[FL-1496] SubGhz: Library, Cli, Application (#543)

* ApiHal: set frequency and path in one go. Drivers: proper frequency registers calculation for CC1101. Update subghz cli to match new api.
* SubGhz: preparation for parsers porting, tim2 sharing
* ApiHal: add interrupts API, move all TIM2 related things there.
* SubGhz: refactor protocol lib and add keeloq.
* SubGhz: proper init_set for keeloq manafacture key
* SubGhz: port more protocols to lib
* SubGhz: load keeloq manufacture keys from sd card (if any).
* SubGhz: format output from protocols.
* SubGhz: use default frequency in subghz_rx cli command.
* SubGhz: keeloq key types
* Fix compillation error when internal storage disabled
* SubGhz: minor cleanup
* SubGhz: properly handle timeout and reset signal in subghz_rx
* SubGhz: Worker, Capture View. Furi: emulate thread join.
* SubGhz: free strings on keeloq key load end
* SubGhz: update protocols reporting API, app refactoring and capture view, update API HAL usage.
* SubGhz: update dump formatting
* ApiHal: backport subghz preset to F5
* ApiHal: backport subghz frequency range to F5
This commit is contained in:
あく 2021-06-30 00:19:20 +03:00 committed by GitHub
parent dce3665f63
commit e8211226f3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
46 changed files with 2114 additions and 265 deletions

View File

@ -184,7 +184,8 @@ const FlipperApplication FLIPPER_APPS[] = {
#endif
#ifdef APP_SUBGHZ
{.app = subghz_app, .name = "Sub-1 GHz", .stack_size = 1024, .icon = A_Sub1ghz_14},
// TODO: decrease stack after SD API refactoring
{.app = subghz_app, .name = "Sub-1 GHz", .stack_size = 4096, .icon = A_Sub1ghz_14},
#endif
#ifdef APP_LF_RFID

View File

@ -1,83 +1,33 @@
#include "subghz_i.h"
const SubGhzFrequency subghz_frequencies[] = {
/* 301 */
{
.frequency = 301000000,
.path = ApiHalSubGhzPath315,
},
/* 315 */
{
.frequency = 315000000,
.path = ApiHalSubGhzPath315,
},
/* 346 - 385 */
{
.frequency = 346000000,
.path = ApiHalSubGhzPath315,
},
{
.frequency = 385000000,
.path = ApiHalSubGhzPath315,
},
/* LPD433 first, mid, last channels */
{
.frequency = 433075000,
.path = ApiHalSubGhzPath433,
},
{
.frequency = 433920000,
.path = ApiHalSubGhzPath433,
},
{
.frequency = 434775000,
.path = ApiHalSubGhzPath433,
},
/* 438.9 - 781 */
{
.frequency = 438900000,
.path = ApiHalSubGhzPath433,
},
{
.frequency = 463000000,
.path = ApiHalSubGhzPath433,
},
{
.frequency = 781000000,
.path = ApiHalSubGhzPath868,
},
/* 868.35 */
{
.frequency = 868350000,
.path = ApiHalSubGhzPath868,
},
/* 915 */
{
.frequency = 915000000,
.path = ApiHalSubGhzPath868,
},
/* 925 */
{
.frequency = 925000000,
.path = ApiHalSubGhzPath868,
},
const uint32_t subghz_frequencies[] = {
/* 300 - 348 */
300000000,
315000000,
348000000,
/* 387 - 464 */
387000000,
433075000, /* LPD433 first */
433920000, /* LPD433 mid */
434775000, /* LPD433 last channels */
438900000,
464000000,
/* 779 - 928 */
779000000,
868350000,
915000000,
925000000,
928000000,
};
const uint32_t subghz_frequencies_count = sizeof(subghz_frequencies) / sizeof(SubGhzFrequency);
const uint32_t subghz_frequencies_count = sizeof(subghz_frequencies) / sizeof(uint32_t);
const uint32_t subghz_frequencies_433_92 = 5;
void subghz_menu_callback(void* context, uint32_t index) {
furi_assert(context);
SubGhz* subghz = context;
if(index == 0) {
view_dispatcher_switch_to_view(subghz->view_dispatcher, SubGhzViewTestBasic);
} else if(index == 1) {
view_dispatcher_switch_to_view(subghz->view_dispatcher, SubGhzViewTestPacket);
} else if(index == 2) {
view_dispatcher_switch_to_view(subghz->view_dispatcher, SubGhzViewStatic);
}
view_dispatcher_switch_to_view(subghz->view_dispatcher, index);
}
uint32_t subghz_exit(void* context) {
@ -98,14 +48,25 @@ SubGhz* subghz_alloc() {
// Menu
subghz->submenu = submenu_alloc();
submenu_add_item(subghz->submenu, "Basic Test", 0, subghz_menu_callback, subghz);
submenu_add_item(subghz->submenu, "Packet Test", 1, subghz_menu_callback, subghz);
submenu_add_item(subghz->submenu, "Static Code", 2, subghz_menu_callback, subghz);
submenu_add_item(subghz->submenu, "Capture", SubGhzViewCapture, subghz_menu_callback, subghz);
submenu_add_item(
subghz->submenu, "Basic Test", SubGhzViewTestBasic, subghz_menu_callback, subghz);
submenu_add_item(
subghz->submenu, "Packet Test", SubGhzViewTestPacket, subghz_menu_callback, subghz);
submenu_add_item(
subghz->submenu, "Static Code", SubGhzViewStatic, subghz_menu_callback, subghz);
View* submenu_view = submenu_get_view(subghz->submenu);
view_set_previous_callback(submenu_view, subghz_exit);
view_dispatcher_add_view(subghz->view_dispatcher, SubGhzViewMenu, submenu_view);
// Capture
subghz->subghz_capture = subghz_capture_alloc();
view_dispatcher_add_view(
subghz->view_dispatcher,
SubGhzViewCapture,
subghz_capture_get_view(subghz->subghz_capture));
// Basic Test Module
subghz->subghz_test_basic = subghz_test_basic_alloc();
view_dispatcher_add_view(
@ -150,6 +111,10 @@ void subghz_free(SubGhz* subghz) {
view_dispatcher_remove_view(subghz->view_dispatcher, SubGhzViewMenu);
submenu_free(subghz->submenu);
// Capture
view_dispatcher_remove_view(subghz->view_dispatcher, SubGhzViewCapture);
subghz_capture_free(subghz->subghz_capture);
// View Dispatcher
view_dispatcher_free(subghz->view_dispatcher);

161
applications/subghz/subghz_cli.c Executable file → Normal file
View File

@ -1,6 +1,11 @@
#include "subghz_cli.h"
#include <furi.h>
#include <api-hal.h>
#include <stream_buffer.h>
#define CC1101_FREQUENCY_RANGE_STR \
"300000000...348000000 or 387000000...464000000 or 779000000...928000000"
static const uint8_t subghz_test_packet_data[] = {
0x30, // 48bytes to transmit
@ -9,6 +14,15 @@ static const uint8_t subghz_test_packet_data[] = {
0x77, 0x77, 0x77, 0x77, 0x77, 0x77, 0x77, 0x77, 0x77, 0x77, 0x77, 0x77, 0x77, 0x77, 0x77, 0x77,
};
bool subghz_check_frequency_range(uint32_t frequency) {
if(!(frequency >= 300000000 && frequency <= 348000000) &&
!(frequency >= 387000000 && frequency <= 464000000) &&
!(frequency >= 779000000 && frequency <= 928000000)) {
return false;
}
return true;
}
void subghz_cli_init() {
Cli* cli = furi_record_open("cli");
@ -16,12 +30,14 @@ void subghz_cli_init() {
cli_add_command(cli, "subghz_rx_carrier", subghz_cli_command_rx_carrier, NULL);
cli_add_command(cli, "subghz_tx_pt", subghz_cli_command_tx_pt, NULL);
cli_add_command(cli, "subghz_rx_pt", subghz_cli_command_rx_pt, NULL);
cli_add_command(cli, "subghz_tx", subghz_cli_command_tx, NULL);
cli_add_command(cli, "subghz_rx", subghz_cli_command_rx, NULL);
furi_record_close("cli");
}
void subghz_cli_command_tx_carrier(Cli* cli, string_t args, void* context) {
uint32_t frequency;
uint32_t frequency = 0;
int ret = sscanf(string_get_cstr(args), "%lu", &frequency);
if(ret != 1) {
printf("sscanf returned %d, frequency: %lu\r\n", ret, frequency);
@ -29,23 +45,17 @@ void subghz_cli_command_tx_carrier(Cli* cli, string_t args, void* context) {
return;
}
if(frequency < 300000000 || frequency > 925000000) {
printf("Frequency must be in 300000000...925000000 range, not %lu\r\n", frequency);
if(!subghz_check_frequency_range(frequency)) {
printf(
"Frequency must be in " CC1101_FREQUENCY_RANGE_STR " range, not %lu\r\n", frequency);
return;
}
api_hal_subghz_reset();
api_hal_subghz_load_preset(ApiHalSubGhzPresetOokAsync);
frequency = api_hal_subghz_set_frequency(frequency);
frequency = api_hal_subghz_set_frequency_and_path(frequency);
printf("Transmitting at frequency %lu Hz\r\n", frequency);
printf("Press CTRL+C to stop\r\n");
if(frequency < 400000000) {
api_hal_subghz_set_path(ApiHalSubGhzPath315);
} else if(frequency < 500000000) {
api_hal_subghz_set_path(ApiHalSubGhzPath433);
} else {
api_hal_subghz_set_path(ApiHalSubGhzPath868);
}
hal_gpio_init(&gpio_cc1101_g0, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
hal_gpio_write(&gpio_cc1101_g0, false);
@ -62,7 +72,7 @@ void subghz_cli_command_tx_carrier(Cli* cli, string_t args, void* context) {
}
void subghz_cli_command_rx_carrier(Cli* cli, string_t args, void* context) {
uint32_t frequency;
uint32_t frequency = 0;
int ret = sscanf(string_get_cstr(args), "%lu", &frequency);
if(ret != 1) {
printf("sscanf returned %d, frequency: %lu\r\n", ret, frequency);
@ -70,23 +80,17 @@ void subghz_cli_command_rx_carrier(Cli* cli, string_t args, void* context) {
return;
}
if(frequency < 300000000 || frequency > 925000000) {
printf("Frequency must be in 300000000...925000000 range, not %lu\r\n", frequency);
if(!subghz_check_frequency_range(frequency)) {
printf(
"Frequency must be in " CC1101_FREQUENCY_RANGE_STR " range, not %lu\r\n", frequency);
return;
}
api_hal_subghz_reset();
api_hal_subghz_load_preset(ApiHalSubGhzPresetOokAsync);
frequency = api_hal_subghz_set_frequency(frequency);
frequency = api_hal_subghz_set_frequency_and_path(frequency);
printf("Receiving at frequency %lu Hz\r\n", frequency);
printf("Press CTRL+C to stop\r\n");
if(frequency < 400000000) {
api_hal_subghz_set_path(ApiHalSubGhzPath315);
} else if(frequency < 500000000) {
api_hal_subghz_set_path(ApiHalSubGhzPath433);
} else {
api_hal_subghz_set_path(ApiHalSubGhzPath868);
}
hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
@ -103,7 +107,7 @@ void subghz_cli_command_rx_carrier(Cli* cli, string_t args, void* context) {
}
void subghz_cli_command_tx_pt(Cli* cli, string_t args, void* context) {
uint32_t frequency;
uint32_t frequency = 0;
uint32_t pattern;
uint32_t count;
@ -120,8 +124,9 @@ void subghz_cli_command_tx_pt(Cli* cli, string_t args, void* context) {
return;
}
if(frequency < 300000000 || frequency > 925000000) {
printf("Frequency must be in 300000000...925000000 range, not %lu\r\n", frequency);
if(!subghz_check_frequency_range(frequency)) {
printf(
"Frequency must be in " CC1101_FREQUENCY_RANGE_STR " range, not %lu\r\n", frequency);
return;
}
if(pattern > 1) {
@ -133,14 +138,7 @@ void subghz_cli_command_tx_pt(Cli* cli, string_t args, void* context) {
api_hal_subghz_load_preset(ApiHalSubGhzPreset2FskPacket);
frequency = api_hal_subghz_set_frequency(frequency);
if(frequency < 400000000) {
api_hal_subghz_set_path(ApiHalSubGhzPath315);
} else if(frequency < 500000000) {
api_hal_subghz_set_path(ApiHalSubGhzPath433);
} else {
api_hal_subghz_set_path(ApiHalSubGhzPath868);
}
frequency = api_hal_subghz_set_frequency_and_path(frequency);
hal_gpio_init(&gpio_cc1101_g0, GpioModeInput, GpioPullNo, GpioSpeedLow);
uint8_t status = api_hal_subghz_get_status();
@ -163,7 +161,7 @@ void subghz_cli_command_tx_pt(Cli* cli, string_t args, void* context) {
}
void subghz_cli_command_rx_pt(Cli* cli, string_t args, void* context) {
uint32_t frequency;
uint32_t frequency = 0;
int ret = sscanf(string_get_cstr(args), "%lu", &frequency);
if(ret != 1) {
@ -172,8 +170,9 @@ void subghz_cli_command_rx_pt(Cli* cli, string_t args, void* context) {
return;
}
if(frequency < 300000000 || frequency > 925000000) {
printf("Frequency must be in 300000000...925000000 range, not %lu\r\n", frequency);
if(!subghz_check_frequency_range(frequency)) {
printf(
"Frequency must be in " CC1101_FREQUENCY_RANGE_STR " range, not %lu\r\n", frequency);
return;
}
@ -181,14 +180,7 @@ void subghz_cli_command_rx_pt(Cli* cli, string_t args, void* context) {
api_hal_subghz_idle();
api_hal_subghz_load_preset(ApiHalSubGhzPreset2FskPacket);
frequency = api_hal_subghz_set_frequency(frequency);
if(frequency < 400000000) {
api_hal_subghz_set_path(ApiHalSubGhzPath315);
} else if(frequency < 500000000) {
api_hal_subghz_set_path(ApiHalSubGhzPath433);
} else {
api_hal_subghz_set_path(ApiHalSubGhzPath868);
}
frequency = api_hal_subghz_set_frequency_and_path(frequency);
hal_gpio_init(&gpio_cc1101_g0, GpioModeInput, GpioPullNo, GpioSpeedLow);
uint8_t status = api_hal_subghz_get_status();
@ -216,3 +208,84 @@ void subghz_cli_command_rx_pt(Cli* cli, string_t args, void* context) {
api_hal_subghz_set_path(ApiHalSubGhzPathIsolate);
hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
}
void subghz_cli_command_tx(Cli* cli, string_t args, void* context) {
}
#include <fl_subghz/protocols/subghz_protocol.h>
volatile bool subghz_cli_overrun = false;
void subghz_cli_command_rx_callback(
ApiHalSubGhzCaptureLevel level,
uint32_t duration,
void* context) {
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
LevelPair pair = {.level = level, .duration = duration};
if(subghz_cli_overrun) {
subghz_cli_overrun = false;
pair.level = ApiHalSubGhzCaptureLevelOverrun;
}
size_t ret =
xStreamBufferSendFromISR(context, &pair, sizeof(LevelPair), &xHigherPriorityTaskWoken);
if(sizeof(LevelPair) != ret) subghz_cli_overrun = true;
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
}
void subghz_cli_command_rx(Cli* cli, string_t args, void* context) {
uint32_t frequency = 433920000;
if(string_size(args)) {
int ret = sscanf(string_get_cstr(args), "%lu", &frequency);
if(ret != 1) {
printf("sscanf returned %d, frequency: %lu\r\n", ret, frequency);
cli_print_usage("subghz_rx", "<Frequency in HZ>", string_get_cstr(args));
return;
}
if(!subghz_check_frequency_range(frequency)) {
printf(
"Frequency must be in " CC1101_FREQUENCY_RANGE_STR " range, not %lu\r\n",
frequency);
return;
}
}
api_hal_subghz_reset();
api_hal_subghz_idle();
api_hal_subghz_load_preset(ApiHalSubGhzPresetMP);
SubGhzProtocol* protocol = subghz_protocol_alloc();
subghz_protocol_load_keeloq_file(protocol, "/assets/subghz/keeloq_mfcodes");
subghz_protocol_enable_dump(protocol, NULL, NULL);
frequency = api_hal_subghz_set_frequency_and_path(frequency);
hal_gpio_init(&gpio_cc1101_g0, GpioModeInput, GpioPullNo, GpioSpeedLow);
StreamBufferHandle_t rx_stream =
xStreamBufferCreate(sizeof(LevelPair) * 1024, sizeof(LevelPair));
api_hal_subghz_set_capture_callback(subghz_cli_command_rx_callback, rx_stream);
api_hal_subghz_enable_capture();
api_hal_subghz_flush_rx();
api_hal_subghz_rx();
printf("Listening at %lu. Press CTRL+C to stop\r\n", frequency);
LevelPair pair;
while(!cli_cmd_interrupt_received(cli)) {
int ret = xStreamBufferReceive(rx_stream, &pair, sizeof(LevelPair), 10);
if(ret == sizeof(LevelPair)) {
if(pair.level == ApiHalSubGhzCaptureLevelOverrun) {
printf(".");
subghz_protocol_reset(protocol);
} else {
subghz_protocol_parse(protocol, pair);
}
}
}
subghz_protocol_free(protocol);
vStreamBufferDelete(rx_stream);
api_hal_subghz_disable_capture();
api_hal_subghz_init();
}

