Namespace loclass library (#1379)

* Namespace loclass library
* Lib: const for immutable variables and bss cleanup

Co-authored-by: あく <alleteam@gmail.com>
This commit is contained in:
Eric Betts
2022-07-08 05:56:23 -07:00
committed by GitHub
parent 6b3625f46b
commit f46ae5a704
9 changed files with 221 additions and 246 deletions

View File

@@ -39,18 +39,18 @@ From "Dismantling iclass":
algorithm intends to circumvent weaknesses in the cipher by preventing the
usage of certain weak keys. In order to compute a diversified key, the iClass
reader first encrypts the card identity id with the master key K, using single
DES. The resulting ciphertext is then input to a function called hash0 which
DES. The resulting ciphertext is then input to a function called loclass_hash0 which
outputs the diversified key k.
k = hash0(DES enc (id, K))
k = loclass_hash0(DES enc (id, K))
Here the DES encryption of id with master key K outputs a cryptogram c
of 64 bits. These 64 bits are divided as c = x, y, z [0] , . . . , z [7] ∈ F 82 × F 82 × (F 62 ) 8
which is used as input to the hash0 function. This function introduces some
which is used as input to the loclass_hash0 function. This function introduces some
obfuscation by performing a number of permutations, complement and modulo
operations, see Figure 2.5. Besides that, it checks for and removes patterns like
similar key bytes, which could produce a strong bias in the cipher. Finally, the
output of hash0 is the diversified card key k = k [0] , . . . , k [7] ∈ (F 82 ) 8 .
output of loclass_hash0 is the diversified card key k = k [0] , . . . , k [7] ∈ (F 82 ) 8 .
**/
#include "optimized_ikeys.h"
@@ -61,7 +61,7 @@ From "Dismantling iclass":
#include <mbedtls/des.h>
#include "optimized_cipherutils.h"
static uint8_t pi[35] = {
static const uint8_t loclass_pi[35] = {
0x0F, 0x17, 0x1B, 0x1D, 0x1E, 0x27, 0x2B, 0x2D,
0x2E, 0x33, 0x35, 0x39, 0x36, 0x3A, 0x3C, 0x47,
0x4B, 0x4D, 0x4E, 0x53, 0x55, 0x56, 0x59, 0x5A,
@@ -69,8 +69,6 @@ static uint8_t pi[35] = {
0x72, 0x74, 0x78
};
static mbedtls_des_context ctx_enc;
/**
* @brief The key diversification algorithm uses 6-bit bytes.
* This implementation uses 64 bit uint to pack seven of them into one
@@ -82,7 +80,7 @@ static mbedtls_des_context ctx_enc;
* @param n bitnumber
* @return
*/
static uint8_t getSixBitByte(uint64_t c, int n) {
static uint8_t loclass_getSixBitByte(uint64_t c, int n) {
return (c >> (42 - 6 * n)) & 0x3F;
}
@@ -92,7 +90,7 @@ static uint8_t getSixBitByte(uint64_t c, int n) {
* @param z the value to place there
* @param n bitnumber.
