation balance: %d. Thread allocation balance: %d.",
heap_diff,
furi_thread_get_heap_size(instance->thread));
furi_thread_get_heap_size(instance->application_thread));
if(loader_instance->application_arguments) {
free(loader_instance->application_arguments);
loader_instance->application_arguments = NULL;
}
furi_hal_power_insomnia_exit();
loader_unlock(instance);
@ -262,15 +273,12 @@ static uint32_t loader_back_to_primary_menu(void* context) {
static Loader* loader_alloc() {
Loader* instance = furi_alloc(sizeof(Loader));
instance->thread = furi_thread_alloc();
furi_thread_enable_heap_trace(instance->thread);
furi_thread_set_state_context(instance->thread, instance);
furi_thread_set_state_callback(instance->thread, loader_thread_state_callback);
string_init(instance->args);
instance->application_thread = furi_thread_alloc();
furi_thread_enable_heap_trace(instance->application_thread);
furi_thread_set_state_context(instance->application_thread, instance);
furi_thread_set_state_callback(instance->application_thread, loader_thread_state_callback);
instance->pubsub = furi_pubsub_alloc();
instance->mutex = osMutexNew(NULL);
#ifdef SRV_CLI
instance->cli = furi_record_open("cli");
@ -327,13 +335,9 @@ static void loader_free(Loader* instance) {
furi_record_close("cli");
}
osMutexDelete(instance->mutex);
furi_pubsub_free(instance->pubsub);
string_clear(instance->args);
furi_thread_free(instance->thread);
furi_thread_free(instance->application_thread);
menu_free(loader_instance->primary_menu);
view_dispatcher_remove_view(loader_instance->view_dispatcher, LoaderMenuViewPrimary);

View File

@ -16,9 +16,11 @@
struct Loader {
osThreadId_t loader_thread;
FuriThread* thread;
const FlipperApplication* current_app;
string_t args;
const FlipperApplication* application;
FuriThread* application_thread;
char* application_arguments;
Cli* cli;
Gui* gui;
@ -29,8 +31,7 @@ struct Loader {
Submenu* settings_menu;
size_t free_heap_size;
osMutexId_t mutex;
volatile uint8_t lock_semaphore;
volatile uint8_t lock_count;
FuriPubSub* pubsub;
};

View File

@ -1,28 +1,29 @@
#include "power_cli.h"
#include <power/power_service/power.h>
#include <cli/cli.h>
#include <furi_hal.h>
#include <cli/cli.h>
#include <lib/toolbox/args.h>
#include <power/power_service/power.h>
void power_cli_poweroff(Cli* cli, string_t args, void* context) {
void power_cli_off(Cli* cli, string_t args) {
Power* power = furi_record_open("power");
printf("It's now safe to disconnect USB from your flipper\r\n");
power_off(power);
}
void power_cli_reboot(Cli* cli, string_t args, void* context) {
void power_cli_reboot(Cli* cli, string_t args) {
power_reboot(PowerBootModeNormal);
}
void power_cli_dfu(Cli* cli, string_t args, void* context) {
void power_cli_reboot2dfu(Cli* cli, string_t args) {
power_reboot(PowerBootModeDfu);
}
void power_cli_info(Cli* cli, string_t args, void* context) {
void power_cli_debug(Cli* cli, string_t args) {
furi_hal_power_dump_state();
}
void power_cli_otg(Cli* cli, string_t args, void* context) {
void power_cli_5v(Cli* cli, string_t args) {
if(!string_cmp(args, "0")) {
furi_hal_power_disable_otg();
} else if(!string_cmp(args, "1")) {
@ -32,7 +33,7 @@ void power_cli_otg(Cli* cli, string_t args, void* context) {
}
}
void power_cli_ext(Cli* cli, string_t args, void* context) {
void power_cli_3v3(Cli* cli, string_t args) {
if(!string_cmp(args, "0")) {
furi_hal_power_disable_external_3_3v();
} else if(!string_cmp(args, "1")) {
@ -42,16 +43,70 @@ void power_cli_ext(Cli* cli, string_t args, void* context) {
}
}
static void power_cli_command_print_usage() {
printf("Usage:\r\n");
printf("power <cmd> <args>\r\n");
printf("Cmd list:\r\n");
printf("\toff\t - shutdown power\r\n");
printf("\treboot\t - reboot\r\n");
printf("\treboot2dfu\t - reboot to dfu bootloader\r\n");
printf("\tdebug\t - show debug information\r\n");
printf("\t5v <0 or 1>\t - enable or disable 5v ext\r\n");
printf("\t3v3 <0 or 1>\t - enable or disable 3v3 ext\r\n");
}
void power_cli(Cli* cli, string_t args, void* context) {
string_t cmd;
string_init(cmd);
do {
if(!args_read_string_and_trim(args, cmd)) {
power_cli_command_print_usage();
break;
}
if(string_cmp_str(cmd, "off") == 0) {
power_cli_off(cli, args);
break;
}
if(string_cmp_str(cmd, "reboot") == 0) {
power_cli_reboot(cli, args);
break;
}
if(string_cmp_str(cmd, "reboot2dfu") == 0) {
power_cli_reboot2dfu(cli, args);
break;
}
if(string_cmp_str(cmd, "debug") == 0) {
power_cli_debug(cli, args);
break;
}
if(string_cmp_str(cmd, "5v") == 0) {
power_cli_5v(cli, args);
break;
}
if(string_cmp_str(cmd, "3v3") == 0) {
power_cli_3v3(cli, args);
break;
}
power_cli_command_print_usage();
} while(false);
string_clear(cmd);
}
void power_on_system_start() {
#ifdef SRV_CLI
Cli* cli = furi_record_open("cli");
cli_add_command(cli, "poweroff", CliCommandFlagParallelSafe, power_cli_poweroff, NULL);
cli_add_command(cli, "reboot", CliCommandFlagParallelSafe, power_cli_reboot, NULL);
cli_add_command(cli, "dfu", CliCommandFlagParallelSafe, power_cli_dfu, NULL);
cli_add_command(cli, "power_info", CliCommandFlagParallelSafe, power_cli_info, NULL);
cli_add_command(cli, "power_otg", CliCommandFlagParallelSafe, power_cli_otg, NULL);
cli_add_command(cli, "power_ext", CliCommandFlagParallelSafe, power_cli_ext, NULL);
cli_add_command(cli, "power", CliCommandFlagParallelSafe, power_cli, NULL);
furi_record_close("cli");
#endif

View File

@ -10,7 +10,7 @@ void power_off(Power* power) {
view_dispatcher_send_to_front(power->view_dispatcher);
view_dispatcher_switch_to_view(power->view_dispatcher, PowerViewPopup);
osDelay(10);
furi_crash("Disconnect USB for safe shutdown");
furi_halt("Disconnect USB for safe shutdown");
}
void power_reboot(PowerBootMode mode) {

View File

@ -69,24 +69,36 @@ void hal_gpio_init_ex(
// Configure gpio with interrupts disabled
__disable_irq();
// Set gpio speed
if(speed == GpioSpeedLow) {
switch(speed) {
case GpioSpeedLow:
LL_GPIO_SetPinSpeed(gpio->port, gpio->pin, LL_GPIO_SPEED_FREQ_LOW);
} else if(speed == GpioSpeedMedium) {
break;
case GpioSpeedMedium:
LL_GPIO_SetPinSpeed(gpio->port, gpio->pin, LL_GPIO_SPEED_FREQ_MEDIUM);
} else if(speed == GpioSpeedHigh) {
break;
case GpioSpeedHigh:
LL_GPIO_SetPinSpeed(gpio->port, gpio->pin, LL_GPIO_SPEED_FREQ_HIGH);
} else {
break;
case GpioSpeedVeryHigh:
LL_GPIO_SetPinSpeed(gpio->port, gpio->pin, LL_GPIO_SPEED_FREQ_VERY_HIGH);
break;
}
// Set gpio pull mode
if(pull == GpioPullNo) {
switch(pull) {
case GpioPullNo:
LL_GPIO_SetPinPull(gpio->port, gpio->pin, LL_GPIO_PULL_NO);
} else if(pull == GpioPullUp) {
break;
case GpioPullUp:
LL_GPIO_SetPinPull(gpio->port, gpio->pin, LL_GPIO_PULL_UP);
} else {
break;
case GpioPullDown:
LL_GPIO_SetPinPull(gpio->port, gpio->pin, LL_GPIO_PULL_DOWN);
break;
}
// Set gpio mode
if(mode >= GpioModeInterruptRise) {
// Set pin in interrupt mode
@ -100,40 +112,25 @@ void hal_gpio_init_ex(
LL_EXTI_EnableIT_0_31(exti_line);
LL_EXTI_EnableFallingTrig_0_31(exti_line);
}
if(mode == GpioModeEventRise || mode == GpioModeInterruptRiseFall) {
if(mode == GpioModeEventRise || mode == GpioModeEventRiseFall) {
LL_EXTI_EnableEvent_0_31(exti_line);
LL_EXTI_EnableRisingTrig_0_31(exti_line);
}
if(mode == GpioModeEventFall || mode == GpioModeInterruptRiseFall) {
if(mode == GpioModeEventFall || mode == GpioModeEventRiseFall) {
LL_EXTI_EnableEvent_0_31(exti_line);
LL_EXTI_EnableFallingTrig_0_31(exti_line);
}
} else {
// Disable interrupt if it was set
// Disable interrupts if set
if(LL_SYSCFG_GetEXTISource(sys_exti_line) == sys_exti_port &&
LL_EXTI_IsEnabledIT_0_31(exti_line)) {
LL_EXTI_DisableIT_0_31(exti_line);
LL_EXTI_DisableRisingTrig_0_31(exti_line);
LL_EXTI_DisableFallingTrig_0_31(exti_line);
}
// Set not interrupt pin modes
if(mode == GpioModeInput) {
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_INPUT);
} else if(mode == GpioModeOutputPushPull || mode == GpioModeAltFunctionPushPull) {
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_OUTPUT);
LL_GPIO_SetPinOutputType(gpio->port, gpio->pin, LL_GPIO_OUTPUT_PUSHPULL);
} else if(mode == GpioModeOutputOpenDrain || mode == GpioModeAltFunctionOpenDrain) {
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_OUTPUT);
LL_GPIO_SetPinOutputType(gpio->port, gpio->pin, LL_GPIO_OUTPUT_OPENDRAIN);
} else if(mode == GpioModeAnalog) {
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_ANALOG);
}
}
// Prepare alternative part if any
if(mode == GpioModeAltFunctionPushPull || mode == GpioModeAltFunctionOpenDrain) {
// enable alternate mode
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_ALTERNATE);
// set alternate function
if(hal_gpio_get_pin_num(gpio) < 8) {
LL_GPIO_SetAFPin_0_7(gpio->port, gpio->pin, alt_fn);
@ -142,6 +139,35 @@ void hal_gpio_init_ex(
}
}
// Set not interrupt pin modes
switch(mode) {
case GpioModeInput:
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_INPUT);
break;
case GpioModeOutputPushPull:
LL_GPIO_SetPinOutputType(gpio->port, gpio->pin, LL_GPIO_OUTPUT_PUSHPULL);
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_OUTPUT);
break;
case GpioModeAltFunctionPushPull:
LL_GPIO_SetPinOutputType(gpio->port, gpio->pin, LL_GPIO_OUTPUT_PUSHPULL);
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_ALTERNATE);
break;
case GpioModeOutputOpenDrain:
LL_GPIO_SetPinOutputType(gpio->port, gpio->pin, LL_GPIO_OUTPUT_OPENDRAIN);
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_OUTPUT);
break;
case GpioModeAltFunctionOpenDrain:
LL_GPIO_SetPinOutputType(gpio->port, gpio->pin, LL_GPIO_OUTPUT_OPENDRAIN);
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_ALTERNATE);
break;
case GpioModeAnalog:
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_ANALOG);
break;
default:
break;
}
}
__enable_irq();
}