View File

@ -11,3 +11,7 @@ void subghz_cli_command_rx_carrier(Cli* cli, string_t args, void* context);
void subghz_cli_command_tx_pt(Cli* cli, string_t args, void* context);
void subghz_cli_command_rx_pt(Cli* cli, string_t args, void* context);
void subghz_cli_command_tx(Cli* cli, string_t args, void* context);
void subghz_cli_command_rx(Cli* cli, string_t args, void* context);

View File

@ -1,9 +1,10 @@
#pragma once
#include "subghz.h"
#include "subghz_test_basic.h"
#include "subghz_test_packet.h"
#include "subghz_static.h"
#include "views/subghz_capture.h"
#include "views/subghz_test_basic.h"
#include "views/subghz_test_packet.h"
#include "views/subghz_static.h"
#include <furi.h>
#include <api-hal.h>
@ -11,12 +12,7 @@
#include <gui/view_dispatcher.h>
#include <gui/modules/submenu.h>
typedef struct {
uint32_t frequency;
uint8_t path;
} SubGhzFrequency;
extern const SubGhzFrequency subghz_frequencies[];
extern const uint32_t subghz_frequencies[];
extern const uint32_t subghz_frequencies_count;
extern const uint32_t subghz_frequencies_433_92;
@ -27,6 +23,8 @@ struct SubGhz {
Submenu* submenu;
SubghzCapture* subghz_capture;
SubghzTestBasic* subghz_test_basic;
SubghzTestPacket* subghz_test_packet;
@ -36,6 +34,7 @@ struct SubGhz {
typedef enum {
SubGhzViewMenu,
SubGhzViewCapture,
SubGhzViewTestBasic,
SubGhzViewTestPacket,
SubGhzViewStatic,

View File

@ -0,0 +1,188 @@
#include "subghz_capture.h"
#include "../subghz_i.h"
#include <math.h>
#include <furi.h>
#include <api-hal.h>
#include <input/input.h>
#include <gui/elements.h>
#include <notification/notification-messages.h>
#include <fl_subghz/subghz_worker.h>
#include <fl_subghz/protocols/subghz_protocol.h>
struct SubghzCapture {
View* view;
SubGhzWorker* worker;
SubGhzProtocol* protocol;
};
typedef struct {
uint8_t frequency;
uint32_t real_frequency;
uint32_t counter;
string_t text;
} SubghzCaptureModel;
static const char subghz_symbols[] = {'-', '\\', '|', '/'};
void subghz_capture_draw(Canvas* canvas, SubghzCaptureModel* model) {
char buffer[64];
canvas_set_color(canvas, ColorBlack);
canvas_set_font(canvas, FontPrimary);
snprintf(
buffer,
sizeof(buffer),
"Capture: %03ld.%03ldMHz %c",
model->real_frequency / 1000000 % 1000,
model->real_frequency / 1000 % 1000,
subghz_symbols[model->counter % 4]);
canvas_draw_str(canvas, 2, 12, buffer);
canvas_set_font(canvas, FontSecondary);
elements_multiline_text(canvas, 0, 24, string_get_cstr(model->text));
}
bool subghz_capture_input(InputEvent* event, void* context) {
furi_assert(context);
SubghzCapture* subghz_capture = context;
if(event->key == InputKeyBack) {
return false;
}
with_view_model(
subghz_capture->view, (SubghzCaptureModel * model) {
bool reconfigure = false;
if(event->type == InputTypeShort) {
if(event->key == InputKeyLeft) {
if(model->frequency > 0) model->frequency--;
reconfigure = true;
} else if(event->key == InputKeyRight) {
if(model->frequency < subghz_frequencies_count - 1) model->frequency++;
reconfigure = true;
}
}
if(reconfigure) {
api_hal_subghz_idle();
model->real_frequency =
api_hal_subghz_set_frequency_and_path(subghz_frequencies[model->frequency]);
api_hal_subghz_rx();
}
return reconfigure;
});
return true;
}
void subghz_capture_text_callback(string_t text, void* context) {
furi_assert(context);
SubghzCapture* subghz_capture = context;
with_view_model(
subghz_capture->view, (SubghzCaptureModel * model) {
model->counter++;
string_set(model->text, text);
return true;
});
}
void subghz_capture_enter(void* context) {
furi_assert(context);
SubghzCapture* subghz_capture = context;
api_hal_subghz_reset();
api_hal_subghz_idle();
api_hal_subghz_load_preset(ApiHalSubGhzPresetMP);
with_view_model(
subghz_capture->view, (SubghzCaptureModel * model) {
model->frequency = subghz_frequencies_433_92;
model->real_frequency =
api_hal_subghz_set_frequency_and_path(subghz_frequencies[model->frequency]);
return true;
});
hal_gpio_init(&gpio_cc1101_g0, GpioModeInput, GpioPullNo, GpioSpeedLow);
api_hal_subghz_set_capture_callback(subghz_worker_rx_callback, subghz_capture->worker);
api_hal_subghz_enable_capture();
subghz_worker_start(subghz_capture->worker);
api_hal_subghz_flush_rx();
api_hal_subghz_rx();
}
void subghz_capture_exit(void* context) {
furi_assert(context);
SubghzCapture* subghz_capture = context;
subghz_worker_stop(subghz_capture->worker);
api_hal_subghz_disable_capture();
api_hal_subghz_init();
}
uint32_t subghz_capture_back(void* context) {
return SubGhzViewMenu;
}
SubghzCapture* subghz_capture_alloc() {
SubghzCapture* subghz_capture = furi_alloc(sizeof(SubghzCapture));
// View allocation and configuration
subghz_capture->view = view_alloc();
view_allocate_model(subghz_capture->view, ViewModelTypeLocking, sizeof(SubghzCaptureModel));
view_set_context(subghz_capture->view, subghz_capture);
view_set_draw_callback(subghz_capture->view, (ViewDrawCallback)subghz_capture_draw);
view_set_input_callback(subghz_capture->view, subghz_capture_input);
view_set_enter_callback(subghz_capture->view, subghz_capture_enter);
view_set_exit_callback(subghz_capture->view, subghz_capture_exit);
view_set_previous_callback(subghz_capture->view, subghz_capture_back);
with_view_model(
subghz_capture->view, (SubghzCaptureModel * model) {
string_init(model->text);
return true;
});
subghz_capture->worker = subghz_worker_alloc();
subghz_capture->protocol = subghz_protocol_alloc();
subghz_worker_set_overrun_callback(
subghz_capture->worker, (SubGhzWorkerOverrunCallback)subghz_protocol_reset);
subghz_worker_set_pair_callback(
subghz_capture->worker, (SubGhzWorkerPairCallback)subghz_protocol_parse);
subghz_worker_set_context(subghz_capture->worker, subghz_capture->protocol);
subghz_protocol_load_keeloq_file(subghz_capture->protocol, "/assets/subghz/keeloq_mfcodes");
subghz_protocol_enable_dump(
subghz_capture->protocol, subghz_capture_text_callback, subghz_capture);
return subghz_capture;
}
void subghz_capture_free(SubghzCapture* subghz_capture) {
furi_assert(subghz_capture);
subghz_protocol_free(subghz_capture->protocol);
subghz_worker_free(subghz_capture->worker);
with_view_model(
subghz_capture->view, (SubghzCaptureModel * model) {
string_clear(model->text);
return true;
});
view_free(subghz_capture->view);
free(subghz_capture);
}
View* subghz_capture_get_view(SubghzCapture* subghz_capture) {
furi_assert(subghz_capture);
return subghz_capture->view;
}

View File

@ -0,0 +1,11 @@
#pragma once
#include <gui/view.h>
typedef struct SubghzCapture SubghzCapture;
SubghzCapture* subghz_capture_alloc();
void subghz_capture_free(SubghzCapture* subghz_capture);
View* subghz_capture_get_view(SubghzCapture* subghz_capture);

View File

@ -1,5 +1,5 @@
#include "subghz_static.h"
#include "subghz_i.h"
#include "../subghz_i.h"
#include <math.h>
#include <furi.h>
@ -30,7 +30,6 @@ typedef enum {
typedef struct {
uint8_t frequency;
uint32_t real_frequency;
ApiHalSubGhzPath path;
uint8_t button;
} SubghzStaticModel;
@ -51,21 +50,8 @@ void subghz_static_draw(Canvas* canvas, SubghzStaticModel* model) {
model->real_frequency / 1000 % 1000,
model->real_frequency % 1000);
canvas_draw_str(canvas, 2, 24, buffer);
// Path
char* path_name = "Unknown";
if(model->path == ApiHalSubGhzPathIsolate) {
path_name = "isolate";
} else if(model->path == ApiHalSubGhzPath433) {
path_name = "433MHz";
} else if(model->path == ApiHalSubGhzPath315) {
path_name = "315MHz";
} else if(model->path == ApiHalSubGhzPath868) {
path_name = "868MHz";
}
snprintf(buffer, sizeof(buffer), "Path: %d - %s", model->path, path_name);
canvas_draw_str(canvas, 2, 36, buffer);
snprintf(buffer, sizeof(buffer), "Key: %d", model->button);
canvas_draw_str(canvas, 2, 48, buffer);
canvas_draw_str(canvas, 2, 36, buffer);
}
bool subghz_static_input(InputEvent* event, void* context) {
@ -91,14 +77,12 @@ bool subghz_static_input(InputEvent* event, void* context) {
} else if(event->key == InputKeyUp) {
if(model->button < 3) model->button++;
}
model->path = subghz_frequencies[model->frequency].path;
}
if(reconfigure) {
api_hal_subghz_idle();
model->real_frequency =
api_hal_subghz_set_frequency(subghz_frequencies[model->frequency].frequency);
api_hal_subghz_set_path(model->path);
api_hal_subghz_set_frequency_and_path(subghz_frequencies[model->frequency]);
api_hal_subghz_tx();
}
@ -154,10 +138,8 @@ void subghz_static_enter(void* context) {
subghz_static->view, (SubghzStaticModel * model) {
model->frequency = subghz_frequencies_433_92;
model->real_frequency =
api_hal_subghz_set_frequency(subghz_frequencies[model->frequency].frequency);
model->path = subghz_frequencies[model->frequency].path;
api_hal_subghz_set_frequency_and_path(subghz_frequencies[model->frequency]);
model->button = 0;
api_hal_subghz_set_path(model->path);
return true;
});