*/
static void pushbackSixBitByte(uint64_t *c, uint8_t z, int n) {
static void loclass_pushbackSixBitByte(uint64_t *c, uint8_t z, int n) {
//0x XXXX YYYY ZZZZ ZZZZ ZZZZ
// ^z0 ^z7
//z0: 1111 1100 0000 0000
@@ -117,16 +115,16 @@ static void pushbackSixBitByte(uint64_t *c, uint8_t z, int n) {
* @param c
* @return
*/
static uint64_t swapZvalues(uint64_t c) {
static uint64_t loclass_swapZvalues(uint64_t c) {
uint64_t newz = 0;
pushbackSixBitByte(&newz, getSixBitByte(c, 0), 7);
pushbackSixBitByte(&newz, getSixBitByte(c, 1), 6);
pushbackSixBitByte(&newz, getSixBitByte(c, 2), 5);
pushbackSixBitByte(&newz, getSixBitByte(c, 3), 4);
pushbackSixBitByte(&newz, getSixBitByte(c, 4), 3);
pushbackSixBitByte(&newz, getSixBitByte(c, 5), 2);
pushbackSixBitByte(&newz, getSixBitByte(c, 6), 1);
pushbackSixBitByte(&newz, getSixBitByte(c, 7), 0);
loclass_pushbackSixBitByte(&newz, loclass_getSixBitByte(c, 0), 7);
loclass_pushbackSixBitByte(&newz, loclass_getSixBitByte(c, 1), 6);
loclass_pushbackSixBitByte(&newz, loclass_getSixBitByte(c, 2), 5);
loclass_pushbackSixBitByte(&newz, loclass_getSixBitByte(c, 3), 4);
loclass_pushbackSixBitByte(&newz, loclass_getSixBitByte(c, 4), 3);
loclass_pushbackSixBitByte(&newz, loclass_getSixBitByte(c, 5), 2);
loclass_pushbackSixBitByte(&newz, loclass_getSixBitByte(c, 6), 1);
loclass_pushbackSixBitByte(&newz, loclass_getSixBitByte(c, 7), 0);
newz |= (c & 0xFFFF000000000000);
return newz;
}
@@ -134,58 +132,58 @@ static uint64_t swapZvalues(uint64_t c) {
/**
* @return 4 six-bit bytes chunked into a uint64_t,as 00..00a0a1a2a3
*/
static uint64_t ck(int i, int j, uint64_t z) {
static uint64_t loclass_ck(int i, int j, uint64_t z) {
if (i == 1 && j == -1) {
// ck(1, 1, z [0] . . . z [3] ) = z [0] . . . z [3]
// loclass_ck(1, 1, z [0] . . . z [3] ) = z [0] . . . z [3]
return z;
} else if (j == -1) {
// ck(i, 1, z [0] . . . z [3] ) = ck(i 1, i 2, z [0] . . . z [3] )
return ck(i - 1, i - 2, z);
// loclass_ck(i, 1, z [0] . . . z [3] ) = loclass_ck(i 1, i 2, z [0] . . . z [3] )
return loclass_ck(i - 1, i - 2, z);
}
if (getSixBitByte(z, i) == getSixBitByte(z, j)) {
//ck(i, j 1, z [0] . . . z [i] ← j . . . z [3] )
if (loclass_getSixBitByte(z, i) == loclass_getSixBitByte(z, j)) {
//loclass_ck(i, j 1, z [0] . . . z [i] ← j . . . z [3] )
uint64_t newz = 0;
int c;
for (c = 0; c < 4; c++) {
uint8_t val = getSixBitByte(z, c);
uint8_t val = loclass_getSixBitByte(z, c);
if (c == i)
pushbackSixBitByte(&newz, j, c);
loclass_pushbackSixBitByte(&newz, j, c);
else
pushbackSixBitByte(&newz, val, c);
loclass_pushbackSixBitByte(&newz, val, c);
}
return ck(i, j - 1, newz);
return loclass_ck(i, j - 1, newz);
} else {
return ck(i, j - 1, z);
return loclass_ck(i, j - 1, z);
}
}
/**
Definition 8.