View File

@ -69,24 +69,36 @@ void hal_gpio_init_ex(
// Configure gpio with interrupts disabled
__disable_irq();
// Set gpio speed
if(speed == GpioSpeedLow) {
switch(speed) {
case GpioSpeedLow:
LL_GPIO_SetPinSpeed(gpio->port, gpio->pin, LL_GPIO_SPEED_FREQ_LOW);
} else if(speed == GpioSpeedMedium) {
break;
case GpioSpeedMedium:
LL_GPIO_SetPinSpeed(gpio->port, gpio->pin, LL_GPIO_SPEED_FREQ_MEDIUM);
} else if(speed == GpioSpeedHigh) {
break;
case GpioSpeedHigh:
LL_GPIO_SetPinSpeed(gpio->port, gpio->pin, LL_GPIO_SPEED_FREQ_HIGH);
} else {
break;
case GpioSpeedVeryHigh:
LL_GPIO_SetPinSpeed(gpio->port, gpio->pin, LL_GPIO_SPEED_FREQ_VERY_HIGH);
break;
}
// Set gpio pull mode
if(pull == GpioPullNo) {
switch(pull) {
case GpioPullNo:
LL_GPIO_SetPinPull(gpio->port, gpio->pin, LL_GPIO_PULL_NO);
} else if(pull == GpioPullUp) {
break;
case GpioPullUp:
LL_GPIO_SetPinPull(gpio->port, gpio->pin, LL_GPIO_PULL_UP);
} else {
break;
case GpioPullDown:
LL_GPIO_SetPinPull(gpio->port, gpio->pin, LL_GPIO_PULL_DOWN);
break;
}
// Set gpio mode
if(mode >= GpioModeInterruptRise) {
// Set pin in interrupt mode
@ -100,40 +112,25 @@ void hal_gpio_init_ex(
LL_EXTI_EnableIT_0_31(exti_line);
LL_EXTI_EnableFallingTrig_0_31(exti_line);
}
if(mode == GpioModeEventRise || mode == GpioModeInterruptRiseFall) {
if(mode == GpioModeEventRise || mode == GpioModeEventRiseFall) {
LL_EXTI_EnableEvent_0_31(exti_line);
LL_EXTI_EnableRisingTrig_0_31(exti_line);
}
if(mode == GpioModeEventFall || mode == GpioModeInterruptRiseFall) {
if(mode == GpioModeEventFall || mode == GpioModeEventRiseFall) {
LL_EXTI_EnableEvent_0_31(exti_line);
LL_EXTI_EnableFallingTrig_0_31(exti_line);
}
} else {
// Disable interrupt if it was set
// Disable interrupts if set
if(LL_SYSCFG_GetEXTISource(sys_exti_line) == sys_exti_port &&
LL_EXTI_IsEnabledIT_0_31(exti_line)) {
LL_EXTI_DisableIT_0_31(exti_line);
LL_EXTI_DisableRisingTrig_0_31(exti_line);
LL_EXTI_DisableFallingTrig_0_31(exti_line);
}
// Set not interrupt pin modes
if(mode == GpioModeInput) {
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_INPUT);
} else if(mode == GpioModeOutputPushPull || mode == GpioModeAltFunctionPushPull) {
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_OUTPUT);
LL_GPIO_SetPinOutputType(gpio->port, gpio->pin, LL_GPIO_OUTPUT_PUSHPULL);
} else if(mode == GpioModeOutputOpenDrain || mode == GpioModeAltFunctionOpenDrain) {
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_OUTPUT);
LL_GPIO_SetPinOutputType(gpio->port, gpio->pin, LL_GPIO_OUTPUT_OPENDRAIN);
} else if(mode == GpioModeAnalog) {
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_ANALOG);
}
}
// Prepare alternative part if any
if(mode == GpioModeAltFunctionPushPull || mode == GpioModeAltFunctionOpenDrain) {
// enable alternate mode
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_ALTERNATE);
// set alternate function
if(hal_gpio_get_pin_num(gpio) < 8) {
LL_GPIO_SetAFPin_0_7(gpio->port, gpio->pin, alt_fn);
@ -142,6 +139,34 @@ void hal_gpio_init_ex(
}
}
// Set not interrupt pin modes
switch(mode) {
case GpioModeInput:
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_INPUT);
break;
case GpioModeOutputPushPull:
LL_GPIO_SetPinOutputType(gpio->port, gpio->pin, LL_GPIO_OUTPUT_PUSHPULL);
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_OUTPUT);
break;
case GpioModeAltFunctionPushPull:
LL_GPIO_SetPinOutputType(gpio->port, gpio->pin, LL_GPIO_OUTPUT_PUSHPULL);
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_ALTERNATE);
break;
case GpioModeOutputOpenDrain:
LL_GPIO_SetPinOutputType(gpio->port, gpio->pin, LL_GPIO_OUTPUT_OPENDRAIN);
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_OUTPUT);
break;
case GpioModeAltFunctionOpenDrain:
LL_GPIO_SetPinOutputType(gpio->port, gpio->pin, LL_GPIO_OUTPUT_OPENDRAIN);
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_ALTERNATE);
break;
case GpioModeAnalog:
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_ANALOG);
break;
default:
break;
}
}
__enable_irq();
}

View File

@ -4,7 +4,7 @@
#include <furi_hal_rtc.h>
#include <stdio.h>
__attribute__((always_inline)) inline static void __furi_print_name() {
static void __furi_print_name() {
if(task_is_isr_context()) {
furi_hal_console_puts("[ISR] ");
} else {
@ -19,9 +19,9 @@ __attribute__((always_inline)) inline static void __furi_print_name() {
}
}
__attribute__((always_inline)) inline static void __furi_halt() {
asm volatile("bkpt 0x00 \n"
"loop: \n"
static void __furi_halt() {
asm volatile("loop: \n"
"bkpt 0x00 \n"
"wfi \n"
"b loop \n"
:
@ -50,3 +50,18 @@ void furi_crash(const char* message) {
NVIC_SystemReset();
#endif
}
void furi_halt(const char* message) {
__disable_irq();
if(message == NULL) {
message = "System halt requested.";
}
furi_hal_console_puts("\r\n\033[0;31m[HALT]");
__furi_print_name();
furi_hal_console_puts(message);
furi_hal_console_puts("\r\nSystem halted. Bye-bye!\r\n");
furi_hal_console_puts("\033[0m\r\n");
__furi_halt();
}

View File

@ -17,6 +17,9 @@ extern "C" {
/** Crash system */
void furi_crash(const char* message);
/** Halt system */
void furi_halt(const char* message);
#ifdef __cplusplus
}
#endif

View File

@ -24,10 +24,10 @@
******************************************************************************
*/
.syntax unified
.cpu cortex-m4
.fpu softvfp
.thumb
.syntax unified
.cpu cortex-m4
.fpu softvfp
.thumb
.global g_pfnVectors
.global Default_Handler
@ -86,13 +86,15 @@ LoopFillZerobss:
bcc FillZerobss
bx lr
.section .text.Reset_Handler
.weak Reset_Handler
.type Reset_Handler, %function
.section .text.Reset_Handler
.weak Reset_Handler
.type Reset_Handler, %function
Reset_Handler:
ldr r0, =_estack
mov sp, r0 /* set stack pointer */
/* Call the clock system intitialization function.*/
/* Call the clock system intitialization function.*/
bl SystemInit
/* Copy the data segment initializers from flash to SRAM */