View File

@ -1,5 +1,5 @@
#include "subghz_test_basic.h"
#include "subghz_i.h"
#include "../subghz_i.h"
#include <math.h>
#include <furi.h>
@ -98,7 +98,7 @@ bool subghz_test_basic_input(InputEvent* event, void* context) {
}
model->real_frequency =
api_hal_subghz_set_frequency(subghz_frequencies[model->frequency].frequency);
api_hal_subghz_set_frequency(subghz_frequencies[model->frequency]);
api_hal_subghz_set_path(model->path);
}
@ -131,7 +131,7 @@ void subghz_test_basic_enter(void* context) {
subghz_test_basic->view, (SubghzTestBasicModel * model) {
model->frequency = subghz_frequencies_433_92; // 433
model->real_frequency =
api_hal_subghz_set_frequency(subghz_frequencies[model->frequency].frequency);
api_hal_subghz_set_frequency(subghz_frequencies[model->frequency]);
model->path = ApiHalSubGhzPathIsolate; // isolate
model->rssi = 0.0f;
model->status = SubghzTestBasicModelStatusRx;

View File

@ -1,5 +1,5 @@
#include "subghz_test_packet.h"
#include "subghz_i.h"
#include "../subghz_i.h"
#include <math.h>
#include <furi.h>
@ -106,7 +106,7 @@ bool subghz_test_packet_input(InputEvent* event, void* context) {
}
model->real_frequency =
api_hal_subghz_set_frequency(subghz_frequencies[model->frequency].frequency);
api_hal_subghz_set_frequency(subghz_frequencies[model->frequency]);
api_hal_subghz_set_path(model->path);
}
@ -138,7 +138,7 @@ void subghz_test_packet_enter(void* context) {
subghz_test_packet->view, (SubghzTestPacketModel * model) {
model->frequency = subghz_frequencies_433_92;
model->real_frequency =
api_hal_subghz_set_frequency(subghz_frequencies[model->frequency].frequency);
api_hal_subghz_set_frequency(subghz_frequencies[model->frequency]);
model->path = ApiHalSubGhzPathIsolate; // isolate
model->rssi = 0.0f;
model->status = SubghzTestPacketModelStatusRx;

View File

@ -136,7 +136,10 @@ osStatus_t furi_thread_terminate(FuriThread* thread) {
osStatus_t furi_thread_join(FuriThread* thread) {
furi_assert(thread);
return osThreadJoin(thread->id);
while(thread->state != FuriThreadStateStopped) {
osDelay(10);
}
return osOK;
}
osThreadId_t furi_thread_get_thread_id(FuriThread* thread) {

View File

@ -11,6 +11,7 @@ extern "C" {
typedef enum {
ApiHalSubGhzPresetOokAsync, /** OOK, asynchronous */
ApiHalSubGhzPreset2FskPacket, /** 2FSK, 115kBaud, variable packet length */
ApiHalSubGhzPresetMP, /** MP OOK, asynchronous */
} ApiHalSubGhzPreset;
/** Switchable Radio Paths */
@ -88,6 +89,13 @@ void api_hal_subghz_tx();
/** Get RSSI value in dBm */
float api_hal_subghz_get_rssi();
/** Set frequency and path
* This function automatically selects antenna matching network
* @param frequency in herz
* @return real frequency in herz
*/
uint32_t api_hal_subghz_set_frequency_and_path(uint32_t value);
/** Set frequency
* @param frequency in herz
* @return real frequency in herz
@ -99,6 +107,36 @@ uint32_t api_hal_subghz_set_frequency(uint32_t value);
*/
void api_hal_subghz_set_path(ApiHalSubGhzPath path);
/** Front Definition for capture callback */
typedef enum {
ApiHalSubGhzCaptureLevelHigh,
ApiHalSubGhzCaptureLevelLow,
ApiHalSubGhzCaptureLevelOverrun,
ApiHalSubGhzCaptureLevelUnderrun,
} ApiHalSubGhzCaptureLevel;
typedef struct {
ApiHalSubGhzCaptureLevel level;
uint32_t duration;
} LevelPair;
/** Signal Timings Capture callback */
typedef void (*ApiHalSubGhzCaptureCallback)(ApiHalSubGhzCaptureLevel level, uint32_t time, void* context);
/** Set signal timings capture callback
* @param callback - your callback for front capture
*/
void api_hal_subghz_set_capture_callback(ApiHalSubGhzCaptureCallback callback, void* context);
/** Enable signal timings capture
* Initializes GPIO and TIM2 for timings capture
*/
void api_hal_subghz_enable_capture();
/** Disable signal timings capture
* Resets GPIO and TIM2
*/
void api_hal_subghz_disable_capture();
#ifdef __cplusplus
}

View File

@ -13,7 +13,6 @@ template <unsigned int N> struct STOP_EXTERNING_ME {};
#include "api-hal-delay.h"
#include "api-hal-pwm.h"
#include "api-hal-task.h"
#include "api-hal-tim.h"
#include "api-hal-power.h"
#include "api-hal-vcp.h"
#include "api-hal-version.h"

View File

@ -10,12 +10,13 @@
static const uint8_t api_hal_subghz_preset_ook_async_regs[][2] = {
/* Base setting */
{ CC1101_IOCFG0, 0x0D }, // GD0 as async serial data output/input
{ CC1101_FSCTRL1, 0x06 }, // Set IF 26m/2^10*2=2.2MHz
{ CC1101_MCSM0, 0x18 }, // Autocalibrate on idle to TRX, ~150us OSC guard time
/* Async OOK Specific things */
/* Async OOK Specific things */
{ CC1101_MDMCFG2, 0x30 }, // ASK/OOK, No preamble/sync
{ CC1101_PKTCTRL0, 0x32 }, // Async, no CRC, Infinite
{ CC1101_FREND0, 0x01 }, // OOK/ASK PATABLE
/* End */
{ 0, 0 },
};
@ -24,15 +25,54 @@ static const uint8_t api_hal_subghz_preset_ook_async_patable[8] = {
0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
static const uint8_t api_hal_subghz_preset_mp_regs[][2] = {
{ CC1101_IOCFG0, 0x0D },
{ CC1101_FIFOTHR, 0x07 },
{ CC1101_PKTCTRL0, 0x32 },
//{ CC1101_FSCTRL1, 0x0E },
{ CC1101_FSCTRL1, 0x06 },
{ CC1101_FREQ2, 0x10 },
{ CC1101_FREQ1, 0xB0 },
{ CC1101_FREQ0, 0x7F },
{ CC1101_MDMCFG4, 0x17 },
{ CC1101_MDMCFG3, 0x32 },
{ CC1101_MDMCFG2, 0x30 }, //<---OOK/ASK
{ CC1101_MDMCFG1, 0x23 },
{ CC1101_MDMCFG0, 0xF8 },
{ CC1101_MCSM0, 0x18 },
{ CC1101_FOCCFG, 0x18 },
{ CC1101_AGCTRL2, 0x07 },
{ CC1101_AGCTRL1, 0x00 },
{ CC1101_AGCTRL0, 0x91 },
{ CC1101_WORCTRL, 0xFB },
{ CC1101_FREND1, 0xB6 },
//{ CC1101_FREND0, 0x11 },
{ CC1101_FREND0, 0x01 },
{ CC1101_FSCAL3, 0xE9 },
{ CC1101_FSCAL2, 0x2A },
{ CC1101_FSCAL1, 0x00 },
{ CC1101_FSCAL0, 0x1F },
{ CC1101_TEST2, 0x88 },
{ CC1101_TEST1, 0x31 },
{ CC1101_TEST0, 0x09 },
/* End */
{ 0, 0 },
};
static const uint8_t api_hal_subghz_preset_mp_patable[8] = {
0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
static const uint8_t api_hal_subghz_preset_2fsk_packet_regs[][2] = {
/* Base setting */
{ CC1101_IOCFG0, 0x06 }, // GD0 as async serial data output/input
{ CC1101_FSCTRL1, 0x06 }, // Set IF 26m/2^10*2=2.2MHz
{ CC1101_MCSM0, 0x18 }, // Autocalibrate on idle to TRX, ~150us OSC guard time
{ CC1101_TEST2, 0x81},
{ CC1101_TEST1, 0x35},
{ CC1101_TEST0, 0x09},
/* Magic */
{ CC1101_TEST2, 0x81},
{ CC1101_TEST1, 0x35},
{ CC1101_TEST0, 0x09},
/* End */
{ 0, 0 },
@ -82,6 +122,9 @@ void api_hal_subghz_load_preset(ApiHalSubGhzPreset preset) {
} else if(preset == ApiHalSubGhzPreset2FskPacket) {
api_hal_subghz_load_registers(api_hal_subghz_preset_2fsk_packet_regs);
api_hal_subghz_load_patable(api_hal_subghz_preset_2fsk_packet_patable);
} else if(preset == ApiHalSubGhzPresetMP) {
api_hal_subghz_load_registers(api_hal_subghz_preset_mp_regs);
api_hal_subghz_load_patable(api_hal_subghz_preset_mp_patable);
}
}
@ -175,6 +218,20 @@ float api_hal_subghz_get_rssi() {
return rssi;
}
uint32_t api_hal_subghz_set_frequency_and_path(uint32_t value) {
value = api_hal_subghz_set_frequency(value);
if(value >= 300000000 && value <= 348000335) {
api_hal_subghz_set_path(ApiHalSubGhzPath315);
} else if(value >= 387000000 && value <= 464000000) {
api_hal_subghz_set_path(ApiHalSubGhzPath433);
} else if(value >= 779000000 && value <= 928000000) {
api_hal_subghz_set_path(ApiHalSubGhzPath868);
} else {
furi_check(0);
}
return value;
}
uint32_t api_hal_subghz_set_frequency(uint32_t value) {
const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz);
@ -208,3 +265,9 @@ void api_hal_subghz_set_path(ApiHalSubGhzPath path) {
furi_check(0);
}
}
void api_hal_subghz_set_capture_callback(ApiHalSubGhzCaptureCallback callback, void* context) {}
void api_hal_subghz_enable_capture() {}
void api_hal_subghz_disable_capture() {}

View File

@ -0,0 +1,42 @@
#include "api-hal-interrupt.h"
#include <furi.h>
#include <main.h>
#include <stm32wbxx_ll_tim.h>
volatile ApiHalInterruptISR api_hal_tim_tim2_isr = NULL;
void TIM2_IRQHandler(void) {
if (api_hal_tim_tim2_isr) {
api_hal_tim_tim2_isr();
} else {
HAL_TIM_IRQHandler(&htim2);
}
}
void api_hal_interrupt_set_timer_isr(TIM_TypeDef *timer, ApiHalInterruptISR isr) {
if (timer == TIM2) {
if (isr) {
furi_assert(api_hal_tim_tim2_isr == NULL);
} else {
furi_assert(api_hal_tim_tim2_isr != NULL);
}
api_hal_tim_tim2_isr = isr;
} else {
furi_check(0);
}
}
extern void api_interrupt_call(InterruptType type, void* hw);
/* ST HAL symbols */
/* Comparator trigger event */
void HAL_COMP_TriggerCallback(COMP_HandleTypeDef* hcomp) {
api_interrupt_call(InterruptTypeComparatorTrigger, hcomp);
}
/* Timer update event */
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef* htim) {
api_interrupt_call(InterruptTypeTimerUpdate, htim);
}

View File

@ -0,0 +1,23 @@
#pragma once
#include <stm32wbxx_ll_tim.h>
#ifdef __cplusplus
extern "C" {
#endif
/** Timer ISR */
typedef void (*ApiHalInterruptISR)();
/** Set Timer ISR
* By default ISR is serviced by ST HAL. Use this function to override it.
* We don't clear interrupt flags for you, do it by your self.
* @timer - timer instance
* @isr - your interrupt service routine or use NULL to clear
*/
void api_hal_interrupt_set_timer_isr(TIM_TypeDef *timer, ApiHalInterruptISR isr);
#ifdef __cplusplus
}
#endif

