/* Copyright 2015, Kenneth MacKay. Licensed under the BSD 2-clause license. */ #ifndef _UECC_ASM_ARM_H_ #define _UECC_ASM_ARM_H_ #if (uECC_SUPPORTS_secp256r1 || uECC_SUPPORTS_secp256k1) #define uECC_MIN_WORDS 8 #endif #if uECC_SUPPORTS_secp224r1 #undef uECC_MIN_WORDS #define uECC_MIN_WORDS 7 #endif #if uECC_SUPPORTS_secp192r1 #undef uECC_MIN_WORDS #define uECC_MIN_WORDS 6 #endif #if uECC_SUPPORTS_secp160r1 #undef uECC_MIN_WORDS #define uECC_MIN_WORDS 5 #endif #if (uECC_PLATFORM == uECC_arm_thumb) #define REG_RW "+l" #define REG_WRITE "=l" #else #define REG_RW "+r" #define REG_WRITE "=r" #endif #if (uECC_PLATFORM == uECC_arm_thumb || uECC_PLATFORM == uECC_arm_thumb2) #define REG_RW_LO "+l" #define REG_WRITE_LO "=l" #else #define REG_RW_LO "+r" #define REG_WRITE_LO "=r" #endif #if (uECC_PLATFORM == uECC_arm_thumb2) #define RESUME_SYNTAX #else #define RESUME_SYNTAX ".syntax divided \n\t" #endif #if (uECC_OPTIMIZATION_LEVEL >= 2) uECC_VLI_API uECC_word_t uECC_vli_add(uECC_word_t *result, const uECC_word_t *left, const uECC_word_t *right, wordcount_t num_words) { #if (uECC_MAX_WORDS != uECC_MIN_WORDS) #if (uECC_PLATFORM == uECC_arm_thumb) || (uECC_PLATFORM == uECC_arm_thumb2) uint32_t jump = (uECC_MAX_WORDS - num_words) * 4 * 2 + 1; #else /* ARM */ uint32_t jump = (uECC_MAX_WORDS - num_words) * 4 * 4; #endif #endif uint32_t carry; uint32_t left_word; uint32_t right_word; __asm__ volatile ( ".syntax unified \n\t" "movs %[carry], #0 \n\t" #if (uECC_MAX_WORDS != uECC_MIN_WORDS) "adr %[left], 1f \n\t" ".align 4 \n\t" "adds %[jump], %[left] \n\t" #endif "ldmia %[lptr]!, {%[left]} \n\t" "ldmia %[rptr]!, {%[right]} \n\t" "adds %[left], %[right] \n\t" "stmia %[dptr]!, {%[left]} \n\t" #if (uECC_MAX_WORDS != uECC_MIN_WORDS) "bx %[jump] \n\t" #endif "1: \n\t" REPEAT(DEC(uECC_MAX_WORDS), "ldmia %[lptr]!, {%[left]} \n\t" "ldmia %[rptr]!, {%[right]} \n\t" "adcs %[left], %[right] \n\t" "stmia %[dptr]!, {%[left]} \n\t") "adcs %[carry], %[carry] \n\t" RESUME_SYNTAX : [dptr] REG_RW_LO (result), [lptr] REG_RW_LO (left), [rptr] REG_RW_LO (right), #if (uECC_MAX_WORDS != uECC_MIN_WORDS) [jump] REG_RW_LO (jump), #endif [carry] REG_WRITE_LO (carry), [left] REG_WRITE_LO (left_word), [right] REG_WRITE_LO (right_word) : : "cc", "memory" ); return carry; } #define asm_add 1 #pragma GCC diagnostic ignored "-Wredundant-decls" uECC_VLI_API uECC_word_t uECC_vli_sub(uECC_word_t *result, const uECC_word_t *left, const uECC_word_t *right, wordcount_t num_words) { #if (uECC_MAX_WORDS != uECC_MIN_WORDS) #if (uECC_PLATFORM == uECC_arm_thumb) || (uECC_PLATFORM == uECC_arm_thumb2) uint32_t jump = (uECC_MAX_WORDS - num_words) * 4 * 2 + 1; #else /* ARM */ uint32_t jump = (uECC_MAX_WORDS - num_words) * 4 * 4; #endif #endif uint32_t carry; uint32_t left_word; uint32_t right_word; __asm__ volatile ( ".syntax unified \n\t" "movs %[carry], #0 \n\t" #if (uECC_MAX_WORDS != uECC_MIN_WORDS) "adr %[left], 1f \n\t" ".align 4 \n\t" "adds %[jump], %[left] \n\t" #endif "ldmia %[lptr]!, {%[left]} \n\t" "ldmia %[rptr]!, {%[right]} \n\t" "subs %[left], %[right] \n\t" "stmia %[dptr]!, {%[left]} \n\t" #if (uECC_MAX_WORDS != uECC_MIN_WORDS) "bx %[jump] \n\t" #endif "1: \n\t" REPEAT(DEC(uECC_MAX_WORDS), "ldmia %[lptr]!, {%[left]} \n\t" "ldmia %[rptr]!, {%[right]} \n\t" "sbcs %[left], %[right] \n\t" "stmia %[dptr]!, {%[left]} \n\t") "adcs %[carry], %[carry] \n\t" RESUME_SYNTAX : [dptr] REG_RW_LO (result), [lptr] REG_RW_LO (left), [rptr] REG_RW_LO (right), #if (uECC_MAX_WORDS != uECC_MIN_WORDS) [jump] REG_RW_LO (jump), #endif [carry] REG_WRITE_LO (carry), [left] REG_WRITE_LO (left_word), [right] REG_WRITE_LO (right_word) : : "cc", "memory" ); return !carry; /* Note that on ARM, carry flag set means "no borrow" when subtracting (for some reason...) */ } #define asm_sub 1 #endif /* (uECC_OPTIMIZATION_LEVEL >= 2) */ #if (uECC_OPTIMIZATION_LEVEL >= 3) #if (uECC_PLATFORM != uECC_arm_thumb) #if uECC_ARM_USE_UMAAL #include "asm_arm_mult_square_umaal.inc" #else #include "asm_arm_mult_square.inc" #endif #if (uECC_OPTIMIZATION_LEVEL == 3) uECC_VLI_API void uECC_vli_mult(uint32_t *result, const uint32_t *left, const uint32_t *right, wordcount_t num_words) { register uint32_t *r0 __asm__("r0") = result; register const uint32_t *r1 __asm__("r1") = left; register const uint32_t *r2 __asm__("r2") = right; register uint32_t r3 __asm__("r3") = num_words; __asm__ volatile ( ".syntax unified \n\t" #if (uECC_MIN_WORDS == 5) FAST_MULT_ASM_5 #if (uECC_MAX_WORDS > 5) FAST_MULT_ASM_5_TO_6 #endif #if (uECC_MAX_WORDS > 6) FAST_MULT_ASM_6_TO_7 #endif #if (uECC_MAX_WORDS > 7) FAST_MULT_ASM_7_TO_8 #endif #elif (uECC_MIN_WORDS == 6) FAST_MULT_ASM_6 #if (uECC_MAX_WORDS > 6) FAST_MULT_ASM_6_TO_7 #endif #if (uECC_MAX_WORDS > 7) FAST_MULT_ASM_7_TO_8 #endif #elif (uECC_MIN_WORDS == 7) FAST_MULT_ASM_7 #if (uECC_MAX_WORDS > 7) FAST_MULT_ASM_7_TO_8 #endif #elif (uECC_MIN_WORDS == 8) FAST_MULT_ASM_8 #endif "1: \n\t" RESUME_SYNTAX : "+r" (r0), "+r" (r1), "+r" (r2) : "r" (r3) : "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory" ); } #define asm_mult 1 #if uECC_SQUARE_FUNC uECC_VLI_API void uECC_vli_square(uECC_word_t *result, const uECC_word_t *left, wordcount_t num_words) { register uint32_t *r0 __asm__("r0") = result; register const uint32_t *r1 __asm__("r1") = left; register uint32_t r2 __asm__("r2") = num_words; __asm__ volatile ( ".syntax unified \n\t" #if (uECC_MIN_WORDS == 5) FAST_SQUARE_ASM_5 #if (uECC_MAX_WORDS > 5) FAST_SQUARE_ASM_5_TO_6 #endif #if (uECC_MAX_WORDS > 6) FAST_SQUARE_ASM_6_TO_7 #endif #if (uECC_MAX_WORDS > 7) FAST_SQUARE_ASM_7_TO_8 #endif #elif (uECC_MIN_WORDS == 6) FAST_SQUARE_ASM_6 #if (uECC_MAX_WORDS > 6) FAST_SQUARE_ASM_6_TO_7 #endif #if (uECC_MAX_WORDS > 7) FAST_SQUARE_ASM_7_TO_8 #endif #elif (uECC_MIN_WORDS == 7) FAST_SQUARE_ASM_7 #if (uECC_MAX_WORDS > 7) FAST_SQUARE_ASM_7_TO_8 #endif #elif (uECC_MIN_WORDS == 8) FAST_SQUARE_ASM_8 #endif "1: \n\t" RESUME_SYNTAX : "+r" (r0), "+r" (r1) : "r" (r2) : "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory" ); } #define asm_square 1 #endif /* uECC_SQUARE_FUNC */ #else /* (uECC_OPTIMIZATION_LEVEL > 3) */ uECC_VLI_API void uECC_vli_mult(uint32_t *result, const uint32_t *left, const uint32_t *right, wordcount_t num_words) { register uint32_t *r0 __asm__("r0") = result; register const uint32_t *r1 __asm__("r1") = left; register const uint32_t *r2 __asm__("r2") = right; register uint32_t r3 __asm__("r3") = num_words; #if uECC_SUPPORTS_secp160r1 if (num_words == 5) { __asm__ volatile ( ".syntax unified \n\t" FAST_MULT_ASM_5 RESUME_SYNTAX : "+r" (r0), "+r" (r1), "+r" (r2) : "r" (r3) : "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory" ); return; } #endif #if uECC_SUPPORTS_secp192r1 if (num_words == 6) { __asm__ volatile ( ".syntax unified \n\t" FAST_MULT_ASM_6 RESUME_SYNTAX : "+r" (r0), "+r" (r1), "+r" (r2) : "r" (r3) : "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory" ); return; } #endif #if uECC_SUPPORTS_secp224r1 if (num_words == 7) { __asm__ volatile ( ".syntax unified \n\t" FAST_MULT_ASM_7 RESUME_SYNTAX : "+r" (r0), "+r" (r1), "+r" (r2) : "r" (r3) : "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory" ); return; } #endif #if (uECC_SUPPORTS_secp256r1 || uECC_SUPPORTS_secp256k1) if (num_words == 8) { __asm__ volatile ( ".syntax unified \n\t" FAST_MULT_ASM_8 RESUME_SYNTAX : "+r" (r0), "+r" (r1), "+r" (r2) : "r" (r3) : "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory" ); return; } #endif } #define asm_mult 1 #if uECC_SQUARE_FUNC uECC_VLI_API void uECC_vli_square(uECC_word_t *result, const uECC_word_t *left, wordcount_t num_words) { register uint32_t *r0 __asm__("r0") = result; register const uint32_t *r1 __asm__("r1") = left; register uint32_t r2 __asm__("r2") = num_words; #if uECC_SUPPORTS_secp160r1 if (num_words == 5) { __asm__ volatile ( ".syntax unified \n\t" FAST_SQUARE_ASM_5 RESUME_SYNTAX : "+r" (r0), "+r" (r1) : "r" (r2) : "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory" ); return; } #endif #if uECC_SUPPORTS_secp192r1 if (num_words == 6) { __asm__ volatile ( ".syntax unified \n\t" FAST_SQUARE_ASM_6 RESUME_SYNTAX : "+r" (r0), "+r" (r1) : "r" (r2) : "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory" ); return; } #endif #if uECC_SUPPORTS_secp224r1 if (num_words == 7) { __asm__ volatile ( ".syntax unified \n\t" FAST_SQUARE_ASM_7 RESUME_SYNTAX : "+r" (r0), "+r" (r1) : "r" (r2) : "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory" ); return; } #endif #if (uECC_SUPPORTS_secp256r1 || uECC_SUPPORTS_secp256k1) if (num_words == 8) { __asm__ volatile ( ".syntax unified \n\t" FAST_SQUARE_ASM_8 RESUME_SYNTAX : "+r" (r0), "+r" (r1) : "r" (r2) : "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory" ); return; } #endif } #define asm_square 1 #endif /* uECC_SQUARE_FUNC */ #endif /* (uECC_OPTIMIZATION_LEVEL > 3) */ #endif /* uECC_PLATFORM != uECC_arm_thumb */ #endif /* (uECC_OPTIMIZATION_LEVEL >= 3) */ /* ---- "Small" implementations ---- */ #if !asm_add uECC_VLI_API uECC_word_t uECC_vli_add(uECC_word_t *result, const uECC_word_t *left, const uECC_word_t *right, wordcount_t num_words) { uint32_t carry = 0; uint32_t left_word; uint32_t right_word; __asm__ volatile ( ".syntax unified \n\t" "1: \n\t" "ldmia %[lptr]!, {%[left]} \n\t" /* Load left word. */ "ldmia %[rptr]!, {%[right]} \n\t" /* Load right word. */ "lsrs %[carry], #1 \n\t" /* Set up carry flag (carry = 0 after this). */ "adcs %[left], %[left], %[right] \n\t" /* Add with carry. */ "adcs %[carry], %[carry], %[carry] \n\t" /* Store carry bit. */ "stmia %[dptr]!, {%[left]} \n\t" /* Store result word. */ "subs %[ctr], #1 \n\t" /* Decrement counter. */ "bne 1b \n\t" /* Loop until counter == 0. */ RESUME_SYNTAX : [dptr] REG_RW (result), [lptr] REG_RW (left), [rptr] REG_RW (right), [ctr] REG_RW (num_words), [carry] REG_RW (carry), [left] REG_WRITE (left_word), [right] REG_WRITE (right_word) : : "cc", "memory" ); return carry; } #define asm_add 1 #endif #if !asm_sub uECC_VLI_API uECC_word_t uECC_vli_sub(uECC_word_t *result, const uECC_word_t *left, const uECC_word_t *right, wordcount_t num_words) { uint32_t carry = 1; /* carry = 1 initially (means don't borrow) */ uint32_t left_word; uint32_t right_word; __asm__ volatile ( ".syntax unified \n\t" "1: \n\t" "ldmia %[lptr]!, {%[left]} \n\t" /* Load left word. */ "ldmia %[rptr]!, {%[right]} \n\t" /* Load right word. */ "lsrs %[carry], #1 \n\t" /* Set up carry flag (carry = 0 after this). */ "sbcs %[left], %[left], %[right] \n\t" /* Subtract with borrow. */ "adcs %[carry], %[carry], %[carry] \n\t" /* Store carry bit. */ "stmia %[dptr]!, {%[left]} \n\t" /* Store result word. */ "subs %[ctr], #1 \n\t" /* Decrement counter. */ "bne 1b \n\t" /* Loop until counter == 0. */ RESUME_SYNTAX : [dptr] REG_RW (result), [lptr] REG_RW (left), [rptr] REG_RW (right), [ctr] REG_RW (num_words), [carry] REG_RW (carry), [left] REG_WRITE (left_word), [right] REG_WRITE (right_word) : : "cc", "memory" ); return !carry; } #define asm_sub 1 #endif #if !asm_mult uECC_VLI_API void uECC_vli_mult(uECC_word_t *result, const uECC_word_t *left, const uECC_word_t *right, wordcount_t num_words) { #if (uECC_PLATFORM != uECC_arm_thumb) uint32_t