View File

@ -68,25 +68,37 @@ void hal_gpio_init_ex(
uint32_t exti_line = GET_EXTI_LINE(gpio->pin);
// Configure gpio with interrupts disabled
__disable_irq();
FURI_CRITICAL_ENTER();
// Set gpio speed
if(speed == GpioSpeedLow) {
switch(speed) {
case GpioSpeedLow:
LL_GPIO_SetPinSpeed(gpio->port, gpio->pin, LL_GPIO_SPEED_FREQ_LOW);
} else if(speed == GpioSpeedMedium) {
break;
case GpioSpeedMedium:
LL_GPIO_SetPinSpeed(gpio->port, gpio->pin, LL_GPIO_SPEED_FREQ_MEDIUM);
} else if(speed == GpioSpeedHigh) {
break;
case GpioSpeedHigh:
LL_GPIO_SetPinSpeed(gpio->port, gpio->pin, LL_GPIO_SPEED_FREQ_HIGH);
} else {
break;
case GpioSpeedVeryHigh:
LL_GPIO_SetPinSpeed(gpio->port, gpio->pin, LL_GPIO_SPEED_FREQ_VERY_HIGH);
break;
}
// Set gpio pull mode
if(pull == GpioPullNo) {
switch(pull) {
case GpioPullNo:
LL_GPIO_SetPinPull(gpio->port, gpio->pin, LL_GPIO_PULL_NO);
} else if(pull == GpioPullUp) {
break;
case GpioPullUp:
LL_GPIO_SetPinPull(gpio->port, gpio->pin, LL_GPIO_PULL_UP);
} else {
break;
case GpioPullDown:
LL_GPIO_SetPinPull(gpio->port, gpio->pin, LL_GPIO_PULL_DOWN);
break;
}
// Set gpio mode
if(mode >= GpioModeInterruptRise) {
// Set pin in interrupt mode
@ -100,40 +112,25 @@ void hal_gpio_init_ex(
LL_EXTI_EnableIT_0_31(exti_line);
LL_EXTI_EnableFallingTrig_0_31(exti_line);
}
if(mode == GpioModeEventRise || mode == GpioModeInterruptRiseFall) {
if(mode == GpioModeEventRise || mode == GpioModeEventRiseFall) {
LL_EXTI_EnableEvent_0_31(exti_line);
LL_EXTI_EnableRisingTrig_0_31(exti_line);
}
if(mode == GpioModeEventFall || mode == GpioModeInterruptRiseFall) {
if(mode == GpioModeEventFall || mode == GpioModeEventRiseFall) {
LL_EXTI_EnableEvent_0_31(exti_line);
LL_EXTI_EnableFallingTrig_0_31(exti_line);
}
} else {
// Disable interrupt if it was set
// Disable interrupts if set
if(LL_SYSCFG_GetEXTISource(sys_exti_line) == sys_exti_port &&
LL_EXTI_IsEnabledIT_0_31(exti_line)) {
LL_EXTI_DisableIT_0_31(exti_line);
LL_EXTI_DisableRisingTrig_0_31(exti_line);
LL_EXTI_DisableFallingTrig_0_31(exti_line);
}
// Set not interrupt pin modes
if(mode == GpioModeInput) {
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_INPUT);
} else if(mode == GpioModeOutputPushPull || mode == GpioModeAltFunctionPushPull) {
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_OUTPUT);
LL_GPIO_SetPinOutputType(gpio->port, gpio->pin, LL_GPIO_OUTPUT_PUSHPULL);
} else if(mode == GpioModeOutputOpenDrain || mode == GpioModeAltFunctionOpenDrain) {
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_OUTPUT);
LL_GPIO_SetPinOutputType(gpio->port, gpio->pin, LL_GPIO_OUTPUT_OPENDRAIN);
} else if(mode == GpioModeAnalog) {
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_ANALOG);
}
}
// Prepare alternative part if any
if(mode == GpioModeAltFunctionPushPull || mode == GpioModeAltFunctionOpenDrain) {
// enable alternate mode
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_ALTERNATE);
// set alternate function
if(hal_gpio_get_pin_num(gpio) < 8) {
LL_GPIO_SetAFPin_0_7(gpio->port, gpio->pin, alt_fn);
@ -142,51 +139,79 @@ void hal_gpio_init_ex(
}
}
__enable_irq();
// Set not interrupt pin modes
switch(mode) {
case GpioModeInput:
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_INPUT);
break;
case GpioModeOutputPushPull:
LL_GPIO_SetPinOutputType(gpio->port, gpio->pin, LL_GPIO_OUTPUT_PUSHPULL);
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_OUTPUT);
break;
case GpioModeAltFunctionPushPull:
LL_GPIO_SetPinOutputType(gpio->port, gpio->pin, LL_GPIO_OUTPUT_PUSHPULL);
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_ALTERNATE);
break;
case GpioModeOutputOpenDrain:
LL_GPIO_SetPinOutputType(gpio->port, gpio->pin, LL_GPIO_OUTPUT_OPENDRAIN);
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_OUTPUT);
break;
case GpioModeAltFunctionOpenDrain:
LL_GPIO_SetPinOutputType(gpio->port, gpio->pin, LL_GPIO_OUTPUT_OPENDRAIN);
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_ALTERNATE);
break;
case GpioModeAnalog:
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_ANALOG);
break;
default:
break;
}
}
FURI_CRITICAL_EXIT();
}
void hal_gpio_add_int_callback(const GpioPin* gpio, GpioExtiCallback cb, void* ctx) {
furi_assert(gpio);
furi_assert(cb);
__disable_irq();
FURI_CRITICAL_ENTER();
uint8_t pin_num = hal_gpio_get_pin_num(gpio);
furi_assert(gpio_interrupt[pin_num].callback == NULL);
gpio_interrupt[pin_num].callback = cb;
gpio_interrupt[pin_num].context = ctx;
gpio_interrupt[pin_num].ready = true;
__enable_irq();
FURI_CRITICAL_EXIT();
}
void hal_gpio_enable_int_callback(const GpioPin* gpio) {
furi_assert(gpio);
__disable_irq();
FURI_CRITICAL_ENTER();
uint8_t pin_num = hal_gpio_get_pin_num(gpio);
if(gpio_interrupt[pin_num].callback) {
gpio_interrupt[pin_num].ready = true;
}
__enable_irq();
FURI_CRITICAL_EXIT();
}
void hal_gpio_disable_int_callback(const GpioPin* gpio) {
furi_assert(gpio);
__disable_irq();
FURI_CRITICAL_ENTER();
uint8_t pin_num = hal_gpio_get_pin_num(gpio);
gpio_interrupt[pin_num].ready = false;
__enable_irq();
FURI_CRITICAL_EXIT();
}
void hal_gpio_remove_int_callback(const GpioPin* gpio) {
furi_assert(gpio);
__disable_irq();
FURI_CRITICAL_ENTER();
uint8_t pin_num = hal_gpio_get_pin_num(gpio);
gpio_interrupt[pin_num].callback = NULL;
gpio_interrupt[pin_num].context = NULL;
gpio_interrupt[pin_num].ready = false;
__enable_irq();
FURI_CRITICAL_EXIT();
}
static void hal_gpio_int_call(uint16_t pin_num) {

View File

@ -516,7 +516,7 @@ static void furi_hal_irda_tx_dma_set_polarity(uint8_t buf_num, uint8_t polarity_
IrdaTxBuf* buffer = &irda_tim_tx.buffer[buf_num];
furi_assert(buffer->polarity != NULL);
__disable_irq();
FURI_CRITICAL_ENTER();
bool channel_enabled = LL_DMA_IsEnabledChannel(DMA1, LL_DMA_CHANNEL_1);
if(channel_enabled) {
LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_1);
@ -526,7 +526,7 @@ static void furi_hal_irda_tx_dma_set_polarity(uint8_t buf_num, uint8_t polarity_
if(channel_enabled) {
LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_1);
}
__enable_irq();
FURI_CRITICAL_EXIT();
}
static void furi_hal_irda_tx_dma_set_buffer(uint8_t buf_num) {
@ -536,7 +536,7 @@ static void furi_hal_irda_tx_dma_set_buffer(uint8_t buf_num) {
furi_assert(buffer->data != NULL);
/* non-circular mode requires disabled channel before setup */
__disable_irq();
FURI_CRITICAL_ENTER();
bool channel_enabled = LL_DMA_IsEnabledChannel(DMA1, LL_DMA_CHANNEL_2);
if(channel_enabled) {
LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_2);
@ -546,7 +546,7 @@ static void furi_hal_irda_tx_dma_set_buffer(uint8_t buf_num) {
if(channel_enabled) {
LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_2);
}
__enable_irq();
FURI_CRITICAL_EXIT();
}
static void furi_hal_irda_async_tx_free_resources(void) {
@ -621,10 +621,10 @@ void furi_hal_irda_async_tx_start(uint32_t freq, float duty_cycle) {
hal_gpio_init_ex(
&gpio_irda_tx, GpioModeAltFunctionPushPull, GpioPullUp, GpioSpeedHigh, GpioAltFn1TIM1);
__disable_irq();
FURI_CRITICAL_ENTER();
LL_TIM_GenerateEvent_UPDATE(TIM1); /* TIMx_RCR -> Repetition counter */
LL_TIM_EnableCounter(TIM1);
__enable_irq();
FURI_CRITICAL_EXIT();
}
void furi_hal_irda_async_tx_wait_termination(void) {
@ -642,9 +642,9 @@ void furi_hal_irda_async_tx_stop(void) {
furi_assert(furi_hal_irda_state >= IrdaStateAsyncTx);
furi_assert(furi_hal_irda_state < IrdaStateMAX);
__disable_irq();
FURI_CRITICAL_ENTER();
if(furi_hal_irda_state == IrdaStateAsyncTx) furi_hal_irda_state = IrdaStateAsyncTxStopReq;
__enable_irq();
FURI_CRITICAL_EXIT();
furi_hal_irda_async_tx_wait_termination();
}