View File

@ -1,21 +1,25 @@
#include "cmsis_os.h"
#include "api-hal-tim_i.h"
#include "api-hal-interrupt.h"
#include "api-hal-irda.h"
#include <stm32wbxx_ll_tim.h>
#include <stm32wbxx_ll_gpio.h>
#include <stdio.h>
#include <furi.h>
#include "main.h"
#include "api-hal-pwm.h"
static struct{
TimerISRCallback callback;
void *ctx;
} timer_irda;
typedef enum{
TimerIRQSourceCCI1,
TimerIRQSourceCCI2,
} TimerIRQSource;
void api_hal_irda_tim_isr(TimerIRQSource source)
static void api_hal_irda_handle_capture(TimerIRQSource source)
{
uint32_t duration = 0;
bool level = 0;
@ -39,6 +43,33 @@ void api_hal_irda_tim_isr(TimerIRQSource source)
timer_irda.callback(timer_irda.ctx, level, duration);
}
static void api_hal_irda_isr() {
if(LL_TIM_IsActiveFlag_CC1(TIM2) == 1) {
LL_TIM_ClearFlag_CC1(TIM2);
if(READ_BIT(TIM2->CCMR1, TIM_CCMR1_CC1S)) {
// input capture
api_hal_irda_handle_capture(TimerIRQSourceCCI1);
} else {
// output compare
// HAL_TIM_OC_DelayElapsedCallback(htim);
// HAL_TIM_PWM_PulseFinishedCallback(htim);
}
}
if(LL_TIM_IsActiveFlag_CC2(TIM2) == 1) {
LL_TIM_ClearFlag_CC2(TIM2);
if(READ_BIT(TIM2->CCMR1, TIM_CCMR1_CC2S)) {
// input capture
api_hal_irda_handle_capture(TimerIRQSourceCCI2);
} else {
// output compare
// HAL_TIM_OC_DelayElapsedCallback(htim);
// HAL_TIM_PWM_PulseFinishedCallback(htim);
}
}
}
void api_hal_irda_rx_irq_init(void)
{
LL_TIM_InitTypeDef TIM_InitStruct = {0};
@ -86,15 +117,14 @@ void api_hal_irda_rx_irq_init(void)
LL_TIM_SetCounter(TIM2, 0);
LL_TIM_EnableCounter(TIM2);
api_hal_interrupt_set_timer_isr(TIM2, api_hal_irda_isr);
NVIC_SetPriority(TIM2_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(),5, 0));
NVIC_EnableIRQ(TIM2_IRQn);
}
void api_hal_irda_rx_irq_deinit(void) {
LL_TIM_DisableIT_CC1(TIM2);
LL_TIM_DisableIT_CC2(TIM2);
LL_TIM_CC_DisableChannel(TIM2, LL_TIM_CHANNEL_CH1);
LL_TIM_CC_DisableChannel(TIM2, LL_TIM_CHANNEL_CH2);
LL_TIM_DeInit(TIM2);
api_hal_interrupt_set_timer_isr(TIM2, NULL);
}
bool api_hal_irda_rx_irq_is_busy(void) {
@ -115,4 +145,3 @@ void api_hal_irda_pwm_set(float value, float freq) {
void api_hal_irda_pwm_stop() {
hal_pwmn_stop(&IRDA_TX_TIM, IRDA_TX_CH);
}

View File

@ -1,10 +0,0 @@
#pragma once
#include "api-hal-tim_i.h"
/**
* Function to handle IRDA timer ISR.
*
* @param source - reason for interrupt request.
*/
void api_hal_irda_tim_isr(TimerIRQSource source);

View File

@ -2,7 +2,9 @@
#include <api-hal-gpio.h>
#include <api-hal-spi.h>
#include <api-hal-interrupt.h>
#include <api-hal-resources.h>
#include <furi.h>
#include <cc1101.h>
#include <stdio.h>
@ -10,12 +12,13 @@
static const uint8_t api_hal_subghz_preset_ook_async_regs[][2] = {
/* Base setting */
{ CC1101_IOCFG0, 0x0D }, // GD0 as async serial data output/input
{ CC1101_FSCTRL1, 0x06 }, // Set IF 26m/2^10*2=2.2MHz
{ CC1101_MCSM0, 0x18 }, // Autocalibrate on idle to TRX, ~150us OSC guard time
/* Async OOK Specific things */
/* Async OOK Specific things */
{ CC1101_MDMCFG2, 0x30 }, // ASK/OOK, No preamble/sync
{ CC1101_PKTCTRL0, 0x32 }, // Async, no CRC, Infinite
{ CC1101_FREND0, 0x01 }, // OOK/ASK PATABLE
/* End */
{ 0, 0 },
};
@ -24,15 +27,54 @@ static const uint8_t api_hal_subghz_preset_ook_async_patable[8] = {
0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
static const uint8_t api_hal_subghz_preset_mp_regs[][2] = {
{ CC1101_IOCFG0, 0x0D },
{ CC1101_FIFOTHR, 0x07 },
{ CC1101_PKTCTRL0, 0x32 },
//{ CC1101_FSCTRL1, 0x0E },
{ CC1101_FSCTRL1, 0x06 },
{ CC1101_FREQ2, 0x10 },
{ CC1101_FREQ1, 0xB0 },
{ CC1101_FREQ0, 0x7F },
{ CC1101_MDMCFG4, 0x17 },
{ CC1101_MDMCFG3, 0x32 },
{ CC1101_MDMCFG2, 0x30 }, //<---OOK/ASK
{ CC1101_MDMCFG1, 0x23 },
{ CC1101_MDMCFG0, 0xF8 },
{ CC1101_MCSM0, 0x18 },
{ CC1101_FOCCFG, 0x18 },
{ CC1101_AGCTRL2, 0x07 },
{ CC1101_AGCTRL1, 0x00 },
{ CC1101_AGCTRL0, 0x91 },
{ CC1101_WORCTRL, 0xFB },
{ CC1101_FREND1, 0xB6 },
//{ CC1101_FREND0, 0x11 },
{ CC1101_FREND0, 0x01 },
{ CC1101_FSCAL3, 0xE9 },
{ CC1101_FSCAL2, 0x2A },
{ CC1101_FSCAL1, 0x00 },
{ CC1101_FSCAL0, 0x1F },
{ CC1101_TEST2, 0x88 },
{ CC1101_TEST1, 0x31 },
{ CC1101_TEST0, 0x09 },
/* End */
{ 0, 0 },
};
static const uint8_t api_hal_subghz_preset_mp_patable[8] = {
0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
static const uint8_t api_hal_subghz_preset_2fsk_packet_regs[][2] = {
/* Base setting */
{ CC1101_IOCFG0, 0x06 }, // GD0 as async serial data output/input
{ CC1101_FSCTRL1, 0x06 }, // Set IF 26m/2^10*2=2.2MHz
{ CC1101_MCSM0, 0x18 }, // Autocalibrate on idle to TRX, ~150us OSC guard time
{ CC1101_TEST2, 0x81},
{ CC1101_TEST1, 0x35},
{ CC1101_TEST0, 0x09},
/* Magic */
{ CC1101_TEST2, 0x81},
{ CC1101_TEST1, 0x35},
{ CC1101_TEST0, 0x09},
/* End */
{ 0, 0 },
@ -46,20 +88,26 @@ void api_hal_subghz_init() {
const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz);
// Reset and shutdown
cc1101_reset(device);
// Prepare GD0 for power on self test
hal_gpio_init(&gpio_cc1101_g0, GpioModeInput, GpioPullNo, GpioSpeedLow);
// GD0 low
cc1101_write_reg(device, CC1101_IOCFG0, CC1101IocfgHW);
while(hal_gpio_read(&gpio_cc1101_g0) != false);
// GD0 high
cc1101_write_reg(device, CC1101_IOCFG0, CC1101IocfgHW | CC1101_IOCFG_INV);
while(hal_gpio_read(&gpio_cc1101_g0) != true);
// Reset GD0 to floating state
cc1101_write_reg(device, CC1101_IOCFG0, CC1101IocfgHighImpedance);
hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
// RF switches
hal_gpio_init(&gpio_rf_sw_0, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
cc1101_write_reg(device, CC1101_IOCFG2, CC1101IocfgHW);
// Turn off oscillator
cc1101_shutdown(device);
api_hal_spi_device_return(device);
@ -82,6 +130,9 @@ void api_hal_subghz_load_preset(ApiHalSubGhzPreset preset) {
} else if(preset == ApiHalSubGhzPreset2FskPacket) {
api_hal_subghz_load_registers(api_hal_subghz_preset_2fsk_packet_regs);
api_hal_subghz_load_patable(api_hal_subghz_preset_2fsk_packet_patable);
} else if(preset == ApiHalSubGhzPresetMP) {
api_hal_subghz_load_registers(api_hal_subghz_preset_mp_regs);
api_hal_subghz_load_patable(api_hal_subghz_preset_mp_patable);
}
}
@ -176,6 +227,20 @@ float api_hal_subghz_get_rssi() {
return rssi;
}
uint32_t api_hal_subghz_set_frequency_and_path(uint32_t value) {
value = api_hal_subghz_set_frequency(value);
if(value >= 300000000 && value <= 348000335) {
api_hal_subghz_set_path(ApiHalSubGhzPath315);
} else if(value >= 387000000 && value <= 464000000) {
api_hal_subghz_set_path(ApiHalSubGhzPath433);
} else if(value >= 779000000 && value <= 928000000) {
api_hal_subghz_set_path(ApiHalSubGhzPath868);
} else {
furi_check(0);
}
return value;
}
uint32_t api_hal_subghz_set_frequency(uint32_t value) {
const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz);
@ -211,3 +276,94 @@ void api_hal_subghz_set_path(ApiHalSubGhzPath path) {
}
api_hal_spi_device_return(device);
}
volatile uint32_t api_hal_subghz_capture_delta_duration = 0;
volatile ApiHalSubGhzCaptureCallback api_hal_subghz_capture_callback = NULL;
volatile void* api_hal_subghz_capture_callback_context = NULL;
void api_hal_subghz_set_capture_callback(ApiHalSubGhzCaptureCallback callback, void* context) {
api_hal_subghz_capture_callback = callback;
api_hal_subghz_capture_callback_context = context;
}
static void api_hal_subghz_capture_ISR() {
// Channel 1
if(LL_TIM_IsActiveFlag_CC1(TIM2)) {
LL_TIM_ClearFlag_CC1(TIM2);
api_hal_subghz_capture_delta_duration = LL_TIM_IC_GetCaptureCH1(TIM2);
if (api_hal_subghz_capture_callback) {
api_hal_subghz_capture_callback(
ApiHalSubGhzCaptureLevelHigh,
api_hal_subghz_capture_delta_duration,
(void*)api_hal_subghz_capture_callback_context
);
}
}
// Channel 2
if(LL_TIM_IsActiveFlag_CC2(TIM2)) {
LL_TIM_ClearFlag_CC2(TIM2);
if (api_hal_subghz_capture_callback) {
api_hal_subghz_capture_callback(
ApiHalSubGhzCaptureLevelLow,
LL_TIM_IC_GetCaptureCH2(TIM2) - api_hal_subghz_capture_delta_duration,
(void*)api_hal_subghz_capture_callback_context
);
}
}
}
void api_hal_subghz_enable_capture() {
/* Peripheral clock enable */
LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_TIM2);
LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_GPIOA);
hal_gpio_init_ex(&gpio_cc1101_g0, GpioModeAltFunctionPushPull, GpioPullNo, GpioSpeedLow, GpioAltFn1TIM2);
// Timer: base
LL_TIM_InitTypeDef TIM_InitStruct = {0};
TIM_InitStruct.Prescaler = 64-1;
TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP;
TIM_InitStruct.Autoreload = 0xFFFFFFFF;
TIM_InitStruct.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
LL_TIM_Init(TIM2, &TIM_InitStruct);
// Timer: advanced and channel
LL_TIM_SetClockSource(TIM2, LL_TIM_CLOCKSOURCE_INTERNAL);
LL_TIM_DisableARRPreload(TIM2);
LL_TIM_SetTriggerInput(TIM2, LL_TIM_TS_TI2FP2);
LL_TIM_SetSlaveMode(TIM2, LL_TIM_SLAVEMODE_RESET);
LL_TIM_CC_DisableChannel(TIM2, LL_TIM_CHANNEL_CH2);
LL_TIM_IC_SetFilter(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_IC_FILTER_FDIV1);
LL_TIM_IC_SetPolarity(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_IC_POLARITY_RISING);
LL_TIM_DisableIT_TRIG(TIM2);
LL_TIM_DisableDMAReq_TRIG(TIM2);
LL_TIM_SetTriggerOutput(TIM2, LL_TIM_TRGO_RESET);
LL_TIM_EnableMasterSlaveMode(TIM2);
LL_TIM_IC_SetActiveInput(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_ACTIVEINPUT_INDIRECTTI);
LL_TIM_IC_SetPrescaler(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_ICPSC_DIV1);
LL_TIM_IC_SetFilter(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_IC_FILTER_FDIV1);
LL_TIM_IC_SetPolarity(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_IC_POLARITY_FALLING);
LL_TIM_IC_SetActiveInput(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_ACTIVEINPUT_DIRECTTI);
LL_TIM_IC_SetPrescaler(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_ICPSC_DIV1);
// ISR setup
api_hal_interrupt_set_timer_isr(TIM2, api_hal_subghz_capture_ISR);
NVIC_SetPriority(TIM2_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(),5, 0));
NVIC_EnableIRQ(TIM2_IRQn);
// Interrupts and channels
LL_TIM_EnableIT_CC1(TIM2);
LL_TIM_EnableIT_CC2(TIM2);
LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH1);
LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH2);
// Start timer
LL_TIM_SetCounter(TIM2, 0);
LL_TIM_EnableCounter(TIM2);
}
void api_hal_subghz_disable_capture() {
LL_TIM_DeInit(TIM2);
api_hal_interrupt_set_timer_isr(TIM2, NULL);
hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
}