c0 = 0; uint32_t c1 = 0; uint32_t c2 = 0; uint32_t k = 0; uint32_t i; uint32_t t0, t1; __asm__ volatile ( ".syntax unified \n\t" "1: \n\t" /* outer loop (k < num_words) */ "movs %[i], #0 \n\t" /* i = 0 */ "b 3f \n\t" "2: \n\t" /* outer loop (k >= num_words) */ "movs %[i], %[k] \n\t" /* i = k */ "subs %[i], %[last_word] \n\t" /* i = k - (num_words - 1) (times 4) */ "3: \n\t" /* inner loop */ "subs %[t0], %[k], %[i] \n\t" /* t0 = k-i */ "ldr %[t1], [%[right], %[t0]] \n\t" /* t1 = right[k - i] */ "ldr %[t0], [%[left], %[i]] \n\t" /* t0 = left[i] */ "umull %[t0], %[t1], %[t0], %[t1] \n\t" /* (t0, t1) = left[i] * right[k - i] */ "adds %[c0], %[c0], %[t0] \n\t" /* add low word to c0 */ "adcs %[c1], %[c1], %[t1] \n\t" /* add high word to c1, including carry */ "adcs %[c2], %[c2], #0 \n\t" /* add carry to c2 */ "adds %[i], #4 \n\t" /* i += 4 */ "cmp %[i], %[last_word] \n\t" /* i > (num_words - 1) (times 4)? */ "bgt 4f \n\t" /* if so, exit the loop */ "cmp %[i], %[k] \n\t" /* i <= k? */ "ble 3b \n\t" /* if so, continue looping */ "4: \n\t" /* end inner loop */ "str %[c0], [%[result], %[k]] \n\t" /* result[k] = c0 */ "mov %[c0], %[c1] \n\t" /* c0 = c1 */ "mov %[c1], %[c2] \n\t" /* c1 = c2 */ "movs %[c2], #0 \n\t" /* c2 = 0 */ "adds %[k], #4 \n\t" /* k += 4 */ "cmp %[k], %[last_word] \n\t" /* k <= (num_words - 1) (times 4) ? */ "ble 1b \n\t" /* if so, loop back, start with i = 0 */ "cmp %[k], %[last_word], lsl #1 \n\t" /* k <= (num_words * 2 - 2) (times 4) ? */ "ble 2b \n\t" /* if so, loop back, start with i = (k + 1) - num_words */ /* end outer loop */ "str %[c0], [%[result], %[k]] \n\t" /* result[num_words * 2 - 1] = c0 */ RESUME_SYNTAX : [c0] "+r" (c0), [c1] "+r" (c1), [c2] "+r" (c2), [k] "+r" (k), [i] "=&r" (i), [t0] "=&r" (t0), [t1] "=&r" (t1) : [result] "r" (result), [left] "r" (left), [right] "r" (right), [last_word] "r" ((num_words - 1) * 4) : "cc", "memory" ); #else /* Thumb-1 */ uint32_t r4, r5, r6, r7; __asm__ volatile ( ".syntax unified \n\t" "subs %[r3], #1 \n\t" /* r3 = num_words - 1 */ "lsls %[r3], #2 \n\t" /* r3 = (num_words - 1) * 4 */ "mov r8, %[r3] \n\t" /* r8 = (num_words - 1) * 4 */ "lsls %[r3], #1 \n\t" /* r3 = (num_words - 1) * 8 */ "mov r9, %[r3] \n\t" /* r9 = (num_words - 1) * 8 */ "movs %[r3], #0 \n\t" /* c0 = 0 */ "movs %[r4], #0 \n\t" /* c1 = 0 */ "movs %[r5], #0 \n\t" /* c2 = 0 */ "movs %[r6], #0 \n\t" /* k = 0 */ "push {%[r0]} \n\t" /* keep result on the stack */ "1: \n\t" /* outer loop (k < num_words) */ "movs %[r7], #0 \n\t" /* r7 = i = 0 */ "b 3f \n\t" "2: \n\t" /* outer loop (k >= num_words) */ "movs %[r7], %[r6] \n\t" /* r7 = k */ "mov %[r0], r8 \n\t" /* r0 = (num_words - 1) * 4 */ "subs %[r7], %[r0] \n\t" /* r7 = i = k - (num_words - 1) (times 4) */ "3: \n\t" /* inner loop */ "mov r10, %[r3] \n\t" "mov