View File

@ -115,11 +115,11 @@ void vPortSuppressTicksAndSleep(TickType_t expected_idle_ticks) {
}
// Stop IRQ handling, no one should disturb us till we finish
__disable_irq();
FURI_CRITICAL_ENTER();
// Confirm OS that sleep is still possible
if(eTaskConfirmSleepModeStatus() == eAbortSleep) {
__enable_irq();
FURI_CRITICAL_EXIT();
return;
}
@ -136,7 +136,7 @@ void vPortSuppressTicksAndSleep(TickType_t expected_idle_ticks) {
}
// Reenable IRQ
__enable_irq();
FURI_CRITICAL_EXIT();
}
void vApplicationStackOverflowHook(TaskHandle_t xTask, char* pcTaskName) {

View File

@ -5,6 +5,7 @@
#include <furi_hal_resources.h>
#include <furi.h>
#include <furi_hal_delay.h>
static void (*irq_cb[2])(uint8_t ev, uint8_t data, void* context);
static void* irq_ctx[2];
@ -33,13 +34,12 @@ static void furi_hal_usart_init(uint32_t baud) {
USART_InitStruct.HardwareFlowControl = LL_USART_HWCONTROL_NONE;
USART_InitStruct.OverSampling = LL_USART_OVERSAMPLING_16;
LL_USART_Init(USART1, &USART_InitStruct);
LL_USART_SetTXFIFOThreshold(USART1, LL_USART_FIFOTHRESHOLD_1_2);
LL_USART_EnableFIFO(USART1);
LL_USART_ConfigAsyncMode(USART1);
LL_USART_Enable(USART1);
while(!LL_USART_IsActiveFlag_TEACK(USART1))
while(!LL_USART_IsActiveFlag_TEACK(USART1) || !LL_USART_IsActiveFlag_REACK(USART1))
;
LL_USART_EnableIT_RXNE_RXFNE(USART1);
@ -70,13 +70,11 @@ static void furi_hal_lpuart_init(uint32_t baud) {
LPUART_InitStruct.TransferDirection = LL_LPUART_DIRECTION_TX_RX;
LPUART_InitStruct.HardwareFlowControl = LL_LPUART_HWCONTROL_NONE;
LL_LPUART_Init(LPUART1, &LPUART_InitStruct);
LL_LPUART_SetTXFIFOThreshold(LPUART1, LL_LPUART_FIFOTHRESHOLD_1_8);
LL_LPUART_SetRXFIFOThreshold(LPUART1, LL_LPUART_FIFOTHRESHOLD_1_8);
LL_LPUART_EnableFIFO(LPUART1);
LL_LPUART_Enable(LPUART1);
while((!(LL_LPUART_IsActiveFlag_TEACK(LPUART1))) || (!(LL_LPUART_IsActiveFlag_REACK(LPUART1))))
while(!LL_LPUART_IsActiveFlag_TEACK(LPUART1) || !LL_LPUART_IsActiveFlag_REACK(LPUART1))
;
furi_hal_uart_set_br(FuriHalUartIdLPUART1, baud);

View File

@ -14,7 +14,13 @@ FLASH_ADDRESS = 0x08000000
CFLAGS += -DNO_BOOTLOADER
endif
DEBUG_RTOS_THREADS ?= 1
ifeq ($(DEBUG_RTOS_THREADS), 1)
OPENOCD_OPTS = -f interface/stlink.cfg -c "transport select hla_swd" -f ../debug/stm32wbx.cfg -c "stm32wbx.cpu configure -rtos auto" -c "init"
else
OPENOCD_OPTS = -f interface/stlink.cfg -c "transport select hla_swd" -f ../debug/stm32wbx.cfg -c "init"
endif
BOOT_CFLAGS = -DBOOT_ADDRESS=$(BOOT_ADDRESS) -DFW_ADDRESS=$(FW_ADDRESS) -DOS_OFFSET=$(OS_OFFSET)
MCU_FLAGS = -mcpu=cortex-m4 -mthumb -mfpu=fpv4-sp-d16 -mfloat-abi=hard

View File

@ -24,10 +24,10 @@
******************************************************************************
*/
.syntax unified
.cpu cortex-m4
.fpu softvfp
.thumb
.syntax unified
.cpu cortex-m4
.fpu softvfp
.thumb
.global g_pfnVectors
.global Default_Handler
@ -86,13 +86,15 @@ LoopFillZerobss:
bcc FillZerobss
bx lr
.section .text.Reset_Handler
.weak Reset_Handler
.type Reset_Handler, %function
.section .text.Reset_Handler
.weak Reset_Handler
.type Reset_Handler, %function
Reset_Handler:
ldr r0, =_estack
mov sp, r0 /* set stack pointer */
/* Call the clock system intitialization function.*/
/* Call the clock system intitialization function.*/
bl SystemInit
/* Copy the data segment initializers from flash to SRAM */

View File

@ -68,25 +68,37 @@ void hal_gpio_init_ex(
uint32_t exti_line = GET_EXTI_LINE(gpio->pin);
// Configure gpio with interrupts disabled
__disable_irq();
FURI_CRITICAL_ENTER();
// Set gpio speed
if(speed == GpioSpeedLow) {
switch(speed) {
case GpioSpeedLow:
LL_GPIO_SetPinSpeed(gpio->port, gpio->pin, LL_GPIO_SPEED_FREQ_LOW);
} else if(speed == GpioSpeedMedium) {
break;
case GpioSpeedMedium:
LL_GPIO_SetPinSpeed(gpio->port, gpio->pin, LL_GPIO_SPEED_FREQ_MEDIUM);
} else if(speed == GpioSpeedHigh) {
break;
case GpioSpeedHigh:
LL_GPIO_SetPinSpeed(gpio->port, gpio->pin, LL_GPIO_SPEED_FREQ_HIGH);
} else {
break;
case GpioSpeedVeryHigh:
LL_GPIO_SetPinSpeed(gpio->port, gpio->pin, LL_GPIO_SPEED_FREQ_VERY_HIGH);
break;
}
// Set gpio pull mode
if(pull == GpioPullNo) {
switch(pull) {
case GpioPullNo:
LL_GPIO_SetPinPull(gpio->port, gpio->pin, LL_GPIO_PULL_NO);
} else if(pull == GpioPullUp) {
break;
case GpioPullUp:
LL_GPIO_SetPinPull(gpio->port, gpio->pin, LL_GPIO_PULL_UP);
} else {
break;
case GpioPullDown:
LL_GPIO_SetPinPull(gpio->port, gpio->pin, LL_GPIO_PULL_DOWN);
break;
}
// Set gpio mode
if(mode >= GpioModeInterruptRise) {
// Set pin in interrupt mode
@ -100,40 +112,25 @@ void hal_gpio_init_ex(
LL_EXTI_EnableIT_0_31(exti_line);
LL_EXTI_EnableFallingTrig_0_31(exti_line);
}
if(mode == GpioModeEventRise || mode == GpioModeInterruptRiseFall) {
if(mode == GpioModeEventRise || mode == GpioModeEventRiseFall) {
LL_EXTI_EnableEvent_0_31(exti_line);
LL_EXTI_EnableRisingTrig_0_31(exti_line);
}
if(mode == GpioModeEventFall || mode == GpioModeInterruptRiseFall) {
if(mode == GpioModeEventFall || mode == GpioModeEventRiseFall) {
LL_EXTI_EnableEvent_0_31(exti_line);
LL_EXTI_EnableFallingTrig_0_31(exti_line);
}
} else {
// Disable interrupt if it was set
// Disable interrupts if set
if(LL_SYSCFG_GetEXTISource(sys_exti_line) == sys_exti_port &&
LL_EXTI_IsEnabledIT_0_31(exti_line)) {
LL_EXTI_DisableIT_0_31(exti_line);
LL_EXTI_DisableRisingTrig_0_31(exti_line);
LL_EXTI_DisableFallingTrig_0_31(exti_line);
}
// Set not interrupt pin modes
if(mode == GpioModeInput) {
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_INPUT);
} else if(mode == GpioModeOutputPushPull || mode == GpioModeAltFunctionPushPull) {
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_OUTPUT);
LL_GPIO_SetPinOutputType(gpio->port, gpio->pin, LL_GPIO_OUTPUT_PUSHPULL);
} else if(mode == GpioModeOutputOpenDrain || mode == GpioModeAltFunctionOpenDrain) {
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_OUTPUT);
LL_GPIO_SetPinOutputType(gpio->port, gpio->pin, LL_GPIO_OUTPUT_OPENDRAIN);
} else if(mode == GpioModeAnalog) {
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_ANALOG);
}
}
// Prepare alternative part if any
if(mode == GpioModeAltFunctionPushPull || mode == GpioModeAltFunctionOpenDrain) {
// enable alternate mode
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_ALTERNATE);
// set alternate function
if(hal_gpio_get_pin_num(gpio) < 8) {
LL_GPIO_SetAFPin_0_7(gpio->port, gpio->pin, alt_fn);
@ -142,51 +139,79 @@ void hal_gpio_init_ex(
}
}
__enable_irq();
// Set not interrupt pin modes
switch(mode) {
case GpioModeInput:
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_INPUT);
break;
case GpioModeOutputPushPull:
LL_GPIO_SetPinOutputType(gpio->port, gpio->pin, LL_GPIO_OUTPUT_PUSHPULL);
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_OUTPUT);
break;
case GpioModeAltFunctionPushPull:
LL_GPIO_SetPinOutputType(gpio->port, gpio->pin, LL_GPIO_OUTPUT_PUSHPULL);
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_ALTERNATE);
break;
case GpioModeOutputOpenDrain:
LL_GPIO_SetPinOutputType(gpio->port, gpio->pin, LL_GPIO_OUTPUT_OPENDRAIN);
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_OUTPUT);
break;
case GpioModeAltFunctionOpenDrain:
LL_GPIO_SetPinOutputType(gpio->port, gpio->pin, LL_GPIO_OUTPUT_OPENDRAIN);
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_ALTERNATE);
break;
case GpioModeAnalog:
LL_GPIO_SetPinMode(gpio->port, gpio->pin, LL_GPIO_MODE_ANALOG);
break;
default:
break;
}
}
FURI_CRITICAL_EXIT();
}
void hal_gpio_add_int_callback(const GpioPin* gpio, GpioExtiCallback cb, void* ctx) {
furi_assert(gpio);
furi_assert(cb);
__disable_irq();
FURI_CRITICAL_ENTER();
uint8_t pin_num = hal_gpio_get_pin_num(gpio);
furi_assert(gpio_interrupt[pin_num].callback == NULL);
gpio_interrupt[pin_num].callback = cb;
gpio_interrupt[pin_num].context = ctx;
gpio_interrupt[pin_num].ready = true;
__enable_irq();
FURI_CRITICAL_EXIT();
}
void hal_gpio_enable_int_callback(const GpioPin* gpio) {
furi_assert(gpio);
__disable_irq();
FURI_CRITICAL_ENTER();
uint8_t pin_num = hal_gpio_get_pin_num(gpio);
if(gpio_interrupt[pin_num].callback) {
gpio_interrupt[pin_num].ready = true;
}
__enable_irq();
FURI_CRITICAL_EXIT();
}
void hal_gpio_disable_int_callback(const GpioPin* gpio) {
furi_assert(gpio);
__disable_irq();
FURI_CRITICAL_ENTER();
uint8_t pin_num = hal_gpio_get_pin_num(gpio);
gpio_interrupt[pin_num].ready = false;
__enable_irq();
FURI_CRITICAL_EXIT();
}
void hal_gpio_remove_int_callback(const GpioPin* gpio) {
furi_assert(gpio);
__disable_irq();
FURI_CRITICAL_ENTER();
uint8_t pin_num = hal_gpio_get_pin_num(gpio);
gpio_interrupt[pin_num].callback = NULL;
gpio_interrupt[pin_num].context = NULL;
gpio_interrupt[pin_num].ready = false;
__enable_irq();
FURI_CRITICAL_EXIT();
}
static void hal_gpio_int_call(uint16_t pin_num) {