Let the function check : (F 62 ) 8 → (F 62 ) 8 be defined as
check(z [0] . . . z [7] ) = ck(3, 2, z [0] . . . z [3] ) · ck(3, 2, z [4] . . . z [7] )
check(z [0] . . . z [7] ) = loclass_ck(3, 2, z [0] . . . z [3] ) · loclass_ck(3, 2, z [4] . . . z [7] )
where ck : N × N × (F 62 ) 4 → (F 62 ) 4 is defined as
where loclass_ck : N × N × (F 62 ) 4 → (F 62 ) 4 is defined as
ck(1, 1, z [0] . . . z [3] ) = z [0] . . . z [3]
ck(i, 1, z [0] . . . z [3] ) = ck(i 1, i 2, z [0] . . . z [3] )
ck(i, j, z [0] . . . z [3] ) =
ck(i, j 1, z [0] . . . z [i] ← j . . . z [3] ), if z [i] = z [j] ;
ck(i, j 1, z [0] . . . z [3] ), otherwise
loclass_ck(1, 1, z [0] . . . z [3] ) = z [0] . . . z [3]
loclass_ck(i, 1, z [0] . . . z [3] ) = loclass_ck(i 1, i 2, z [0] . . . z [3] )
loclass_ck(i, j, z [0] . . . z [3] ) =
loclass_ck(i, j 1, z [0] . . . z [i] ← j . . . z [3] ), if z [i] = z [j] ;
loclass_ck(i, j 1, z [0] . . . z [3] ), otherwise
otherwise.
**/
static uint64_t check(uint64_t z) {
static uint64_t loclass_check(uint64_t z) {
//These 64 bits are divided as c = x, y, z [0] , . . . , z [7]
// ck(3, 2, z [0] . . . z [3] )
uint64_t ck1 = ck(3, 2, z);
// loclass_ck(3, 2, z [0] . . . z [3] )
uint64_t ck1 = loclass_ck(3, 2, z);
// ck(3, 2, z [4] . . . z [7] )
uint64_t ck2 = ck(3, 2, z << 24);
// loclass_ck(3, 2, z [4] . . . z [7] )
uint64_t ck2 = loclass_ck(3, 2, z << 24);
//The ck function will place the values
//The loclass_ck function will place the values
// in the middle of z.
ck1 &= 0x00000000FFFFFF000000;
ck2 &= 0x00000000FFFFFF000000;
@@ -193,28 +191,28 @@ static uint64_t check(uint64_t z) {
return ck1 | ck2 >> 24;
}
static void permute(BitstreamIn_t *p_in, uint64_t z, int l, int r, BitstreamOut_t *out) {
if (bitsLeft(p_in) == 0)
static void loclass_permute(LoclassBitstreamIn_t *p_in, uint64_t z, int l, int r, LoclassBitstreamOut_t *out) {
if (loclass_bitsLeft(p_in) == 0)
return;
bool pn = tailBit(p_in);
bool pn = loclass_tailBit(p_in);
if (pn) { // pn = 1
uint8_t zl = getSixBitByte(z, l);
uint8_t zl = loclass_getSixBitByte(z, l);
push6bits(out, zl + 1);
permute(p_in, z, l + 1, r, out);
loclass_push6bits(out, zl + 1);
loclass_permute(p_in, z, l + 1, r, out);
} else { // otherwise
uint8_t zr = getSixBitByte(z, r);
uint8_t zr = loclass_getSixBitByte(z, r);
push6bits(out, zr);
permute(p_in, z, l, r + 1, out);
loclass_push6bits(out, zr);
loclass_permute(p_in, z, l, r + 1, out);
}
}
/**
* @brief
*Definition 11. Let the function hash0 : F 82 × F 82 × (F 62 ) 8 → (F 82 ) 8 be defined as
* hash0(x, y, z [0] . . . z [7] ) = k [0] . . . k [7] where
*Definition 11. Let the function loclass_hash0 : F 82 × F 82 × (F 62 ) 8 → (F 82 ) 8 be defined as
* loclass_hash0(x, y, z [0] . . . z [7] ) = k [0] . . . k [7] where
* z'[i] = (z[i] mod (63-i)) + i i = 0...3
* z'[i+4] = (z[i+4] mod (64-i)) + i i = 0...3