r11, %[r4] \n\t" "mov r12, %[r5] \n\t" "mov r14, %[r6] \n\t" "subs %[r0], %[r6], %[r7] \n\t" /* r0 = k - i */ "ldr %[r4], [%[r2], %[r0]] \n\t" /* r4 = right[k - i] */ "ldr %[r0], [%[r1], %[r7]] \n\t" /* r0 = left[i] */ "lsrs %[r3], %[r0], #16 \n\t" /* r3 = a1 */ "uxth %[r0], %[r0] \n\t" /* r0 = a0 */ "lsrs %[r5], %[r4], #16 \n\t" /* r5 = b1 */ "uxth %[r4], %[r4] \n\t" /* r4 = b0 */ "movs %[r6], %[r3] \n\t" /* r6 = a1 */ "muls %[r6], %[r5], %[r6] \n\t" /* r6 = a1 * b1 */ "muls %[r3], %[r4], %[r3] \n\t" /* r3 = b0 * a1 */ "muls %[r5], %[r0], %[r5] \n\t" /* r5 = a0 * b1 */ "muls %[r0], %[r4], %[r0] \n\t" /* r0 = a0 * b0 */ /* Add middle terms */ "lsls %[r4], %[r3], #16 \n\t" "lsrs %[r3], %[r3], #16 \n\t" "adds %[r0], %[r4] \n\t" "adcs %[r6], %[r3] \n\t" "lsls %[r4], %[r5], #16 \n\t" "lsrs %[r5], %[r5], #16 \n\t" "adds %[r0], %[r4] \n\t" "adcs %[r6], %[r5] \n\t" "mov %[r3], r10\n\t" "mov %[r4], r11\n\t" "mov %[r5], r12\n\t" "adds %[r3], %[r0] \n\t" /* add low word to c0 */ "adcs %[r4], %[r6] \n\t" /* add high word to c1, including carry */ "movs %[r0], #0 \n\t" /* r0 = 0 (does not affect carry bit) */ "adcs %[r5], %[r0] \n\t" /* add carry to c2 */ "mov %[r6], r14\n\t" /* r6 = k */ "adds %[r7], #4 \n\t" /* i += 4 */ "cmp %[r7], r8 \n\t" /* i > (num_words - 1) (times 4)? */ "bgt 4f \n\t" /* if so, exit the loop */ "cmp %[r7], %[r6] \n\t" /* i <= k? */ "ble 3b \n\t" /* if so, continue looping */ "4: \n\t" /* end inner loop */ "ldr %[r0], [sp, #0] \n\t" /* r0 = result */ "str %[r3], [%[r0], %[r6]] \n\t" /* result[k] = c0 */ "mov %[r3], %[r4] \n\t" /* c0 = c1 */ "mov %[r4], %[r5] \n\t" /* c1 = c2 */ "movs %[r5], #0 \n\t" /* c2 = 0 */ "adds %[r6], #4 \n\t" /* k += 4 */ "cmp %[r6], r8 \n\t" /* k <= (num_words - 1) (times 4) ? */ "ble 1b \n\t" /* if so, loop back, start with i = 0 */ "cmp %[r6], r9 \n\t" /* k <= (num_words * 2 - 2) (times 4) ? */ "ble 2b \n\t" /* if so, loop back, with i = (k + 1) - num_words */ /* end outer loop */ "str %[r3], [%[r0], %[r6]] \n\t" /* result[num_words * 2 - 1] = c0 */ "pop {%[r0]} \n\t" /* pop result off the stack */ ".syntax divided \n\t" : [r3] "+l" (num_words), [r4] "=&l" (r4), [r5] "=&l" (r5), [r6] "=&l" (r6), [r7] "=&l" (r7) : [r0] "l" (result), [r1] "l" (left), [r2] "l" (right) : "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory" ); #endif } #define asm_mult 1 #endif #if uECC_SQUARE_FUNC #if !asm_square uECC_VLI_API void uECC_vli_square(uECC_word_t *result, const uECC_word_t *left, wordcount_t num_words) { #if (uECC_PLATFORM != uECC_arm_thumb) uint32_t c0 = 0; uint32_t c1 = 0; uint32_t c2 = 0; uint32_t k = 0; uint32_t i, tt; uint32_t t0, t1; __asm__ volatile ( ".syntax unified \n\t" "1: \n\t" /* outer loop (k < num_words) */ "movs %[i], #0 \n\t" /* i = 0 */ "b 3f \n\t" "2: \n\t" /* outer