View File

@ -516,7 +516,7 @@ static void furi_hal_irda_tx_dma_set_polarity(uint8_t buf_num, uint8_t polarity_
IrdaTxBuf* buffer = &irda_tim_tx.buffer[buf_num];
furi_assert(buffer->polarity != NULL);
__disable_irq();
FURI_CRITICAL_ENTER();
bool channel_enabled = LL_DMA_IsEnabledChannel(DMA1, LL_DMA_CHANNEL_1);
if(channel_enabled) {
LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_1);
@ -526,7 +526,7 @@ static void furi_hal_irda_tx_dma_set_polarity(uint8_t buf_num, uint8_t polarity_
if(channel_enabled) {
LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_1);
}
__enable_irq();
FURI_CRITICAL_EXIT();
}
static void furi_hal_irda_tx_dma_set_buffer(uint8_t buf_num) {
@ -536,7 +536,7 @@ static void furi_hal_irda_tx_dma_set_buffer(uint8_t buf_num) {
furi_assert(buffer->data != NULL);
/* non-circular mode requires disabled channel before setup */
__disable_irq();
FURI_CRITICAL_ENTER();
bool channel_enabled = LL_DMA_IsEnabledChannel(DMA1, LL_DMA_CHANNEL_2);
if(channel_enabled) {
LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_2);
@ -546,7 +546,7 @@ static void furi_hal_irda_tx_dma_set_buffer(uint8_t buf_num) {
if(channel_enabled) {
LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_2);
}
__enable_irq();
FURI_CRITICAL_EXIT();
}
static void furi_hal_irda_async_tx_free_resources(void) {
@ -621,10 +621,10 @@ void furi_hal_irda_async_tx_start(uint32_t freq, float duty_cycle) {
hal_gpio_init_ex(
&gpio_irda_tx, GpioModeAltFunctionPushPull, GpioPullUp, GpioSpeedHigh, GpioAltFn1TIM1);
__disable_irq();
FURI_CRITICAL_ENTER();
LL_TIM_GenerateEvent_UPDATE(TIM1); /* TIMx_RCR -> Repetition counter */
LL_TIM_EnableCounter(TIM1);
__enable_irq();
FURI_CRITICAL_EXIT();
}
void furi_hal_irda_async_tx_wait_termination(void) {
@ -642,9 +642,9 @@ void furi_hal_irda_async_tx_stop(void) {
furi_assert(furi_hal_irda_state >= IrdaStateAsyncTx);
furi_assert(furi_hal_irda_state < IrdaStateMAX);
__disable_irq();
FURI_CRITICAL_ENTER();
if(furi_hal_irda_state == IrdaStateAsyncTx) furi_hal_irda_state = IrdaStateAsyncTxStopReq;
__enable_irq();
FURI_CRITICAL_EXIT();
furi_hal_irda_async_tx_wait_termination();
}

View File

@ -115,11 +115,11 @@ void vPortSuppressTicksAndSleep(TickType_t expected_idle_ticks) {
}
// Stop IRQ handling, no one should disturb us till we finish
__disable_irq();
FURI_CRITICAL_ENTER();
// Confirm OS that sleep is still possible
if(eTaskConfirmSleepModeStatus() == eAbortSleep) {
__enable_irq();
FURI_CRITICAL_EXIT();
return;
}
@ -136,7 +136,7 @@ void vPortSuppressTicksAndSleep(TickType_t expected_idle_ticks) {
}
// Reenable IRQ
__enable_irq();
FURI_CRITICAL_EXIT();
}
void vApplicationStackOverflowHook(TaskHandle_t xTask, char* pcTaskName) {

View File

@ -5,6 +5,7 @@
#include <furi_hal_resources.h>
#include <furi.h>
#include <furi_hal_delay.h>
static void (*irq_cb[2])(uint8_t ev, uint8_t data, void* context);
static void* irq_ctx[2];
@ -33,13 +34,12 @@ static void furi_hal_usart_init(uint32_t baud) {
USART_InitStruct.HardwareFlowControl = LL_USART_HWCONTROL_NONE;
USART_InitStruct.OverSampling = LL_USART_OVERSAMPLING_16;
LL_USART_Init(USART1, &USART_InitStruct);
LL_USART_SetTXFIFOThreshold(USART1, LL_USART_FIFOTHRESHOLD_1_2);
LL_USART_EnableFIFO(USART1);
LL_USART_ConfigAsyncMode(USART1);
LL_USART_Enable(USART1);
while(!LL_USART_IsActiveFlag_TEACK(USART1))
while(!LL_USART_IsActiveFlag_TEACK(USART1) || !LL_USART_IsActiveFlag_REACK(USART1))
;
LL_USART_EnableIT_RXNE_RXFNE(USART1);
@ -70,13 +70,11 @@ static void furi_hal_lpuart_init(uint32_t baud) {
LPUART_InitStruct.TransferDirection = LL_LPUART_DIRECTION_TX_RX;
LPUART_InitStruct.HardwareFlowControl = LL_LPUART_HWCONTROL_NONE;
LL_LPUART_Init(LPUART1, &LPUART_InitStruct);
LL_LPUART_SetTXFIFOThreshold(LPUART1, LL_LPUART_FIFOTHRESHOLD_1_8);
LL_LPUART_SetRXFIFOThreshold(LPUART1, LL_LPUART_FIFOTHRESHOLD_1_8);
LL_LPUART_EnableFIFO(LPUART1);
LL_LPUART_Enable(LPUART1);
while((!(LL_LPUART_IsActiveFlag_TEACK(LPUART1))) || (!(LL_LPUART_IsActiveFlag_REACK(LPUART1))))
while(!LL_LPUART_IsActiveFlag_TEACK(LPUART1) || !LL_LPUART_IsActiveFlag_REACK(LPUART1))
;
furi_hal_uart_set_br(FuriHalUartIdLPUART1, baud);

View File

@ -14,7 +14,13 @@ FLASH_ADDRESS = 0x08000000
CFLAGS += -DNO_BOOTLOADER
endif
DEBUG_RTOS_THREADS ?= 1
ifeq ($(DEBUG_RTOS_THREADS), 1)
OPENOCD_OPTS = -f interface/stlink.cfg -c "transport select hla_swd" -f ../debug/stm32wbx.cfg -c "stm32wbx.cpu configure -rtos auto" -c "init"
else
OPENOCD_OPTS = -f interface/stlink.cfg -c "transport select hla_swd" -f ../debug/stm32wbx.cfg -c "init"
endif
BOOT_CFLAGS = -DBOOT_ADDRESS=$(BOOT_ADDRESS) -DFW_ADDRESS=$(FW_ADDRESS) -DOS_OFFSET=$(OS_OFFSET)
MCU_FLAGS = -mcpu=cortex-m4 -mthumb -mfpu=fpv4-sp-d16 -mfloat-abi=hard

View File

@ -22,6 +22,8 @@
#include <string.h>
#include <furi/common_defines.h>
#include "cmsis_os2.h" // ::CMSIS:RTOS2
#include "cmsis_compiler.h" // Compiler agnostic definitions
#include "os_tick.h" // OS Tick API
@ -455,11 +457,10 @@ uint32_t osKernelGetTickFreq (void) {
Get the RTOS kernel system timer count.
*/
uint32_t osKernelGetSysTimerCount (void) {
uint32_t irqmask = IS_IRQ_MASKED();
TickType_t ticks;
uint32_t val;
__disable_irq();
FURI_CRITICAL_ENTER();
ticks = xTaskGetTickCount();
val = OS_Tick_GetCount();
@ -471,9 +472,7 @@ uint32_t osKernelGetSysTimerCount (void) {
}
val += ticks * OS_Tick_GetInterval();
if (irqmask == 0U) {
__enable_irq();
}
FURI_CRITICAL_EXIT();
/* Return system timer count */
return (val);