* ẑ = check(z');
@@ -222,8 +220,8 @@ static void permute(BitstreamIn_t *p_in, uint64_t z, int l, int r, BitstreamOut_
* @param k this is where the diversified key is put (should be 8 bytes)
* @return
*/
void hash0(uint64_t c, uint8_t k[8]) {
c = swapZvalues(c);
void loclass_hash0(uint64_t c, uint8_t k[8]) {
c = loclass_swapZvalues(c);
//These 64 bits are divided as c = x, y, z [0] , . . . , z [7]
// x = 8 bits
@@ -234,30 +232,30 @@ void hash0(uint64_t c, uint8_t k[8]) {
uint64_t zP = 0;
for (int n = 0; n < 4 ; n++) {
uint8_t zn = getSixBitByte(c, n);
uint8_t zn4 = getSixBitByte(c, n + 4);
uint8_t zn = loclass_getSixBitByte(c, n);
uint8_t zn4 = loclass_getSixBitByte(c, n + 4);
uint8_t _zn = (zn % (63 - n)) + n;
uint8_t _zn4 = (zn4 % (64 - n)) + n;
pushbackSixBitByte(&zP, _zn, n);
pushbackSixBitByte(&zP, _zn4, n + 4);
loclass_pushbackSixBitByte(&zP, _zn, n);
loclass_pushbackSixBitByte(&zP, _zn4, n + 4);
}
uint64_t zCaret = check(zP);
uint8_t p = pi[x % 35];
uint64_t zCaret = loclass_check(zP);
uint8_t p = loclass_pi[x % 35];
if (x & 1) //Check if x7 is 1
p = ~p;
BitstreamIn_t p_in = { &p, 8, 0 };
LoclassBitstreamIn_t p_in = { &p, 8, 0 };
uint8_t outbuffer[] = {0, 0, 0, 0, 0, 0, 0, 0};
BitstreamOut_t out = {outbuffer, 0, 0};
permute(&p_in, zCaret, 0, 4, &out); //returns 48 bits? or 6 8-bytes
LoclassBitstreamOut_t out = {outbuffer, 0, 0};
loclass_permute(&p_in, zCaret, 0, 4, &out); //returns 48 bits? or 6 8-bytes
//Out is now a buffer containing six-bit bytes, should be 48 bits
// if all went well
//Shift z-values down onto the lower segment
uint64_t zTilde = x_bytes_to_num(outbuffer, sizeof(outbuffer));
uint64_t zTilde = loclass_x_bytes_to_num(outbuffer, sizeof(outbuffer));
zTilde >>= 16;
@@ -274,7 +272,7 @@ void hash0(uint64_t c, uint8_t k[8]) {
// First, place y(7-i) leftmost in k
k[i] |= (y << (7 - i)) & 0x80 ;
uint8_t zTilde_i = getSixBitByte(zTilde, i);
uint8_t zTilde_i = loclass_getSixBitByte(zTilde, i);
// zTildeI is now on the form 00XXXXXX
// with one leftshift, it'll be
// 0XXXXXX0
@@ -304,18 +302,20 @@ void hash0(uint64_t c, uint8_t k[8]) {
* @param key
* @param div_key
*/
void diversifyKey(uint8_t *csn, const uint8_t *key, uint8_t *div_key) {
void loclass_diversifyKey(uint8_t *csn, const uint8_t *key, uint8_t *div_key) {
mbedtls_des_context loclass_ctx_enc;
// Prepare the DES key
mbedtls_des_setkey_enc(&ctx_enc, key);
mbedtls_des_setkey_enc(&loclass_ctx_enc, key);
uint8_t crypted_csn[8] = {0};
// Calculate DES(CSN, KEY)
mbedtls_des_crypt_ecb(&ctx_enc, csn, crypted_csn);
mbedtls_des_crypt_ecb(&loclass_ctx_enc, csn, crypted_csn);
//Calculate HASH0(DES))
uint64_t c_csn = x_bytes_to_num(crypted_csn, sizeof(crypted_csn));
uint64_t c_csn = loclass_x_bytes_to_num(crypted_csn, sizeof(crypted_csn));
hash0(c_csn, div_key);
loclass_hash0(c_csn, div_key);
}