View File

@ -1,45 +0,0 @@
#include "api-hal-tim_i.h"
#include "api-hal-irda_i.h"
#include <stm32wbxx_ll_tim.h>
#include <furi.h>
void TIM2_IRQHandler(void) {
bool consumed = false;
if(LL_TIM_IsActiveFlag_CC1(TIM2) == 1) {
if(LL_TIM_IsEnabledIT_CC1(TIM2)) {
LL_TIM_ClearFlag_CC1(TIM2);
if(READ_BIT(TIM2->CCMR1, TIM_CCMR1_CC1S)) {
// input capture
api_hal_irda_tim_isr(TimerIRQSourceCCI1);
consumed = true;
} else {
// output compare
// HAL_TIM_OC_DelayElapsedCallback(htim);
// HAL_TIM_PWM_PulseFinishedCallback(htim);
}
}
}
if(LL_TIM_IsActiveFlag_CC2(TIM2) == 1) {
if(LL_TIM_IsEnabledIT_CC2(TIM2)) {
LL_TIM_ClearFlag_CC2(TIM2);
if(READ_BIT(TIM2->CCMR1, TIM_CCMR1_CC2S)) {
// input capture
api_hal_irda_tim_isr(TimerIRQSourceCCI2);
consumed = true;
} else {
// output compare
// HAL_TIM_OC_DelayElapsedCallback(htim);
// HAL_TIM_PWM_PulseFinishedCallback(htim);
}
}
}
// TODO move all timers on LL hal
if(!consumed) {
// currently backed up with a crutch, we need more bicycles
HAL_TIM_IRQHandler(&htim2);
}
}

View File

@ -1,7 +0,0 @@
#pragma once
typedef enum{
TimerIRQSourceCCI1,
TimerIRQSourceCCI2,
} TimerIRQSource;

View File

@ -1,16 +0,0 @@
#include "api-hal/api-interrupt-mgr.h"
#include <main.h>
extern void api_interrupt_call(InterruptType type, void* hw);
/* interrupts */
/* Comparator trigger event */
void HAL_COMP_TriggerCallback(COMP_HandleTypeDef* hcomp) {
api_interrupt_call(InterruptTypeComparatorTrigger, hcomp);
}
/* Timer update event */
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef* htim) {
api_interrupt_call(InterruptTypeTimerUpdate, htim);
}

View File

@ -104,37 +104,37 @@ void cc1101_flush_tx(const ApiHalSpiDevice* device) {
}
uint32_t cc1101_set_frequency(const ApiHalSpiDevice* device, uint32_t value) {
uint64_t real_value = (uint64_t)value * 0xFFFF / CC1101_QUARTZ;
uint64_t real_value = (uint64_t)value * CC1101_FDIV / CC1101_QUARTZ;
// Sanity check
assert((real_value & 0xFFFFFF) == real_value);
assert((real_value & CC1101_FMASK) == real_value);
cc1101_write_reg(device, CC1101_FREQ2, (real_value >> 16) & 0xFF);
cc1101_write_reg(device, CC1101_FREQ1, (real_value >> 8 ) & 0xFF);
cc1101_write_reg(device, CC1101_FREQ0, (real_value >> 0 ) & 0xFF);
uint64_t real_frequency = real_value * CC1101_QUARTZ / 0xFFFF;
uint64_t real_frequency = real_value * CC1101_QUARTZ / CC1101_FDIV;
return (uint32_t)real_frequency;
}
uint32_t cc1101_get_frequency_step(const ApiHalSpiDevice* device) {
return CC1101_QUARTZ / 0xFFFF;
return CC1101_QUARTZ / CC1101_FDIV;
}
uint32_t cc1101_set_frequency_offset(const ApiHalSpiDevice* device, uint32_t value) {
uint64_t real_value = value * 0x4000 / CC1101_QUARTZ;
uint64_t real_value = value * CC1101_IFDIV / CC1101_QUARTZ;
assert((real_value & 0xFF) == real_value);
cc1101_write_reg(device, CC1101_FSCTRL0, (real_value >> 0 ) & 0xFF);
uint64_t real_frequency = real_value * CC1101_QUARTZ / 0x4000;
uint64_t real_frequency = real_value * CC1101_QUARTZ / CC1101_IFDIV;
return (uint32_t)real_frequency;
}
uint32_t cc1101_get_frequency_offset_step(const ApiHalSpiDevice* device) {
return CC1101_QUARTZ / 0x4000;
return CC1101_QUARTZ / CC1101_IFDIV;
}
void cc1101_set_pa_table(const ApiHalSpiDevice* device, const uint8_t value[8]) {

View File

@ -7,10 +7,16 @@
extern "C" {
#endif
/* Frequency Synthesizer constants */
#define CC1101_QUARTZ 26000000
#define CC1101_FMASK 0xFFFFFF
#define CC1101_FDIV 0x10000
#define CC1101_IFDIV 0x400
/* IO Bus constants */
#define CC1101_TIMEOUT 500
/* Bits and pieces */
#define CC1101_READ (1<<7) /** Read Bit */
#define CC1101_BURST (1<<6) /** Burst Bit */

View File

@ -0,0 +1,130 @@
#include "subghz_protocol.h"
#include "subghz_protocol_came.h"
#include "subghz_protocol_cfm.h"
#include "subghz_protocol_keeloq.h"
#include "subghz_protocol_nice_flo.h"
#include "subghz_protocol_nice_flor_s.h"
#include "subghz_protocol_princeton.h"
#include <furi.h>
#include <m-string.h>
#include <filesystem-api.h>
#define FILE_BUFFER_SIZE 64
struct SubGhzProtocol {
SubGhzProtocolCame* came;
SubGhzProtocolKeeloq* keeloq;
SubGhzProtocolNiceFlo* nice_flo;
SubGhzProtocolNiceFlorS* nice_flor_s;
SubGhzProtocolPrinceton* princeton;
SubGhzProtocolTextCallback text_callback;
void* text_callback_context;
};
static void subghz_protocol_came_rx_callback(SubGhzProtocolCommon* parser, void* context) {
SubGhzProtocol* instance = context;
string_t output;
string_init(output);
subghz_protocol_common_to_str((SubGhzProtocolCommon*)parser, output);
if (instance->text_callback) {
instance->text_callback(output, instance->text_callback_context);
} else {
printf(string_get_cstr(output));
}
string_clear(output);
}
SubGhzProtocol* subghz_protocol_alloc() {
SubGhzProtocol* instance = furi_alloc(sizeof(SubGhzProtocol));
instance->came = subghz_protocol_came_alloc();
instance->keeloq = subghz_protocol_keeloq_alloc();
instance->princeton = subghz_protocol_princeton_alloc();
instance->nice_flo = subghz_protocol_nice_flo_alloc();
instance->nice_flor_s = subghz_protocol_nice_flor_s_alloc();
return instance;
}
void subghz_protocol_free(SubGhzProtocol* instance) {
furi_assert(instance);
subghz_protocol_came_free(instance->came);
subghz_protocol_keeloq_free(instance->keeloq);
subghz_protocol_princeton_free(instance->princeton);
subghz_protocol_nice_flo_free(instance->nice_flo);
subghz_protocol_nice_flor_s_free(instance->nice_flor_s);
free(instance);
}
void subghz_protocol_enable_dump(SubGhzProtocol* instance, SubGhzProtocolTextCallback callback, void* context) {
furi_assert(instance);
subghz_protocol_common_set_callback((SubGhzProtocolCommon*)instance->came, subghz_protocol_came_rx_callback, instance);
subghz_protocol_common_set_callback((SubGhzProtocolCommon*)instance->keeloq, subghz_protocol_came_rx_callback, instance);
subghz_protocol_common_set_callback((SubGhzProtocolCommon*)instance->princeton, subghz_protocol_came_rx_callback, instance);
subghz_protocol_common_set_callback((SubGhzProtocolCommon*)instance->nice_flo, subghz_protocol_came_rx_callback, instance);
subghz_protocol_common_set_callback((SubGhzProtocolCommon*)instance->nice_flor_s, subghz_protocol_came_rx_callback, instance);
instance->text_callback = callback;
instance->text_callback_context = context;
}
static void subghz_protocol_load_keeloq_file_process_line(SubGhzProtocol* instance, string_t line) {
uint64_t key = 0;
uint16_t type = 0;
char skey[17] = {0};
char name[65] = {0};
int ret = sscanf(string_get_cstr(line), "%16s:%hu:%64s", skey, &type, name);
key = strtoull(skey, NULL, 16);
if (ret == 3) {
subghz_protocol_keeloq_add_manafacture_key(instance->keeloq, name, key, type);
} else {
printf("Failed to load line: %s\r\n", string_get_cstr(line));
}
}
void subghz_protocol_load_keeloq_file(SubGhzProtocol* instance, const char* file_name) {
File manufacture_keys_file;
FS_Api* fs_api = furi_record_open("sdcard");
fs_api->file.open(&manufacture_keys_file, file_name, FSAM_READ, FSOM_OPEN_EXISTING);
string_t line;
string_init(line);
if(manufacture_keys_file.error_id == FSE_OK) {
printf("Loading manufacture keys file %s\r\n", file_name);
char buffer[FILE_BUFFER_SIZE];
uint16_t ret;
do {
ret = fs_api->file.read(&manufacture_keys_file, buffer, FILE_BUFFER_SIZE);
for (uint16_t i=0; i < ret; i++) {
if (buffer[i] == '\n' && string_size(line) > 0) {
subghz_protocol_load_keeloq_file_process_line(instance, line);
string_clean(line);
} else {
string_push_back(line, buffer[i]);
}
}
} while(ret > 0);
} else {
printf("Manufacture keys file is not found: %s\r\n", file_name);
}
string_clear(line);
fs_api->file.close(&manufacture_keys_file);
furi_record_close("sdcard");
}
void subghz_protocol_reset(SubGhzProtocol* instance) {
}
void subghz_protocol_parse(SubGhzProtocol* instance, LevelPair data) {
subghz_protocol_came_parse(instance->came, data);
subghz_protocol_keeloq_parse(instance->keeloq, data);
subghz_protocol_princeton_parse(instance->princeton, data);
subghz_protocol_nice_flo_parse(instance->nice_flo, data);
subghz_protocol_nice_flor_s_parse(instance->nice_flor_s, data);
}

View File

@ -0,0 +1,19 @@
#pragma once
#include "subghz_protocol_common.h"
typedef void (*SubGhzProtocolTextCallback)(string_t text, void* context);
typedef struct SubGhzProtocol SubGhzProtocol;
SubGhzProtocol* subghz_protocol_alloc();
void subghz_protocol_free(SubGhzProtocol* instance);
void subghz_protocol_enable_dump(SubGhzProtocol* instance, SubGhzProtocolTextCallback callback, void* context);
void subghz_protocol_load_keeloq_file(SubGhzProtocol* instance, const char* file_name);
void subghz_protocol_reset(SubGhzProtocol* instance);
void subghz_protocol_parse(SubGhzProtocol* instance, LevelPair data);

View File

@ -0,0 +1,119 @@
#include "subghz_protocol_came.h"
#include "subghz_protocol_common.h"
/*
* Help
* https://phreakerclub.com/447
*
*/
struct SubGhzProtocolCame {
SubGhzProtocolCommon common;
};
SubGhzProtocolCame* subghz_protocol_came_alloc() {
SubGhzProtocolCame* instance = furi_alloc(sizeof(SubGhzProtocolCame));
instance->common.name = "Came";
instance->common.code_min_count_bit_for_found = 12;
instance->common.te_shot = 320;
instance->common.te_long = 640;
instance->common.te_delta = 150;
return instance;
}
void subghz_protocol_came_free(SubGhzProtocolCame* instance) {
furi_assert(instance);
free(instance);
}
void subghz_protocol_came_send_bit(SubGhzProtocolCame* instance, uint8_t bit) {
if (bit) {
//send bit 1
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_long);
SUBGHZ_TX_PIN_HIGTH();
delay_us(instance->common.te_shot);
} else {
//send bit 0
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_shot);
SUBGHZ_TX_PIN_HIGTH();
delay_us(instance->common.te_long);
}
}
void subghz_protocol_came_send_key(SubGhzProtocolCame* instance, uint64_t key, uint8_t bit, uint8_t repeat) {
while (repeat--) {
//Send header
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_shot * 34); //+2 interval v bit 1
//Send start bit
subghz_protocol_came_send_bit(instance, 1);
//Send key data
for (uint8_t i = bit; i > 0; i--) {
subghz_protocol_came_send_bit(instance, bit_read(key, i - 1));
}
}
}
void subghz_protocol_came_parse(SubGhzProtocolCame* instance, LevelPair data) {
switch (instance->common.parser_step) {
case 0:
if ((data.level == ApiHalSubGhzCaptureLevelLow)
&& (DURATION_DIFF(data.duration,instance->common.te_shot * 51)< instance->common.te_delta * 51)) { //Need protocol 36 te_shot
//Found header CAME
instance->common.parser_step = 1;
} else {
instance->common.parser_step = 0;
}
break;
case 1:
if (data.level == ApiHalSubGhzCaptureLevelLow) {
break;
} else if (DURATION_DIFF(data.duration,instance->common.te_shot)< instance->common.te_delta) {
//Found start bit CAME
instance->common.parser_step = 2;
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
} else {
instance->common.parser_step = 0;
}
break;
case 2:
if (data.level == ApiHalSubGhzCaptureLevelLow) { //save interval
if (data.duration >= (instance->common.te_shot * 4)) {
instance->common.parser_step = 1;
if (instance->common.code_count_bit>= instance->common.code_min_count_bit_for_found) {
//ToDo out data display
if (instance->common.callback)
instance->common.callback((SubGhzProtocolCommon*)instance, instance->common.context);
}
break;
}
instance->common.te_last = data.duration;
instance->common.parser_step = 3;
} else {
instance->common.parser_step = 0;
}
break;
case 3:
if (data.level == ApiHalSubGhzCaptureLevelHigh) {
if ((DURATION_DIFF(instance->common.te_last,instance->common.te_shot) < instance->common.te_delta)
&& (DURATION_DIFF(data.duration,instance->common.te_long)< instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 0);
instance->common.parser_step = 2;
} else if ((DURATION_DIFF(instance->common.te_last,instance->common.te_long)< instance->common.te_delta)
&& (DURATION_DIFF(data.duration,instance->common.te_shot)< instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 1);
instance->common.parser_step = 2;
} else
instance->common.parser_step = 0;
} else {
instance->common.parser_step = 0;
}
break;
}
}