View File

@ -1,96 +0,0 @@
#pragma once
#include <furi.h>
#include <furi_hal.h>
class CyfralTiming {
public:
constexpr static const uint8_t ZERO_HIGH = 50;
constexpr static const uint8_t ZERO_LOW = 70;
constexpr static const uint8_t ONE_HIGH = 100;
constexpr static const uint8_t ONE_LOW = 70;
};
class CyfralEmulator {
private:
void send_nibble(uint8_t nibble);
void send_byte(uint8_t data);
inline void send_bit(bool bit);
const GpioPin* emulate_pin_record;
public:
CyfralEmulator(const GpioPin* emulate_pin);
~CyfralEmulator();
void send(uint8_t* data, uint8_t count = 1, uint8_t repeat = 1);
void start(void);
void stop(void);
};
// 7 = 0 1 1 1
// B = 1 0 1 1
// D = 1 1 0 1
// E = 1 1 1 0
void CyfralEmulator::send_nibble(uint8_t nibble) {
for(uint8_t i = 0; i < 4; i++) {
bool bit = nibble & (0b1000 >> i);
send_bit(bit);
}
}
void CyfralEmulator::send_byte(uint8_t data) {
for(uint8_t i = 0; i < 8; i++) {
bool bit = data & (0b10000000 >> i);
send_bit(bit);
}
}
void CyfralEmulator::send_bit(bool bit) {
if(!bit) {
hal_gpio_write(&ibutton_gpio, false);
delay_us(CyfralTiming::ZERO_LOW);
hal_gpio_write(&ibutton_gpio, true);
delay_us(CyfralTiming::ZERO_HIGH);
hal_gpio_write(&ibutton_gpio, false);
delay_us(CyfralTiming::ZERO_LOW);
} else {
hal_gpio_write(&ibutton_gpio, true);
delay_us(CyfralTiming::ONE_HIGH);
hal_gpio_write(&ibutton_gpio, false);
delay_us(CyfralTiming::ONE_LOW);
}
}
CyfralEmulator::CyfralEmulator(const GpioPin* emulate_pin) {
emulate_pin_record = emulate_pin;
}
CyfralEmulator::~CyfralEmulator() {
}
void CyfralEmulator::send(uint8_t* data, uint8_t count, uint8_t repeat) {
osKernelLock();
__disable_irq();
for(uint8_t i = 0; i < repeat; i++) {
// start sequence
send_nibble(0x01);
// send data
for(uint8_t i = 0; i < count; i++) {
send_byte(data[i]);
}
}
__enable_irq();
osKernelUnlock();
}
void CyfralEmulator::start(void) {
hal_gpio_init(emulate_pin_record, GpioModeOutputOpenDrain, GpioPullNo, GpioSpeedLow);
hal_gpio_write(emulate_pin_record, false);
}
void CyfralEmulator::stop(void) {
hal_gpio_init(emulate_pin_record, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
}

View File

@ -1,272 +0,0 @@
#pragma once
#include <furi.h>
enum class CyfralReaderError : uint8_t {
NO_ERROR = 0,
UNABLE_TO_DETECT = 1,
RAW_DATA_SIZE_ERROR = 2,
UNKNOWN_NIBBLE_VALUE = 3,
NO_START_NIBBLE = 4,
};
class CyfralReader {
private:
ADC_HandleTypeDef adc_config;
ADC_TypeDef* adc_instance;
uint32_t adc_channel;
void get_line_minmax(uint16_t times, uint32_t* min_level, uint32_t* max_level);
void capture_data(bool* data, uint16_t capture_size, uint32_t line_min, uint32_t line_max);
bool parse_data(bool* raw_data, uint16_t capture_size, uint8_t* data, uint8_t count);
uint32_t search_array_in_array(
const bool* haystack,
const uint32_t haystack_size,
const bool* needle,
const uint32_t needle_size);
// key is 9 nibbles
static const uint16_t bits_in_nibble = 4;
static const uint16_t key_length = 9;
static const uint32_t capture_size = key_length * bits_in_nibble * 2;
CyfralReaderError error;
public:
CyfralReader(ADC_TypeDef* adc, uint32_t Channel);
~CyfralReader();
void start(void);
void stop(void);
bool read(uint8_t* data, uint8_t count);
};
void CyfralReader::get_line_minmax(uint16_t times, uint32_t* min_level, uint32_t* max_level) {
uint32_t in = 0;
uint32_t min = UINT_MAX;
uint32_t max = 0;
for(uint32_t i = 0; i < 256; i++) {
HAL_ADC_Start(&adc_config);
HAL_ADC_PollForConversion(&adc_config, 100);
in = HAL_ADC_GetValue(&adc_config);
if(in < min) min = in;
if(in > max) max = in;
}
*min_level = min;
*max_level = max;
}
void CyfralReader::capture_data(
bool* data,
uint16_t capture_size,
uint32_t line_min,
uint32_t line_max) {
uint32_t input_value = 0;
bool last_input_value = 0;
uint32_t diff = line_max - line_min;
uint32_t mid = line_min + diff / 2;
uint32_t low_threshold = mid - (diff / 4);
uint32_t high_threshold = mid - (diff / 4);
uint16_t capture_position = 0;
uint32_t instructions_per_us = (SystemCoreClock / 1000000.0f);
uint32_t time_threshold = 75 * instructions_per_us;
uint32_t capture_max_time = 140 * (capture_size * 2) * instructions_per_us;
uint32_t start = DWT->CYCCNT;
uint32_t end = DWT->CYCCNT;
memset(data, 0, capture_size);
osKernelLock();
uint32_t capture_start = DWT->CYCCNT;
while((capture_position < capture_size) &&
((DWT->CYCCNT - capture_start) < capture_max_time)) {
// read adc
HAL_ADC_Start(&adc_config);
HAL_ADC_PollForConversion(&adc_config, 100);
input_value = HAL_ADC_GetValue(&adc_config);
// low to high transition
if((input_value > high_threshold) && last_input_value == 0) {
last_input_value = 1;
start = DWT->CYCCNT;
}
// high to low transition
if((input_value < low_threshold) && last_input_value == 1) {
last_input_value = 0;
end = DWT->CYCCNT;
// check transition time
if(end - start < time_threshold) {
data[capture_position] = 1;
capture_position++;
} else {
data[capture_position] = 0;
capture_position++;
}
}
}
osKernelUnlock();
}
uint32_t CyfralReader::search_array_in_array(
const bool* haystack,
const uint32_t haystack_size,
const bool* needle,
const uint32_t needle_size) {
uint32_t haystack_index = 0, needle_index = 0;
while(haystack_index < haystack_size && needle_index < needle_size) {
if(haystack[haystack_index] == needle[needle_index]) {
haystack_index++;
needle_index++;
if(needle_index == needle_size) {
return (haystack_index - needle_size);
};
} else {
haystack_index = haystack_index - needle_index + 1;
needle_index = 0;
}
}
return haystack_index;
}
bool CyfralReader::parse_data(bool* raw_data, uint16_t capture_size, uint8_t* data, uint8_t count) {
const bool start_nibble[bits_in_nibble] = {1, 1, 1, 0};
uint32_t start_position =
search_array_in_array(raw_data, capture_size, start_nibble, bits_in_nibble);
uint32_t end_position = 0;
memset(data, 0, count);
if(start_position < capture_size) {
start_position = start_position + bits_in_nibble;
end_position = start_position + count * 2 * bits_in_nibble;
if(end_position >= capture_size) {
error = CyfralReaderError::RAW_DATA_SIZE_ERROR;
return false;
}
bool first_nibble = true;
uint8_t data_position = 0;
uint8_t nibble_value = 0;
while(data_position < count) {
nibble_value = !raw_data[start_position] << 3 | !raw_data[start_position + 1] << 2 |
!raw_data[start_position + 2] << 1 | !raw_data[start_position + 3];
switch(nibble_value) {
case(0x7):
case(0xB):
case(0xD):
case(0xE):
break;
default:
error = CyfralReaderError::UNKNOWN_NIBBLE_VALUE;
return false;
break;
}
if(first_nibble) {
data[data_position] |= nibble_value << 4;
} else {
data[data_position] |= nibble_value;
}
first_nibble = !first_nibble;
if(first_nibble) {
data_position++;
}
start_position = start_position + bits_in_nibble;
}
error = CyfralReaderError::NO_ERROR;
return true;
}
error = CyfralReaderError::NO_START_NIBBLE;
return false;
}
CyfralReader::CyfralReader(ADC_TypeDef* adc, uint32_t channel) {
adc_instance = adc;
adc_channel = channel;
}
CyfralReader::~CyfralReader() {
}
void CyfralReader::start(void) {
ADC_ChannelConfTypeDef sConfig = {0};
// init ADC
adc_config.Instance = adc_instance;
adc_config.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
adc_config.Init.Resolution = ADC_RESOLUTION_12B;
adc_config.Init.DataAlign = ADC_DATAALIGN_RIGHT;
adc_config.Init.ScanConvMode = ADC_SCAN_DISABLE;
adc_config.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
adc_config.Init.LowPowerAutoWait = DISABLE;
adc_config.Init.ContinuousConvMode = DISABLE;
adc_config.Init.NbrOfConversion = 1;
adc_config.Init.DiscontinuousConvMode = DISABLE;
adc_config.Init.ExternalTrigConv = ADC_SOFTWARE_START;
adc_config.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
adc_config.Init.DMAContinuousRequests = DISABLE;
adc_config.Init.Overrun = ADC_OVR_DATA_PRESERVED;
adc_config.Init.OversamplingMode = DISABLE;
if(HAL_ADC_Init(&adc_config) != HAL_OK) {
Error_Handler();
}
// init channel
sConfig.Channel = adc_channel;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_2CYCLES_5;
sConfig.SingleDiff = ADC_SINGLE_ENDED;
sConfig.OffsetNumber = ADC_OFFSET_NONE;
sConfig.Offset = 0;
if(HAL_ADC_ConfigChannel(&adc_config, &sConfig) != HAL_OK) {
Error_Handler();
}
}
void CyfralReader::stop(void) {
HAL_ADC_DeInit(&adc_config);
}
bool CyfralReader::read(uint8_t* data, uint8_t count) {
uint32_t line_level_min, line_level_max;
bool raw_data[capture_size];
bool result = false;
error = CyfralReaderError::NO_ERROR;
// calibrate
get_line_minmax(256, &line_level_min, &line_level_max);
// TODO think about other detection method
// key not on line
if(line_level_max > 2000) {
error = CyfralReaderError::UNABLE_TO_DETECT;
return false;
}
// capturing raw data consisting of bits
capture_data(raw_data, capture_size, line_level_min, line_level_max);
// parse captured data
if(parse_data(raw_data, capture_size, data, count)) {
result = true;
}
return result;
}