loop (k >= num_words) */ "movs %[i], %[k] \n\t" /* i = k */ "subs %[i], %[last_word] \n\t" /* i = k - (num_words - 1) (times 4) */ "3: \n\t" /* inner loop */ "subs %[tt], %[k], %[i] \n\t" /* tt = k-i */ "ldr %[t1], [%[left], %[tt]] \n\t" /* t1 = left[k - i] */ "ldr %[t0], [%[left], %[i]] \n\t" /* t0 = left[i] */ "umull %[t0], %[t1], %[t0], %[t1] \n\t" /* (t0, t1) = left[i] * right[k - i] */ "cmp %[i], %[tt] \n\t" /* (i < k - i) ? */ "bge 4f \n\t" /* if i >= k - i, skip */ "adds %[c0], %[c0], %[t0] \n\t" /* add low word to c0 */ "adcs %[c1], %[c1], %[t1] \n\t" /* add high word to c1, including carry */ "adcs %[c2], %[c2], #0 \n\t" /* add carry to c2 */ "4: \n\t" "adds %[c0], %[c0], %[t0] \n\t" /* add low word to c0 */ "adcs %[c1], %[c1], %[t1] \n\t" /* add high word to c1, including carry */ "adcs %[c2], %[c2], #0 \n\t" /* add carry to c2 */ "adds %[i], #4 \n\t" /* i += 4 */ "cmp %[i], %[k] \n\t" /* i >= k? */ "bge 5f \n\t" /* if so, exit the loop */ "subs %[tt], %[k], %[i] \n\t" /* tt = k - i */ "cmp %[i], %[tt] \n\t" /* i <= k - i? */ "ble 3b \n\t" /* if so, continue looping */ "5: \n\t" /* end inner loop */ "str %[c0], [%[result], %[k]] \n\t" /* result[k] = c0 */ "mov %[c0], %[c1] \n\t" /* c0 = c1 */ "mov %[c1], %[c2] \n\t" /* c1 = c2 */ "movs %[c2], #0 \n\t" /* c2 = 0 */ "adds %[k], #4 \n\t" /* k += 4 */ "cmp %[k], %[last_word] \n\t" /* k <= (num_words - 1) (times 4) ? */ "ble 1b \n\t" /* if so, loop back, start with i = 0 */ "cmp %[k], %[last_word], lsl #1 \n\t" /* k <= (num_words * 2 - 2) (times 4) ? */ "ble 2b \n\t" /* if so, loop back, start with i = (k + 1) - num_words */ /* end outer loop */ "str %[c0], [%[result], %[k]] \n\t" /* result[num_words * 2 - 1] = c0 */ RESUME_SYNTAX : [c0] "+r" (c0), [c1] "+r" (c1), [c2] "+r" (c2), [k] "+r" (k), [i] "=&r" (i), [tt] "=&r" (tt), [t0] "=&r" (t0), [t1] "=&r" (t1) : [result] "r" (result), [left] "r" (left), [last_word] "r" ((num_words - 1) * 4) : "cc", "memory" ); #else uint32_t r3, r4, r5, r6, r7; __asm__ volatile ( ".syntax unified \n\t" "subs %[r2], #1 \n\t" /* r2 = num_words - 1 */ "lsls %[r2], #2 \n\t" /* r2 = (num_words - 1) * 4 */ "mov r8, %[r2] \n\t" /* r8 = (num_words - 1) * 4 */ "lsls %[r2], #1 \n\t" /* r2 = (num_words - 1) * 8 */ "mov r9, %[r2] \n\t" /* r9 = (num_words - 1) * 8 */ "movs %[r2], #0 \n\t" /* c0 = 0 */ "movs %[r3], #0 \n\t" /* c1 = 0 */ "movs %[r4], #0 \n\t" /* c2 = 0 */ "movs %[r5], #0 \n\t" /* k = 0 */ "push {%[r0]} \n\t" /* keep result on the stack */ "1: \n\t" /* outer loop (k < num_words) */ "movs %[r6], #0 \n\t" /* r6 = i = 0 */ "b 3f \n\t" "2: \n\t" /* outer loop (k >= num_words) */ "movs %[r6], %[r5] \n\t" /* r6 = k */ "mov %[r0], r8 \n\t" /* r0 = (num_words - 1) * 4 */ "subs %[r6], %[r0] \n\t" /* r6 = i = k - (num_words - 1) (times 4) */ "3: \n\t" /* inner