View File

@ -0,0 +1,13 @@
#pragma once
#include "subghz_protocol_common.h"
typedef struct SubGhzProtocolCame SubGhzProtocolCame;
SubGhzProtocolCame* subghz_protocol_came_alloc();
void subghz_protocol_came_free(SubGhzProtocolCame* instance);
void subghz_protocol_came_send_key(SubGhzProtocolCame* instance, uint64_t key, uint8_t bit, uint8_t repeat);
void subghz_protocol_came_parse(SubGhzProtocolCame* instance, LevelPair data);

View File

@ -0,0 +1,4 @@
/*
* https://phreakerclub.com/616
*/

View File

@ -0,0 +1,70 @@
#include "subghz_protocol_common.h"
#include <stdio.h>
void subghz_protocol_common_add_bit(SubGhzProtocolCommon *common, uint8_t bit){
common->code_found = common->code_found <<1 | bit;
common->code_count_bit++;
}
uint8_t subghz_protocol_common_check_interval (SubGhzProtocolCommon *common, uint32_t interval, uint16_t interval_check) {
if ((interval_check >= (interval - common->te_delta))&&(interval_check <= (interval + common->te_delta))){
return 1;
} else {
return 0;
}
}
uint64_t subghz_protocol_common_reverse_key(uint64_t key, uint8_t count_bit){
uint64_t key_reverse=0;
for(uint8_t i=0; i<count_bit; i++) {
key_reverse=key_reverse<<1|bit_read(key,i);
}
return key_reverse;
}
void subghz_protocol_common_set_callback(SubGhzProtocolCommon* common, SubGhzProtocolCommonCallback callback, void* context) {
common->callback = callback;
common->context = context;
}
void subghz_protocol_common_to_str(SubGhzProtocolCommon* instance, string_t output) {
if (instance->to_string) {
instance->to_string(instance, output);
} else {
uint32_t code_found_hi = instance->code_found >> 32;
uint32_t code_found_lo = instance->code_found & 0x00000000ffffffff;
uint64_t code_found_reverse = subghz_protocol_common_reverse_key(instance->code_found, instance->code_count_bit);
uint32_t code_found_reverse_hi = code_found_reverse>>32;
uint32_t code_found_reverse_lo = code_found_reverse&0x00000000ffffffff;
if (code_found_hi>0) {
string_cat_printf(
output,
"Protocol %s, %d Bit\r\n"
" KEY:0x%lX%08lX\r\n"
" YEK:0x%lX%08lX\r\n",
instance->name,
instance->code_count_bit,
code_found_hi,
code_found_lo,
code_found_reverse_hi,
code_found_reverse_lo
);
} else {
string_cat_printf(
output,
"Protocol %s, %d Bit\r\n"
" KEY:0x%lX%lX\r\n"
" YEK:0x%lX%lX\r\n",
instance->name,
instance->code_count_bit,
code_found_hi,
code_found_lo,
code_found_reverse_hi,
code_found_reverse_lo
);
}
}
}

View File

@ -0,0 +1,53 @@
#pragma once
#include <m-string.h>
#include <api-hal.h>
#include <stdint.h>
#define bit_read(value, bit) (((value) >> (bit)) & 0x01)
#define bit_set(value, bit) ((value) |= (1UL << (bit)))
#define bit_clear(value, bit) ((value) &= ~(1UL << (bit)))
#define bit_write(value, bit, bitvalue) (bitvalue ? bit_set(value, bit) : bit_clear(value, bit))
#define SUBGHZ_TX_PIN_HIGTH()
#define SUBGHZ_TX_PIN_LOW()
#define DURATION_DIFF(x,y) ((x < y) ? (y - x) : (x - y))
typedef struct SubGhzProtocolCommon SubGhzProtocolCommon;
typedef void (*SubGhzProtocolCommonCallback)(SubGhzProtocolCommon* parser, void* context);
typedef void (*SubGhzProtocolCommonToStr)(SubGhzProtocolCommon* instance, string_t output);
struct SubGhzProtocolCommon {
const char* name;
uint16_t te_long;
uint16_t te_shot;
uint16_t te_delta;
uint64_t code_found;
uint64_t code_last_found;
uint8_t code_count_bit;
uint8_t code_min_count_bit_for_found;
uint8_t parser_step;
uint16_t te_last;
uint8_t header_count;
uint16_t cnt;
/* Standard Callback for on rx complete event */
SubGhzProtocolCommonCallback callback;
void* context;
/* Dump To String */
SubGhzProtocolCommonToStr to_string;
};
void subghz_protocol_common_add_bit(SubGhzProtocolCommon *common, uint8_t bit);
uint8_t subghz_protocol_common_check_interval(SubGhzProtocolCommon *common, uint32_t interval, uint16_t interval_check);
uint64_t subghz_protocol_common_reverse_key(uint64_t key, uint8_t count_bit);
void subghz_protocol_common_set_callback(SubGhzProtocolCommon* instance, SubGhzProtocolCommonCallback callback, void* context);
void subghz_protocol_common_to_str(SubGhzProtocolCommon* instance, string_t output);

View File

@ -0,0 +1,378 @@
#include "subghz_protocol_keeloq.h"
#include <furi.h>
#include <m-string.h>
#include <m-array.h>
/*
* Keeloq
* https://ru.wikipedia.org/wiki/KeeLoq
* https://phreakerclub.com/forum/showthread.php?t=1094
*
*/
#define KEELOQ_NLF 0x3A5C742E
#define bit(x,n) (((x)>>(n))&1)
#define g5(x,a,b,c,d,e) (bit(x,a)+bit(x,b)*2+bit(x,c)*4+bit(x,d)*8+bit(x,e)*16)
/*
* KeeLoq learning types
* https://phreakerclub.com/forum/showthread.php?t=67
*/
#define KEELOQ_LEARNING_UNKNOWN 0u
#define KEELOQ_LEARNING_SIMPLE 1u
#define KEELOQ_LEARNING_NORMAL 2u
#define KEELOQ_LEARNING_SECURE 3u
typedef struct {
string_t name;
uint64_t key;
uint16_t type;
} KeeLoqManufactureCode;
ARRAY_DEF(KeeLoqManufactureCodeArray, KeeLoqManufactureCode, M_POD_OPLIST)
#define M_OPL_KeeLoqManufactureCodeArray_t() ARRAY_OPLIST(KeeLoqManufactureCodeArray, M_POD_OPLIST)
struct SubGhzProtocolKeeloq {
SubGhzProtocolCommon common;
KeeLoqManufactureCodeArray_t manufacture_codes;
const char* manufacture_name;
};
/** Simple Learning Encrypt
* @param data - serial number (28bit)
* @param key - manufacture (64bit)
* @return ?
*/
inline uint32_t subghz_protocol_keeloq_encrypt(const uint32_t data, const uint64_t key) {
uint32_t x = data, r;
for (r = 0; r < 528; r++)
x = (x>>1)^((bit(x,0)^bit(x,16)^(uint32_t)bit(key,r&63)^bit(KEELOQ_NLF,g5(x,1,9,20,26,31)))<<31);
return x;
}
/** Simple Learning Decrypt
* @param data - serial number (28bit)
* @param key - manufacture (64bit)
* @return ?
*/
inline uint32_t subghz_protocol_keeloq_decrypt(const uint32_t data, const uint64_t key) {
uint32_t x = data, r;
for (r = 0; r < 528; r++)
x = (x<<1)^bit(x,31)^bit(x,15)^(uint32_t)bit(key,(15-r)&63)^bit(KEELOQ_NLF,g5(x,0,8,19,25,30));
return x;
}
/** Normal Learning
* @param data - serial number (28bit)
* @param key - manufacture (64bit)
* @return ?
*/
inline uint64_t subghz_protocol_keeloq_normal_learning(uint32_t data, const uint64_t key){
uint32_t k1,k2;
data&=0x0FFFFFFF;
data|=0x20000000;
k1=subghz_protocol_keeloq_decrypt(data, key);
data&=0x0FFFFFFF;
data|=0x60000000;
k2=subghz_protocol_keeloq_decrypt(data, key);
return ((uint64_t)k2<<32)| k1; // key - shifrovanoya
}
SubGhzProtocolKeeloq* subghz_protocol_keeloq_alloc() {
SubGhzProtocolKeeloq* instance = furi_alloc(sizeof(SubGhzProtocolKeeloq));
instance->common.name = "KeeLoq";
instance->common.code_min_count_bit_for_found = 64;
instance->common.te_shot = 400;
instance->common.te_long = 800;
instance->common.te_delta = 140;
instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_protocol_keeloq_to_str;
KeeLoqManufactureCodeArray_init(instance->manufacture_codes);
return instance;
}
void subghz_protocol_keeloq_free(SubGhzProtocolKeeloq* instance) {
furi_assert(instance);
for
M_EACH(manufacture_code, instance->manufacture_codes, KeeLoqManufactureCodeArray_t) {
string_clear(manufacture_code->name);
manufacture_code->key = 0;
}
KeeLoqManufactureCodeArray_clear(instance->manufacture_codes);
free(instance);
}
void subghz_protocol_keeloq_add_manafacture_key(SubGhzProtocolKeeloq* instance, const char* name, uint64_t key, uint16_t type) {
KeeLoqManufactureCode* manufacture_code = KeeLoqManufactureCodeArray_push_raw(instance->manufacture_codes);
string_init_set_str(manufacture_code->name, name);
manufacture_code->key = key;
manufacture_code->type = type;
}
uint8_t subghz_protocol_keeloq_check_remote_controller_selector(SubGhzProtocolKeeloq* instance, uint32_t fix , uint32_t hop) {
uint16_t end_serial = (uint16_t)(fix&0x3FF);
uint8_t btn = (uint8_t)(fix>>28);
uint32_t decrypt = 0;
uint64_t man_normal_learning;
for
M_EACH(manufacture_code, instance->manufacture_codes, KeeLoqManufactureCodeArray_t) {
switch (manufacture_code->type){
case KEELOQ_LEARNING_SIMPLE:
//Simple Learning
decrypt = subghz_protocol_keeloq_decrypt(hop, manufacture_code->key);
if((decrypt>>28 == btn) && ((((uint16_t)(decrypt>>16)) & 0x3FF) == end_serial)){
instance->manufacture_name = string_get_cstr(manufacture_code->name);
instance->common.cnt = decrypt & 0x0000FFFF;
return 1;
}
break;
case KEELOQ_LEARNING_NORMAL:
// Normal_Learning
// https://phreakerclub.com/forum/showpost.php?p=43557&postcount=37
man_normal_learning = subghz_protocol_keeloq_normal_learning(fix, manufacture_code->key);
decrypt=subghz_protocol_keeloq_decrypt(hop, man_normal_learning);
if( (decrypt>>28 ==btn)&& ((((uint16_t)(decrypt>>16))&0x3FF)==end_serial)){
instance->manufacture_name = string_get_cstr(manufacture_code->name);
instance->common.cnt = decrypt & 0x0000FFFF;
return 1;
}
break;
case KEELOQ_LEARNING_UNKNOWN:
// Simple Learning
decrypt=subghz_protocol_keeloq_decrypt(hop, manufacture_code->key);
if( (decrypt>>28 ==btn) && ((((uint16_t)(decrypt>>16))&0x3FF)==end_serial)){
instance->manufacture_name = string_get_cstr(manufacture_code->name);
instance->common.cnt = decrypt & 0x0000FFFF;
return 1;
}
// Check for mirrored man
uint64_t man_rev=0;
uint64_t man_rev_byte=0;
for(uint8_t i=0; i<64; i+=8){
man_rev_byte=(uint8_t)(manufacture_code->key >> i);
man_rev = man_rev | man_rev_byte << (56-i);
}
decrypt=subghz_protocol_keeloq_decrypt(hop, man_rev);
if( (decrypt>>28 ==btn) && ((((uint16_t)(decrypt>>16))&0x3FF)==end_serial)){
instance->manufacture_name = string_get_cstr(manufacture_code->name);
instance->common.cnt= decrypt&0x0000FFFF;
return 1;
}
//###########################
// Normal_Learning
// https://phreakerclub.com/forum/showpost.php?p=43557&postcount=37
man_normal_learning = subghz_protocol_keeloq_normal_learning(fix, manufacture_code->key);
decrypt=subghz_protocol_keeloq_decrypt(hop, man_normal_learning);
if( (decrypt>>28 ==btn)&& ((((uint16_t)(decrypt>>16))&0x3FF)==end_serial)){
instance->manufacture_name = string_get_cstr(manufacture_code->name);
instance->common.cnt= decrypt&0x0000FFFF;
return 1;
}
// Check for mirrored man
man_rev=0;
man_rev_byte=0;
for(uint8_t i=0; i<64; i+=8){
man_rev_byte = (uint8_t)(manufacture_code->key >> i);
man_rev = man_rev | man_rev_byte << (56-i);
}
man_normal_learning = subghz_protocol_keeloq_normal_learning(fix, man_rev);
decrypt=subghz_protocol_keeloq_decrypt(hop, man_normal_learning);
if( (decrypt>>28 ==btn) && ((((uint16_t)(decrypt>>16))&0x3FF)==end_serial)){
instance->manufacture_name = string_get_cstr(manufacture_code->name);
instance->common.cnt= decrypt&0x0000FFFF;
return 1;
}
break;
}
}
instance->manufacture_name = "Unknown";
instance->common.cnt=0;
return 0;
}
void subghz_protocol_keeloq_check_remote_controller(SubGhzProtocolKeeloq* instance) {
uint64_t key = subghz_protocol_common_reverse_key(instance->common.code_found, instance->common.code_count_bit);
uint32_t key_fix = key >> 32;
uint32_t key_hop = key & 0x00000000ffffffff;
// Check key AN-Motors
if((key_hop >> 24) == ((key_hop>>16)&0x00ff) && (key_fix>>28) ==((key_hop>>12)&0x0f) ){
instance->manufacture_name = "AN-Motors";
instance->common.cnt = key_hop>>16;
} else {
subghz_protocol_keeloq_check_remote_controller_selector(instance, key_fix, key_hop);
}
if (instance->common.callback) instance->common.callback((SubGhzProtocolCommon*)instance, instance->common.context);
}
void subghz_protocol_keeloq_send_bit(SubGhzProtocolKeeloq* instance, uint8_t bit) {
if (bit) {
// send bit 1
SUBGHZ_TX_PIN_HIGTH();
delay_us(instance->common.te_shot);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_long);
} else {
// send bit 0
SUBGHZ_TX_PIN_HIGTH();
delay_us(instance->common.te_long);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_shot);
}
}
void subghz_protocol_keeloq_send_key(SubGhzProtocolKeeloq* instance, uint64_t key, uint8_t bit, uint8_t repeat) {
while (repeat--) {
// Send header
for (uint8_t i = 11; i > 0; i--) {
SUBGHZ_TX_PIN_HIGTH();
delay_us(instance->common.te_shot);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_shot);
}
delay_us(instance->common.te_shot * 9); //+1 up Send header
for (uint8_t i = bit; i > 0; i--) {
subghz_protocol_keeloq_send_bit(instance, bit_read(key, i - 1));
}
// +send 2 status bit
subghz_protocol_keeloq_send_bit(instance, 0);
subghz_protocol_keeloq_send_bit(instance, 0);
// send end
subghz_protocol_keeloq_send_bit(instance, 0);
delay_us(instance->common.te_shot * 2); //+2 interval END SEND
}
}
void subghz_protocol_keeloq_parse(SubGhzProtocolKeeloq* instance, LevelPair data) {
switch (instance->common.parser_step) {
case 0:
if ((data.level == ApiHalSubGhzCaptureLevelHigh) && DURATION_DIFF(data.duration, instance->common.te_shot)< instance->common.te_delta) {
instance->common.parser_step = 1;
instance->common.header_count++;
} else {
instance->common.parser_step = 0;
}
break;
case 1:
if ((data.level == ApiHalSubGhzCaptureLevelLow) && (DURATION_DIFF(data.duration, instance->common.te_shot ) < instance->common.te_delta)) {
instance->common.parser_step = 0;
break;
}
if ((instance->common.header_count > 2) && ( DURATION_DIFF(data.duration, instance->common.te_shot * 10)< instance->common.te_delta * 10)) {
// Found header
instance->common.parser_step = 2;
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
} else {
instance->common.parser_step = 0;
instance->common.header_count = 0;
}
break;
case 2:
if (data.level == ApiHalSubGhzCaptureLevelHigh) {
instance->common.te_last = data.duration;
instance->common.parser_step = 3;
}
break;
case 3:
if (data.level == ApiHalSubGhzCaptureLevelLow) {
if (data.duration >= (instance->common.te_shot * 2 + instance->common.te_delta)) {
// Found end TX
instance->common.parser_step = 0;
if (instance->common.code_count_bit >= instance->common.code_min_count_bit_for_found) {
//&& (instance->common.code_last_found != instance->common.code_found )) {
instance->common.code_last_found = instance->common.code_found;
//ToDo out data display
subghz_protocol_keeloq_check_remote_controller(instance);
//Print_Code(&KEELOQ);
//Reverse_Code(KEELOQ.Code);
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
instance->common.header_count = 0;
}
break;
} else if ((DURATION_DIFF(instance->common.te_last, instance->common.te_shot) < instance->common.te_delta)
&& (DURATION_DIFF(data.duration, instance->common.te_long) < instance->common.te_delta)) {
if (instance->common.code_count_bit < instance->common.code_min_count_bit_for_found) {
subghz_protocol_common_add_bit(&instance->common, 1);
}
instance->common.parser_step = 2;
} else if ((DURATION_DIFF(instance->common.te_last, instance->common.te_long) < instance->common.te_delta)
&& (DURATION_DIFF(data.duration, instance->common.te_shot) < instance->common.te_delta)) {
if (instance->common.code_count_bit < instance->common.code_min_count_bit_for_found) {
subghz_protocol_common_add_bit(&instance->common, 0);
}
instance->common.parser_step = 2;
} else {
instance->common.parser_step = 0;
instance->common.header_count = 0;
}
} else {
instance->common.parser_step = 0;
instance->common.header_count = 0;
}
break;
}
}
void subghz_protocol_keeloq_to_str(SubGhzProtocolKeeloq* instance, string_t output) {
//snprintf(BufTX, sizeof(BufTX),"Protocol %s: %d Bit | KEY:0x%llX HEX \n\r", common->Name_Protocol, common->Count_BIT, common->Code);
uint32_t code_found_hi = instance->common.code_found >> 32;
uint32_t code_found_lo = instance->common.code_found & 0x00000000ffffffff;
uint64_t code_found_reverse = subghz_protocol_common_reverse_key(instance->common.code_found, instance->common.code_count_bit);
uint32_t code_found_reverse_hi = code_found_reverse>>32;
uint32_t code_found_reverse_lo = code_found_reverse&0x00000000ffffffff;
if (code_found_hi>0) {
string_cat_printf(
output,
"Protocol %s, %d Bit\r\n"
" KEY:0x%lX%08lX\r\n"
" YEK:0x%lX%08lX\r\n",
instance->common.name,
instance->common.code_count_bit,
code_found_hi,
code_found_lo,
code_found_reverse_hi,
code_found_reverse_lo
);
} else {
string_cat_printf(
output,
"Protocol %s, %d Bit\r\n"
" KEY:0x%lX%lX\r\n"
" YEK:0x%lX%lX\r\n",
instance->common.name,
instance->common.code_count_bit,
code_found_hi,
code_found_lo,
code_found_reverse_hi,
code_found_reverse_lo
);
}
string_cat_printf(
output,
" MF:%s FIX:%lX\r\n"
" HOP:%lX CNT:%04X BTN:%02lX\r\n",
instance->manufacture_name,
code_found_reverse_hi,
code_found_reverse_lo,
instance->common.cnt, //need manufacture code
code_found_reverse_hi >> 28
);
}