View File

@ -1,283 +0,0 @@
#pragma once
#include <furi.h>
#include "callback-connector.h"
#include <atomic>
enum class CyfralReaderCompError : uint8_t {
NO_ERROR = 0,
UNABLE_TO_DETECT = 1,
RAW_DATA_SIZE_ERROR = 2,
UNKNOWN_NIBBLE_VALUE = 3,
NO_START_NIBBLE = 4,
NOT_ENOUGH_DATA = 5,
};
extern COMP_HandleTypeDef hcomp1;
typedef struct {
bool value;
uint32_t dwt_value;
} CompEvent;
class CyfralReaderComp {
private:
bool capture_data(bool* data, uint16_t capture_size);
bool parse_data(bool* raw_data, uint16_t capture_size, uint8_t* data, uint8_t count);
uint32_t search_array_in_array(
const bool* haystack,
const uint32_t haystack_size,
const bool* needle,
const uint32_t needle_size);
// key is 9 nibbles
static const uint16_t bits_in_nibble = 4;
static const uint16_t key_length = 9;
static const uint32_t capture_size = key_length * bits_in_nibble * 2;
CyfralReaderCompError error;
const GpioPin* pin_record;
std::atomic<bool> ready_to_process;
void comparator_trigger_callback(void* hcomp, void* comp_ctx);
osMessageQueueId_t comp_event_queue;
public:
CyfralReaderComp(const GpioPin* emulate_pin);
~CyfralReaderComp();
void start(void);
void stop(void);
bool read(uint8_t* data, uint8_t count);
};
bool CyfralReaderComp::capture_data(bool* data, uint16_t capture_size) {
uint32_t prev_timing = 0;
uint16_t data_index = 0;
CompEvent event_0, event_1;
osStatus_t status;
// read first event to get initial timing
status = osMessageQueueGet(comp_event_queue, &event_0, NULL, 0);
if(status != osOK) {
return false;
}
prev_timing = event_0.dwt_value;
// read second event until we get 0
while(1) {
status = osMessageQueueGet(comp_event_queue, &event_0, NULL, 0);
if(status != osOK) {
return false;
}
prev_timing = event_0.dwt_value;
if(event_0.value == 0) break;
}
while(1) {
// if event "zero" correct
if(status == osOK && event_0.value == 0) {
// get timing
event_0.dwt_value -= prev_timing;
prev_timing += event_0.dwt_value;
// read next event
status = osMessageQueueGet(comp_event_queue, &event_1, NULL, 0);
// if event "one" correct
if(status == osOK && event_1.value == 1) {
// get timing
event_1.dwt_value -= prev_timing;
prev_timing += event_1.dwt_value;
// calculate percentage of event "one" to full timing
uint32_t full_timing = event_0.dwt_value + event_1.dwt_value;
uint32_t percentage_1 = 1000000 / full_timing * event_1.dwt_value;
// write captured data
data[data_index] = percentage_1 > 500000 ? 0 : 1;
data_index++;
if(data_index >= capture_size) return true;
status = osMessageQueueGet(comp_event_queue, &event_0, NULL, 0);
} else {
return false;
}
} else {
return false;
}
}
osMessageQueueReset(comp_event_queue);
}
uint32_t CyfralReaderComp::search_array_in_array(
const bool* haystack,
const uint32_t haystack_size,
const bool* needle,
const uint32_t needle_size) {
uint32_t haystack_index = 0, needle_index = 0;
while(haystack_index < haystack_size && needle_index < needle_size) {
if(haystack[haystack_index] == needle[needle_index]) {
haystack_index++;
needle_index++;
if(needle_index == needle_size) {
return (haystack_index - needle_size);
};
} else {
haystack_index = haystack_index - needle_index + 1;
needle_index = 0;
}
}
return haystack_index;
}
void CyfralReaderComp::comparator_trigger_callback(void* hcomp, void* comp_ctx) {
CyfralReaderComp* _this = static_cast<CyfralReaderComp*>(comp_ctx);
COMP_HandleTypeDef* _hcomp = static_cast<COMP_HandleTypeDef*>(hcomp);
// check that hw is comparator 1
if(_hcomp != &hcomp1) return;
// if queue if not full
if(_this->ready_to_process == false) {
// send event to queue
CompEvent event;
// TOOD F4 and F5 differ
event.value = (HAL_COMP_GetOutputLevel(_hcomp) == COMP_OUTPUT_LEVEL_LOW);
event.dwt_value = DWT->CYCCNT;
osStatus_t status = osMessageQueuePut(_this->comp_event_queue, &event, 0, 0);
// queue is full, so we need to process data
if(status != osOK) {
_this->ready_to_process = true;
};
}
}
bool CyfralReaderComp::parse_data(
bool* raw_data,
uint16_t capture_size,
uint8_t* data,
uint8_t count) {
const bool start_nibble[bits_in_nibble] = {1, 1, 1, 0};
uint32_t start_position =
search_array_in_array(raw_data, capture_size, start_nibble, bits_in_nibble);
uint32_t end_position = 0;
memset(data, 0, count);
if(start_position < capture_size) {
start_position = start_position + bits_in_nibble;
end_position = start_position + count * 2 * bits_in_nibble;
if(end_position >= capture_size) {
error = CyfralReaderCompError::RAW_DATA_SIZE_ERROR;
return false;
}
bool first_nibble = true;
uint8_t data_position = 0;
uint8_t nibble_value = 0;
while(data_position < count) {
nibble_value = !raw_data[start_position] << 3 | !raw_data[start_position + 1] << 2 |
!raw_data[start_position + 2] << 1 | !raw_data[start_position + 3];
switch(nibble_value) {
case(0x7):
case(0xB):
case(0xD):
case(0xE):
break;
default:
error = CyfralReaderCompError::UNKNOWN_NIBBLE_VALUE;
return false;
break;
}
if(first_nibble) {
data[data_position] |= nibble_value << 4;
} else {
data[data_position] |= nibble_value;
}
first_nibble = !first_nibble;
if(first_nibble) {
data_position++;
}
start_position = start_position + bits_in_nibble;
}
error = CyfralReaderCompError::NO_ERROR;
return true;
}
error = CyfralReaderCompError::NO_START_NIBBLE;
return false;
}
CyfralReaderComp::CyfralReaderComp(const GpioPin* gpio_pin) {
pin_record = gpio_pin;
}
CyfralReaderComp::~CyfralReaderComp() {
}
void CyfralReaderComp::start(void) {
// pulldown lf-rfid pins to prevent interference
// TODO open record
GpioPin rfid_pull_pin = {.port = RFID_PULL_GPIO_Port, .pin = RFID_PULL_Pin};
hal_gpio_init((GpioPin*)&rfid_pull_pin, GpioModeOutputOpenDrain, GpioPullNo, GpioSpeedLow);
hal_gpio_write((GpioPin*)&rfid_pull_pin, false);
// TODO open record
GpioPin rfid_out_pin = {.port = RFID_OUT_GPIO_Port, .pin = RFID_OUT_Pin};
hal_gpio_init((GpioPin*)&rfid_out_pin, GpioModeOutputOpenDrain, GpioPullNo, GpioSpeedLow);
hal_gpio_write((GpioPin*)&rfid_out_pin, false);
// connect comparator callback
void* comp_ctx = this;
comp_event_queue = osMessageQueueNew(capture_size * 2 + 2, sizeof(CompEvent), NULL);
ready_to_process = false;
auto cmp_cb = cbc::obtain_connector(this, &CyfralReaderComp::comparator_trigger_callback);
api_interrupt_add(cmp_cb, InterruptTypeComparatorTrigger, comp_ctx);
// start comaparator
HAL_COMP_Start(&hcomp1);
}
void CyfralReaderComp::stop(void) {
// stop comaparator
HAL_COMP_Stop(&hcomp1);
// disconnect comparator callback
auto cmp_cb = cbc::obtain_connector(this, &CyfralReaderComp::comparator_trigger_callback);
api_interrupt_remove(cmp_cb, InterruptTypeComparatorTrigger);
osMessageQueueDelete(comp_event_queue);
}
bool CyfralReaderComp::read(uint8_t* data, uint8_t count) {
bool raw_data[capture_size];
bool result = false;
error = CyfralReaderCompError::NO_ERROR;
if(ready_to_process == false) {
error = CyfralReaderCompError::NOT_ENOUGH_DATA;
} else {
memset(raw_data, 0, sizeof(bool) * capture_size);
if(capture_data(raw_data, capture_size)) {
if(parse_data(raw_data, capture_size, data, count)) {
result = true;
}
}
ready_to_process = false;
}
return result;
}