loop */ "mov r10, %[r2] \n\t" "mov r11, %[r3] \n\t" "mov r12, %[r4] \n\t" "mov r14, %[r5] \n\t" "subs %[r7], %[r5], %[r6] \n\t" /* r7 = k - i */ "ldr %[r3], [%[r1], %[r7]] \n\t" /* r3 = left[k - i] */ "ldr %[r0], [%[r1], %[r6]] \n\t" /* r0 = left[i] */ "lsrs %[r2], %[r0], #16 \n\t" /* r2 = a1 */ "uxth %[r0], %[r0] \n\t" /* r0 = a0 */ "lsrs %[r4], %[r3], #16 \n\t" /* r4 = b1 */ "uxth %[r3], %[r3] \n\t" /* r3 = b0 */ "movs %[r5], %[r2] \n\t" /* r5 = a1 */ "muls %[r5], %[r4], %[r5] \n\t" /* r5 = a1 * b1 */ "muls %[r2], %[r3], %[r2] \n\t" /* r2 = b0 * a1 */ "muls %[r4], %[r0], %[r4] \n\t" /* r4 = a0 * b1 */ "muls %[r0], %[r3], %[r0] \n\t" /* r0 = a0 * b0 */ /* Add middle terms */ "lsls %[r3], %[r2], #16 \n\t" "lsrs %[r2], %[r2], #16 \n\t" "adds %[r0], %[r3] \n\t" "adcs %[r5], %[r2] \n\t" "lsls %[r3], %[r4], #16 \n\t" "lsrs %[r4], %[r4], #16 \n\t" "adds %[r0], %[r3] \n\t" "adcs %[r5], %[r4] \n\t" /* Add to acc, doubling if necessary */ "mov %[r2], r10\n\t" "mov %[r3], r11\n\t" "mov %[r4], r12\n\t" "cmp %[r6], %[r7] \n\t" /* (i < k - i) ? */ "bge 4f \n\t" /* if i >= k - i, skip */ "movs %[r7], #0 \n\t" /* r7 = 0 */ "adds %[r2], %[r0] \n\t" /* add low word to c0 */ "adcs %[r3], %[r5] \n\t" /* add high word to c1, including carry */ "adcs %[r4], %[r7] \n\t" /* add carry to c2 */ "4: \n\t" "movs %[r7], #0 \n\t" /* r7 = 0 */ "adds %[r2], %[r0] \n\t" /* add low word to c0 */ "adcs %[r3], %[r5] \n\t" /* add high word to c1, including carry */ "adcs %[r4], %[r7] \n\t" /* add carry to c2 */ "mov %[r5], r14\n\t" /* r5 = k */ "adds %[r6], #4 \n\t" /* i += 4 */ "cmp %[r6], %[r5] \n\t" /* i >= k? */ "bge 5f \n\t" /* if so, exit the loop */ "subs %[r7], %[r5], %[r6] \n\t" /* r7 = k - i */ "cmp %[r6], %[r7] \n\t" /* i <= k - i? */ "ble 3b \n\t" /* if so, continue looping */ "5: \n\t" /* end inner loop */ "ldr %[r0], [sp, #0] \n\t" /* r0 = result */ "str %[r2], [%[r0], %[r5]] \n\t" /* result[k] = c0 */ "mov %[r2], %[r3] \n\t" /* c0 = c1 */ "mov %[r3], %[r4] \n\t" /* c1 = c2 */ "movs %[r4], #0 \n\t" /* c2 = 0 */ "adds %[r5], #4 \n\t" /* k += 4 */ "cmp %[r5], r8 \n\t" /* k <= (num_words - 1) (times 4) ? */ "ble 1b \n\t" /* if so, loop back, start with i = 0 */ "cmp %[r5], r9 \n\t" /* k <= (num_words * 2 - 2) (times 4) ? */ "ble 2b \n\t" /* if so, loop back, with i = (k + 1) - num_words */ /* end outer loop */ "str %[r2], [%[r0], %[r5]] \n\t" /* result[num_words * 2 - 1] = c0 */ "pop {%[r0]} \n\t" /* pop result off the stack */ ".syntax divided \n\t" : [r2] "+l" (num_words), [r3] "=&l" (r3), [r4] "=&l" (r4), [r5] "=&l" (r5), [r6] "=&l" (r6), [r7] "=&l" (r7) : [r0] "l" (result), [r1] "l" (left) : "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory" ); #endif } #define asm_square 1 #endif #endif /* uECC_SQUARE_FUNC */ #endif /* _UECC_ASM_ARM_H_ */