View File

@ -0,0 +1,17 @@
#pragma once
#include "subghz_protocol_common.h"
typedef struct SubGhzProtocolKeeloq SubGhzProtocolKeeloq;
SubGhzProtocolKeeloq* subghz_protocol_keeloq_alloc();
void subghz_protocol_keeloq_free(SubGhzProtocolKeeloq* instance);
void subghz_protocol_keeloq_add_manafacture_key(SubGhzProtocolKeeloq* instance, const char* name, uint64_t key, uint16_t type);
void subghz_protocol_keeloq_send_key(SubGhzProtocolKeeloq* instance, uint64_t key, uint8_t bit, uint8_t repeat);
void subghz_protocol_keeloq_parse(SubGhzProtocolKeeloq* instance, LevelPair data);
void subghz_protocol_keeloq_to_str(SubGhzProtocolKeeloq* instance, string_t output);

View File

@ -0,0 +1,117 @@
#include "subghz_protocol_nice_flo.h"
/*
* Help
* https://phreakerclub.com/447
*
*/
struct SubGhzProtocolNiceFlo {
SubGhzProtocolCommon common;
};
SubGhzProtocolNiceFlo* subghz_protocol_nice_flo_alloc() {
SubGhzProtocolNiceFlo* instance = furi_alloc(sizeof(SubGhzProtocolNiceFlo));
instance->common.name = "Nice FLO";
instance->common.code_min_count_bit_for_found = 12;
instance->common.te_shot = 700;
instance->common.te_long = 1400;
instance->common.te_delta = 200;
return instance;
}
void subghz_protocol_nice_flo_free(SubGhzProtocolNiceFlo* instance) {
furi_assert(instance);
free(instance);
}
void subghz_protocol_nice_flo_send_bit(SubGhzProtocolNiceFlo* instance, uint8_t bit) {
if (bit) {
//send bit 1
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_long);
SUBGHZ_TX_PIN_HIGTH();
delay_us(instance->common.te_shot);
} else {
//send bit 0
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_shot);
SUBGHZ_TX_PIN_HIGTH();
delay_us(instance->common.te_long);
}
}
void subghz_protocol_nice_flo_send_key(SubGhzProtocolNiceFlo* instance, uint64_t key, uint8_t bit, uint8_t repeat) {
while (repeat--) {
//Send header
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_shot * 34); //+2 interval v bit 1
//Send start bit
subghz_protocol_nice_flo_send_bit(instance, 1);
//Send key data
for (uint8_t i = bit; i > 0; i--) {
subghz_protocol_nice_flo_send_bit(instance, bit_read(key, i - 1));
}
}
}
void subghz_protocol_nice_flo_parse(SubGhzProtocolNiceFlo* instance, LevelPair data) {
switch (instance->common.parser_step) {
case 0:
if ((data.level == ApiHalSubGhzCaptureLevelLow)
&& (DURATION_DIFF(data.duration,instance->common.te_shot * 36)< instance->common.te_delta * 36)) {
//Found header Nice Flo
instance->common.parser_step = 1;
} else {
instance->common.parser_step = 0;
}
break;
case 1:
if (data.level == ApiHalSubGhzCaptureLevelLow) {
break;
} else if (DURATION_DIFF(data.duration,instance->common.te_shot)< instance->common.te_delta) {
//Found start bit Nice Flo
instance->common.parser_step = 2;
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
} else {
instance->common.parser_step = 0;
}
break;
case 2:
if (data.level == ApiHalSubGhzCaptureLevelLow) { //save interval
if (data.duration >= (instance->common.te_shot * 4)) {
instance->common.parser_step = 1;
if (instance->common.code_count_bit>= instance->common.code_min_count_bit_for_found) {
//ToDo out data display
if (instance->common.callback) instance->common.callback((SubGhzProtocolCommon*)instance, instance->common.context);
}
break;
}
instance->common.te_last = data.duration;
instance->common.parser_step = 3;
} else {
instance->common.parser_step = 0;
}
break;
case 3:
if (data.level == ApiHalSubGhzCaptureLevelHigh) {
if ((DURATION_DIFF(instance->common.te_last,instance->common.te_shot) < instance->common.te_delta)
&& (DURATION_DIFF(data.duration,instance->common.te_long)< instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 0);
instance->common.parser_step = 2;
} else if ((DURATION_DIFF(instance->common.te_last,instance->common.te_long)< instance->common.te_delta)
&& (DURATION_DIFF(data.duration,instance->common.te_shot)< instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 1);
instance->common.parser_step = 2;
} else
instance->common.parser_step = 0;
} else {
instance->common.parser_step = 0;
}
break;
}
}

View File

@ -0,0 +1,15 @@
#pragma once
#include "subghz_protocol_common.h"
typedef struct SubGhzProtocolNiceFlo SubGhzProtocolNiceFlo;
SubGhzProtocolNiceFlo* subghz_protocol_nice_flo_alloc();
void subghz_protocol_nice_flo_free(SubGhzProtocolNiceFlo* instance);
void subghz_protocol_nice_flo_set_callback(SubGhzProtocolNiceFlo* instance, SubGhzProtocolCommonCallback callback, void* context);
void subghz_protocol_nice_flo_send_key(SubGhzProtocolNiceFlo* instance, uint64_t key, uint8_t bit, uint8_t repeat);
void subghz_protocol_nice_flo_parse(SubGhzProtocolNiceFlo* instance, LevelPair data);