View File

@ -1,320 +0,0 @@
#include "blanks_writer.h"
class RW1990_1 {
public:
constexpr static const uint8_t CMD_WRITE_RECORD_FLAG = 0xD1;
constexpr static const uint8_t CMD_READ_RECORD_FLAG = 0xB5;
constexpr static const uint8_t CMD_WRITE_ROM = 0xD5;
};
class RW1990_2 {
public:
constexpr static const uint8_t CMD_WRITE_RECORD_FLAG = 0x1D;
constexpr static const uint8_t CMD_READ_RECORD_FLAG = 0x1E;
constexpr static const uint8_t CMD_WRITE_ROM = 0xD5;
};
class TM2004 {
public:
constexpr static const uint8_t CMD_READ_STATUS = 0xAA;
constexpr static const uint8_t CMD_READ_MEMORY = 0xF0;
constexpr static const uint8_t CMD_WRITE_ROM = 0x3C;
constexpr static const uint8_t CMD_FINALIZATION = 0x35;
constexpr static const uint8_t ANSWER_READ_MEMORY = 0xF5;
};
class TM01 {
public:
constexpr static const uint8_t CMD_WRITE_RECORD_FLAG = 0xC1;
constexpr static const uint8_t CMD_WRITE_ROM = 0xC5;
constexpr static const uint8_t CMD_SWITCH_TO_CYFRAL = 0xCA;
constexpr static const uint8_t CMD_SWITCH_TO_METAKOM = 0xCB;
};
class DS1990 {
public:
constexpr static const uint8_t CMD_READ_ROM = 0x33;
};
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <furi_hal.h>
void BlanksWriter::onewire_release(void) {
hal_gpio_write(gpio, true);
}
void BlanksWriter::onewire_write_one_bit(bool value, uint32_t delay = 10000) {
onewire->write_bit(value);
delay_us(delay);
onewire_release();
}
BlanksWriter::BlanksWriter(const GpioPin* one_wire_gpio) {
gpio = one_wire_gpio;
onewire = new OneWireMaster(gpio);
}
BlanksWriter::~BlanksWriter() {
free(onewire);
}
WriterResult BlanksWriter::write(KeyType type, const uint8_t* key, uint8_t key_length) {
uint8_t write_result = -1;
WriterResult result = WR_ERROR;
bool same_key = false;
osKernelLock();
bool presence = onewire->reset();
osKernelUnlock();
if(presence) {
switch(type) {
case KeyType::KEY_DS1990:
same_key = compare_key_ds1990(key, key_length);
if(!same_key) {
// currently we can write:
// RW1990, TM08v2, TM08vi-2 by write_1990_1()
// RW2004, RW2004 with EEPROM by write_TM2004();
if(write_result != 1) {
write_result = write_1990_1(key, key_length);
}
if(write_result != 1) {
write_result = write_1990_2(key, key_length);
}
if(write_result != 1) {
write_result = write_TM2004(key, key_length);
}
if(write_result == 1) {
result = WR_OK;
} else if(write_result == 0) {
result = WR_ERROR;
}
} else {
write_result = 0;
result = WR_SAME_KEY;
}
break;
default:
break;
}
}
return result;
}
bool BlanksWriter::write_TM2004(const uint8_t* key, uint8_t key_length) {
uint8_t answer;
bool result = true;
osKernelLock();
__disable_irq();
// write rom, addr is 0x0000
onewire->reset();
onewire->write(TM2004::CMD_WRITE_ROM);
onewire->write(0x00);
onewire->write(0x00);
// write key
for(uint8_t i = 0; i < key_length; i++) {
// write key byte
onewire->write(key[i]);
answer = onewire->read();
// TODO: check answer CRC
// pulse indicating that data is correct
delay_us(600);
onewire_write_one_bit(1, 50000);
// read writed key byte
answer = onewire->read();
// check that writed and readed are same
if(key[i] != answer) {
result = false;
break;
}
}
onewire->reset();
__enable_irq();
osKernelUnlock();
return result;
}
bool BlanksWriter::write_1990_1(const uint8_t* key, uint8_t key_length) {
bool result = true;
osKernelLock();
__disable_irq();
// unlock
onewire->reset();
onewire->write(RW1990_1::CMD_WRITE_RECORD_FLAG);
delay_us(10);
onewire_write_one_bit(0, 5000);
// write key
onewire->reset();
onewire->write(RW1990_1::CMD_WRITE_ROM);
for(uint8_t i = 0; i < key_length; i++) {
// inverted key for RW1990.1
write_byte_ds1990(~key[i]);
delay_us(30000);
}
// lock
onewire->write(RW1990_1::CMD_WRITE_RECORD_FLAG);
onewire_write_one_bit(1);
__enable_irq();
osKernelUnlock();
if(!compare_key_ds1990(key, key_length)) {
result = false;
}
return result;
}
bool BlanksWriter::write_1990_2(const uint8_t* key, uint8_t key_length) {
bool result = true;
osKernelLock();
__disable_irq();
// unlock
onewire->reset();
onewire->write(RW1990_2::CMD_WRITE_RECORD_FLAG);
delay_us(10);
onewire_write_one_bit(1, 5000);
// write key
onewire->reset();
onewire->write(RW1990_2::CMD_WRITE_ROM);
for(uint8_t i = 0; i < key_length; i++) {
write_byte_ds1990(key[i]);
delay_us(30000);
}
// lock
onewire->write(RW1990_2::CMD_WRITE_RECORD_FLAG);
onewire_write_one_bit(0);
__enable_irq();
osKernelUnlock();
if(!compare_key_ds1990(key, key_length)) {
result = false;
}
return result;
}
// TODO: untested
bool BlanksWriter::write_TM01(KeyType type, const uint8_t* key, uint8_t key_length) {
bool result = true;
osKernelLock();
__disable_irq();
// unlock
onewire->reset();
onewire->write(TM01::CMD_WRITE_RECORD_FLAG);
onewire_write_one_bit(1, 10000);
// write key
onewire->reset();
onewire->write(TM01::CMD_WRITE_ROM);
// TODO: key types
//if(type == KEY_METAKOM || type == KEY_CYFRAL) {
//} else {
for(uint8_t i = 0; i < key_length; i++) {
write_byte_ds1990(key[i]);
delay_us(10000);
}
//}
// lock
onewire->write(TM01::CMD_WRITE_RECORD_FLAG);
onewire_write_one_bit(0, 10000);
__enable_irq();
osKernelUnlock();
if(!compare_key_ds1990(key, key_length)) {
result = false;
}
osKernelLock();
__disable_irq();
if(type == KEY_METAKOM || type == KEY_CYFRAL) {
onewire->reset();
if(type == KEY_CYFRAL)
onewire->write(TM01::CMD_SWITCH_TO_CYFRAL);
else
onewire->write(TM01::CMD_SWITCH_TO_METAKOM);
onewire_write_one_bit(1);
}
__enable_irq();
osKernelUnlock();
return result;
}
void BlanksWriter::write_byte_ds1990(uint8_t data) {
for(uint8_t n_bit = 0; n_bit < 8; n_bit++) {
onewire->write_bit(data & 1);
onewire_release();
delay_us(5000);
data = data >> 1;
}
}
bool BlanksWriter::compare_key_ds1990(const uint8_t* key, uint8_t key_length) {
uint8_t buff[key_length];
bool result = false;
osKernelLock();
bool presence = onewire->reset();
osKernelUnlock();
if(presence) {
osKernelLock();
__disable_irq();
onewire->write(DS1990::CMD_READ_ROM);
onewire->read_bytes(buff, key_length);
__enable_irq();
osKernelUnlock();
result = true;
for(uint8_t i = 0; i < 8; i++) {
if(key[i] != buff[i]) {
result = false;
break;
}
}
}
return result;
}
void BlanksWriter::start() {
onewire->start();
}
void BlanksWriter::stop() {
onewire->stop();
}

View File

@ -1,40 +0,0 @@
#pragma once
#include "one_wire_master.h"
#include "maxim_crc.h"
typedef enum {
KEY_DS1990, /**< DS1990 */
KEY_CYFRAL, /**< CYFRAL*/
KEY_METAKOM, /**< METAKOM */
} KeyType;
typedef enum {
WR_OK,
WR_SAME_KEY,
WR_ERROR,
} WriterResult;
class BlanksWriter {
private:
const GpioPin* gpio;
OneWireMaster* onewire;
void onewire_release(void);
void onewire_write_one_bit(bool value, uint32_t delay);
bool write_TM2004(const uint8_t* key, uint8_t key_length);
bool write_1990_1(const uint8_t* key, uint8_t key_length);
bool write_1990_2(const uint8_t* key, uint8_t key_length);
bool write_TM01(KeyType type, const uint8_t* key, uint8_t key_length);
void write_byte_ds1990(uint8_t data);
bool compare_key_ds1990(const uint8_t* key, uint8_t key_length);
public:
BlanksWriter(const GpioPin* one_wire_gpio);
~BlanksWriter();
WriterResult write(KeyType type, const uint8_t* key, uint8_t key_length);
void start();
void stop();
};

View File

@ -258,7 +258,7 @@ bool OneWireSlave::bus_start(void) {
if(device == nullptr) {
result = false;
} else {
__disable_irq();
FURI_CRITICAL_ENTER();
pin_init_opendrain_in_isr_ctx();
error = OneWireSlaveError::NO_ERROR;
@ -274,7 +274,7 @@ bool OneWireSlave::bus_start(void) {
}
pin_init_interrupt_in_isr_ctx();
__enable_irq();
FURI_CRITICAL_EXIT();
}
return result;