View File

@ -0,0 +1,133 @@
#include "subghz_protocol_nice_flor_s.h"
/*
* https://phreakerclub.com/1615
* https://phreakerclub.com/forum/showthread.php?t=2360
* https://vrtp.ru/index.php?showtopic=27867
*/
struct SubGhzProtocolNiceFlorS {
SubGhzProtocolCommon common;
};
SubGhzProtocolNiceFlorS* subghz_protocol_nice_flor_s_alloc() {
SubGhzProtocolNiceFlorS* instance = furi_alloc(sizeof(SubGhzProtocolNiceFlorS));
instance->common.name = "Nice FloR S";
instance->common.code_min_count_bit_for_found = 52;
instance->common.te_shot = 500;
instance->common.te_long = 1000;
instance->common.te_delta = 300;
return instance;
}
void subghz_protocol_nice_flor_s_free(SubGhzProtocolNiceFlorS* instance) {
furi_assert(instance);
free(instance);
}
void subghz_protocol_nice_flor_s_send_bit(SubGhzProtocolNiceFlorS* instance, uint8_t bit) {
if (bit) {
//send bit 1
SUBGHZ_TX_PIN_HIGTH();
delay_us(instance->common.te_long);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_shot);
} else {
//send bit 0
SUBGHZ_TX_PIN_HIGTH();
delay_us(instance->common.te_shot);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_long);
}
}
void subghz_protocol_nice_flor_s_send_key(SubGhzProtocolNiceFlorS* instance, uint64_t key, uint8_t bit, uint8_t repeat) {
while (repeat--) {
//Send header
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_shot * 34);
//Send Start Bit
SUBGHZ_TX_PIN_HIGTH();
delay_us(instance->common.te_shot*3);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_shot*3);
//Send key data
for (uint8_t i = bit; i > 0; i--) {
subghz_protocol_nice_flor_s_send_bit(instance, bit_read(key, i - 1));
}
//Send Stop Bit
SUBGHZ_TX_PIN_HIGTH();
delay_us(instance->common.te_shot*3);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_shot*3);
}
}
void subghz_protocol_nice_flor_s_parse(SubGhzProtocolNiceFlorS* instance, LevelPair data) {
switch (instance->common.parser_step) {
case 0:
if ((data.level == ApiHalSubGhzCaptureLevelLow)
&& (DURATION_DIFF(data.duration,instance->common.te_shot * 38)< instance->common.te_delta * 38)) {
//Found start header Nice Flor-S
instance->common.parser_step = 1;
} else {
instance->common.parser_step = 0;
}
break;
case 1:
if ((data.level == ApiHalSubGhzCaptureLevelHigh)
&& (DURATION_DIFF(data.duration,instance->common.te_shot * 3)< instance->common.te_delta * 3)) {
//Found next header Nice Flor-S
instance->common.parser_step = 2;
} else {
instance->common.parser_step = 0;
}
break;
case 2:
if ((data.level == ApiHalSubGhzCaptureLevelLow)
&& (DURATION_DIFF(data.duration,instance->common.te_shot * 3)< instance->common.te_delta * 3)) {
//Found header Nice Flor-S
instance->common.parser_step = 3;
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
} else {
instance->common.parser_step = 0;
}
break;
case 3:
if (data.level == ApiHalSubGhzCaptureLevelHigh) {
if(DURATION_DIFF(data.duration,instance->common.te_shot*3) < instance->common.te_delta){
//Found STOP bit
instance->common.parser_step = 0;
if (instance->common.code_count_bit>= instance->common.code_min_count_bit_for_found) {
//ToDo out data display
if (instance->common.callback) instance->common.callback((SubGhzProtocolCommon*)instance, instance->common.context);
}
break;
} else {
//save interval
instance->common.te_last = data.duration;
instance->common.parser_step = 4;
}
}
break;
case 4:
if (data.level == ApiHalSubGhzCaptureLevelLow) {
if ((DURATION_DIFF(instance->common.te_last,instance->common.te_shot) < instance->common.te_delta)
&& (DURATION_DIFF(data.duration,instance->common.te_long)< instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 0);
instance->common.parser_step = 3;
} else if ((DURATION_DIFF(instance->common.te_last,instance->common.te_long)< instance->common.te_delta)
&& (DURATION_DIFF(data.duration,instance->common.te_shot)< instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 1);
instance->common.parser_step = 3;
} else
instance->common.parser_step = 0;
} else {
instance->common.parser_step = 0;
}
break;
}
}

View File

@ -0,0 +1,15 @@
#pragma once
#include "subghz_protocol_common.h"
typedef struct SubGhzProtocolNiceFlorS SubGhzProtocolNiceFlorS;
SubGhzProtocolNiceFlorS* subghz_protocol_nice_flor_s_alloc();
void subghz_protocol_nice_flor_s_free(SubGhzProtocolNiceFlorS* instance);
void subghz_protocol_nice_flor_s_set_callback(SubGhzProtocolNiceFlorS* instance, SubGhzProtocolCommonCallback callback, void* context);
void subghz_protocol_nice_flor_s_send_key(SubGhzProtocolNiceFlorS* instance, uint64_t key, uint8_t bit, uint8_t repeat);
void subghz_protocol_nice_flor_s_parse(SubGhzProtocolNiceFlorS* instance, LevelPair data);

View File

@ -0,0 +1,109 @@
#include "subghz_protocol_princeton.h"
/*
* Help
* https://phreakerclub.com/447
*
*/
struct SubGhzProtocolPrinceton {
SubGhzProtocolCommon common;
};
SubGhzProtocolPrinceton* subghz_protocol_princeton_alloc(void) {
SubGhzProtocolPrinceton* instance = furi_alloc(sizeof(SubGhzProtocolPrinceton));
instance->common.name = "Princeton";
instance->common.code_min_count_bit_for_found = 24;
instance->common.te_shot = 450;//150;
instance->common.te_long = 1350;//450;
instance->common.te_delta = 200;//50;
return instance;
}
void subghz_protocol_princeton_free(SubGhzProtocolPrinceton* instance) {
furi_assert(instance);
free(instance);
}
void subghz_protocol_princeton_send_bit(SubGhzProtocolPrinceton* instance, uint8_t bit) {
if (bit) {
//send bit 1
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_long);
SUBGHZ_TX_PIN_HIGTH();
delay_us(instance->common.te_shot);
} else {
//send bit 0
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_shot);
SUBGHZ_TX_PIN_HIGTH();
delay_us(instance->common.te_long);
}
}
void subghz_protocol_princeton_send_key(SubGhzProtocolPrinceton* instance, uint64_t key, uint8_t bit,uint8_t repeat) {
while (repeat--) {
SUBGHZ_TX_PIN_LOW();
//Send start bit
subghz_protocol_princeton_send_bit(instance, 1);
//Send header
delay_us(instance->common.te_shot * 33); //+2 interval v bit 1
//Send key data
for (uint8_t i = bit; i > 0; i--) {
subghz_protocol_princeton_send_bit(instance, bit_read(key, i - 1));
}
}
}
void subghz_protocol_princeton_parse(SubGhzProtocolPrinceton* instance, LevelPair data) {
switch (instance->common.parser_step) {
case 0:
if ((data.level == ApiHalSubGhzCaptureLevelLow)
&& (DURATION_DIFF(data.duration,instance->common.te_shot * 36)< instance->common.te_delta * 36)) {
//Found Preambula
instance->common.parser_step = 1;
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
} else {
instance->common.parser_step = 0;
}
break;
case 1:
//save duration
if (data.level == ApiHalSubGhzCaptureLevelHigh) {
instance->common.te_last = data.duration;
instance->common.parser_step = 2;
}
break;
case 2:
if (data.level == ApiHalSubGhzCaptureLevelLow) {
if (data.duration>= (instance->common.te_shot * 10+ instance->common.te_delta)) {
instance->common.parser_step = 1;
if (instance->common.code_count_bit>= instance->common.code_min_count_bit_for_found) {
//ToDo out data display
if (instance->common.callback) instance->common.callback((SubGhzProtocolCommon*)instance, instance->common.context);
}
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
break;
}
if ((DURATION_DIFF(instance->common.te_last,instance->common.te_shot)< instance->common.te_delta)
&& (DURATION_DIFF(data.duration,instance->common.te_long)< instance->common.te_delta*3)) {
subghz_protocol_common_add_bit(&instance->common, 0);
instance->common.parser_step = 1;
} else if ((DURATION_DIFF(instance->common.te_last,instance->common.te_long)< instance->common.te_delta*3)
&& (DURATION_DIFF(data.duration,instance->common.te_shot)< instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 1);
instance->common.parser_step = 1;
} else {
instance->common.parser_step = 0;
}
} else {
instance->common.parser_step = 0;
}
break;
}
}

View File

@ -0,0 +1,15 @@
#pragma once
#include "subghz_protocol_common.h"
typedef struct SubGhzProtocolPrinceton SubGhzProtocolPrinceton;
SubGhzProtocolPrinceton* subghz_protocol_princeton_alloc();
void subghz_protocol_princeton_free(SubGhzProtocolPrinceton* instance);
void subghz_protocol_princeton_send_key(SubGhzProtocolPrinceton* instance, uint64_t key, uint8_t bit, uint8_t repeat);
void subghz_protocol_princeton_parse(SubGhzProtocolPrinceton* instance, LevelPair data);
void subghz_protocol_princeton_to_str(SubGhzProtocolPrinceton* instance, string_t output);

View File

@ -0,0 +1,110 @@
#include "subghz_worker.h"
#include <stream_buffer.h>
#include <furi.h>
struct SubGhzWorker {
FuriThread* thread;
StreamBufferHandle_t stream;
volatile bool running;
volatile bool overrun;
SubGhzWorkerOverrunCallback overrun_callback;
SubGhzWorkerPairCallback pair_callback;
void* context;
};
void subghz_worker_rx_callback(
ApiHalSubGhzCaptureLevel level,
uint32_t duration,
void* context) {
SubGhzWorker* instance = context;
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
LevelPair pair = {.level = level, .duration = duration};
if(instance->overrun) {
instance->overrun = false;
pair.level = ApiHalSubGhzCaptureLevelOverrun;
}
size_t ret =
xStreamBufferSendFromISR(instance->stream, &pair, sizeof(LevelPair), &xHigherPriorityTaskWoken);
if(sizeof(LevelPair) != ret) instance->overrun = true;
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
}
static int32_t subghz_worker_thread_callback(void* context) {
SubGhzWorker* instance = context;
LevelPair pair;
while(instance->running) {
int ret = xStreamBufferReceive(instance->stream, &pair, sizeof(LevelPair), 10);
if(ret == sizeof(LevelPair)) {
if(pair.level == ApiHalSubGhzCaptureLevelOverrun) {
printf(".");
if (instance->overrun_callback) instance->overrun_callback(instance->context);
} else {
if (instance->pair_callback) instance->pair_callback(instance->context, pair);
}
}
}
return 0;
}
SubGhzWorker* subghz_worker_alloc() {
SubGhzWorker* instance = furi_alloc(sizeof(SubGhzWorker));
instance->thread = furi_thread_alloc();
furi_thread_set_name(instance->thread, "subghz_worker");
furi_thread_set_stack_size(instance->thread, 2048);
furi_thread_set_context(instance->thread, instance);
furi_thread_set_callback(instance->thread, subghz_worker_thread_callback);
instance->stream = xStreamBufferCreate(sizeof(LevelPair) * 1024, sizeof(LevelPair));
return instance;
}
void subghz_worker_free(SubGhzWorker* instance) {
furi_assert(instance);
vStreamBufferDelete(instance->stream);
furi_thread_free(instance->thread);
free(instance);
}
void subghz_worker_set_overrun_callback(SubGhzWorker* instance, SubGhzWorkerOverrunCallback callback) {
furi_assert(instance);
instance->overrun_callback = callback;
}
void subghz_worker_set_pair_callback(SubGhzWorker* instance, SubGhzWorkerPairCallback callback) {
furi_assert(instance);
instance->pair_callback = callback;
}
void subghz_worker_set_context(SubGhzWorker* instance, void* context) {
furi_assert(instance);
instance->context = context;
}
void subghz_worker_start(SubGhzWorker* instance) {
furi_assert(instance);
furi_assert(!instance->running);
instance->running = true;
furi_thread_start(instance->thread);
}
void subghz_worker_stop(SubGhzWorker* instance) {
furi_assert(instance);
furi_assert(instance->running);
instance->running = false;
furi_thread_join(instance->thread);
}

View File

@ -0,0 +1,25 @@
#pragma once
#include <api-hal.h>
typedef struct SubGhzWorker SubGhzWorker;
typedef void (*SubGhzWorkerOverrunCallback)(void* context);
typedef void (*SubGhzWorkerPairCallback)(void* context, LevelPair pair);
void subghz_worker_rx_callback(ApiHalSubGhzCaptureLevel level, uint32_t duration, void* context);
SubGhzWorker* subghz_worker_alloc();
void subghz_worker_free(SubGhzWorker* instance);
void subghz_worker_set_overrun_callback(SubGhzWorker* instance, SubGhzWorkerOverrunCallback callback);
void subghz_worker_set_pair_callback(SubGhzWorker* instance, SubGhzWorkerPairCallback callback);
void subghz_worker_set_context(SubGhzWorker* instance, void* context);
void subghz_worker_start(SubGhzWorker* instance);
void subghz_worker_stop(SubGhzWorker* instance);

View File

@ -36,12 +36,11 @@ C_SOURCES += $(FATFS_DIR)/ff_gen_drv.c
C_SOURCES += $(FATFS_DIR)/diskio.c
C_SOURCES += $(FATFS_DIR)/option/unicode.c
ifeq ($(SRV_INTERNAL_STORAGE), 1)
# Little FS
LITTLEFS_DIR = $(LIB_DIR)/littlefs
CFLAGS += -I$(LITTLEFS_DIR)
C_SOURCES += $(LITTLEFS_DIR)/lfs.c
C_SOURCES += $(LITTLEFS_DIR)/lfs_util.c
endif
ifeq ($(APP_NFC), 1)
ST25RFAL002_DIR = $(LIB_DIR)/ST25RFAL002
@ -100,6 +99,10 @@ C_SOURCES += $(wildcard $(LIB_DIR)/irda/*/*.c)
CFLAGS += -I$(LIB_DIR)/args
C_SOURCES += $(wildcard $(LIB_DIR)/args/*.c)
# SubGhz
C_SOURCES += $(wildcard $(LIB_DIR)/fl_subghz/*.c)
C_SOURCES += $(wildcard $(LIB_DIR)/fl_subghz/*/*.c)
#scened app template lib
CFLAGS += -I$(LIB_DIR)/app-scened-template
CPP_SOURCES += $(wildcard $(LIB_DIR)/app-scened-template/*.cpp)