#include "clemsa.h" #include "../blocks/const.h" #include "../blocks/decoder.h" #include "../blocks/encoder.h" #include "../blocks/generic.h" #include "../blocks/math.h" // protocol BERNER / ELKA / TEDSEN / TELETASTER #define TAG "SubGhzProtocolClemsa" #define DIP_P 0b11 //(+) #define DIP_O 0b10 //(0) #define DIP_N 0b00 //(-) #define DIP_PATTERN "%c%c%c%c%c%c%c%c" #define SHOW_DIP_P(dip, check_dip) \ ((((dip >> 0xE) & 0x3) == check_dip) ? '*' : '_'), \ ((((dip >> 0xC) & 0x3) == check_dip) ? '*' : '_'), \ ((((dip >> 0xA) & 0x3) == check_dip) ? '*' : '_'), \ ((((dip >> 0x8) & 0x3) == check_dip) ? '*' : '_'), \ ((((dip >> 0x6) & 0x3) == check_dip) ? '*' : '_'), \ ((((dip >> 0x4) & 0x3) == check_dip) ? '*' : '_'), \ ((((dip >> 0x2) & 0x3) == check_dip) ? '*' : '_'), \ ((((dip >> 0x0) & 0x3) == check_dip) ? '*' : '_') static const SubGhzBlockConst subghz_protocol_clemsa_const = { .te_short = 385, .te_long = 2695, .te_delta = 150, .min_count_bit_for_found = 18, }; struct SubGhzProtocolDecoderClemsa { SubGhzProtocolDecoderBase base; SubGhzBlockDecoder decoder; SubGhzBlockGeneric generic; }; struct SubGhzProtocolEncoderClemsa { SubGhzProtocolEncoderBase base; SubGhzProtocolBlockEncoder encoder; SubGhzBlockGeneric generic; }; typedef enum { ClemsaDecoderStepReset = 0, ClemsaDecoderStepSaveDuration, ClemsaDecoderStepCheckDuration, } ClemsaDecoderStep; const SubGhzProtocolDecoder subghz_protocol_clemsa_decoder = { .alloc = subghz_protocol_decoder_clemsa_alloc, .free = subghz_protocol_decoder_clemsa_free, .feed = subghz_protocol_decoder_clemsa_feed, .reset = subghz_protocol_decoder_clemsa_reset, .get_hash_data = subghz_protocol_decoder_clemsa_get_hash_data, .serialize = subghz_protocol_decoder_clemsa_serialize, .deserialize = subghz_protocol_decoder_clemsa_deserialize, .get_string = subghz_protocol_decoder_clemsa_get_string, }; const SubGhzProtocolEncoder subghz_protocol_clemsa_encoder = { .alloc = subghz_protocol_encoder_clemsa_alloc, .free = subghz_protocol_encoder_clemsa_free, .deserialize = subghz_protocol_encoder_clemsa_deserialize, .stop = subghz_protocol_encoder_clemsa_stop, .yield = subghz_protocol_encoder_clemsa_yield, }; const SubGhzProtocol subghz_protocol_clemsa = { .name = SUBGHZ_PROTOCOL_CLEMSA_NAME, .type = SubGhzProtocolTypeStatic, .flag = SubGhzProtocolFlag_433 | SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable | SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save | SubGhzProtocolFlag_Send, .decoder = &subghz_protocol_clemsa_decoder, .encoder = &subghz_protocol_clemsa_encoder, }; void* subghz_protocol_encoder_clemsa_alloc(SubGhzEnvironment* environment) { UNUSED(environment); SubGhzProtocolEncoderClemsa* instance = malloc(sizeof(SubGhzProtocolEncoderClemsa)); instance->base.protocol = &subghz_protocol_clemsa; instance->generic.protocol_name = instance->base.protocol->name; instance->encoder.repeat = 10; instance->encoder.size_upload = 52; instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration)); instance->encoder.is_running = false; return instance; } void subghz_protocol_encoder_clemsa_free(void* context) { furi_assert(context); SubGhzProtocolEncoderClemsa* instance = context; free(instance->encoder.upload); free(instance); } /** * Generating an upload from data. * @param instance Pointer to a SubGhzProtocolEncoderClemsa instance * @return true On success */ static bool subghz_protocol_encoder_clemsa_get_upload(SubGhzProtocolEncoderClemsa* instance) { furi_assert(instance); size_t index = 0; size_t size_upload = (instance->generic.data_count_bit * 2); if(size_upload > instance->encoder.size_upload) { FURI_LOG_E(TAG, "Size upload exceeds allocated encoder buffer."); return false; } else { instance->encoder.size_upload = size_upload; } for(uint8_t i = instance->generic.data_count_bit; i > 1; i--) { if(bit_read(instance->generic.data, i - 1)) { //send bit 1 instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_clemsa_const.te_long); instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_clemsa_const.te_short); } else { //send bit 0 instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_clemsa_const.te_short); instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_clemsa_const.te_long); } } if(bit_read(instance->generic.data, 0)) { //send bit 1 instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_clemsa_const.te_long); instance->encoder.upload[index++] = level_duration_make( false, (uint32_t)subghz_protocol_clemsa_const.te_short + subghz_protocol_clemsa_const.te_long * 7); } else { //send bit 0 instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_clemsa_const.te_short); instance->encoder.upload[index++] = level_duration_make( false, (uint32_t)subghz_protocol_clemsa_const.te_long + subghz_protocol_clemsa_const.te_long * 7); } return true; } bool subghz_protocol_encoder_clemsa_deserialize(void* context, FlipperFormat* flipper_format) { furi_assert(context); SubGhzProtocolEncoderClemsa* instance = context; bool res = false; do { if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) { FURI_LOG_E(TAG, "Deserialize error"); break; } if(instance->generic.data_count_bit != subghz_protocol_clemsa_const.min_count_bit_for_found) { FURI_LOG_E(TAG, "Wrong number of bits in key"); break; } //optional parameter parameter flipper_format_read_uint32( flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1); if(!subghz_protocol_encoder_clemsa_get_upload(instance)) break; instance->encoder.is_running = true; res = true; } while(false); return res; } void subghz_protocol_encoder_clemsa_stop(void* context) { SubGhzProtocolEncoderClemsa* instance = context; instance->encoder.is_running = false; } LevelDuration subghz_protocol_encoder_clemsa_yield(void* context) { SubGhzProtocolEncoderClemsa* instance = context; if(instance->encoder.repeat == 0 || !instance->encoder.is_running) { instance->encoder.is_running = false; return level_duration_reset(); } LevelDuration ret = instance->encoder.upload[instance->encoder.front]; if(++instance->encoder.front == instance->encoder.size_upload) { instance->encoder.repeat--; instance->encoder.front = 0; } return ret; } void* subghz_protocol_decoder_clemsa_alloc(SubGhzEnvironment* environment) { UNUSED(environment); SubGhzProtocolDecoderClemsa* instance = malloc(sizeof(SubGhzProtocolDecoderClemsa)); instance->base.protocol = &subghz_protocol_clemsa; instance->generic.protocol_name = instance->base.protocol->name; return instance; } void subghz_protocol_decoder_clemsa_free(void* context) { furi_assert(context); SubGhzProtocolDecoderClemsa* instance = context; free(instance); } void subghz_protocol_decoder_clemsa_reset(void* context) { furi_assert(context); SubGhzProtocolDecoderClemsa* instance = context; instance->decoder.parser_step = ClemsaDecoderStepReset; } void subghz_protocol_decoder_clemsa_feed(void* context, bool level, uint32_t duration) { furi_assert(context); SubGhzProtocolDecoderClemsa* instance = context; switch(instance->decoder.parser_step) { case ClemsaDecoderStepReset: if((!level) && (DURATION_DIFF(duration, subghz_protocol_clemsa_const.te_short * 51) < subghz_protocol_clemsa_const.te_delta * 25)) { instance->decoder.parser_step = ClemsaDecoderStepSaveDuration; instance->decoder.decode_data = 0; instance->decoder.decode_count_bit = 0; } break; case ClemsaDecoderStepSaveDuration: if(level) { instance->decoder.te_last = duration; instance->decoder.parser_step = ClemsaDecoderStepCheckDuration; } else { instance->decoder.parser_step = ClemsaDecoderStepReset; } break; case ClemsaDecoderStepCheckDuration: if(!level) { if((DURATION_DIFF(instance->decoder.te_last, subghz_protocol_clemsa_const.te_short) < subghz_protocol_clemsa_const.te_delta) && (DURATION_DIFF(duration, subghz_protocol_clemsa_const.te_long) < subghz_protocol_clemsa_const.te_delta * 3)) { subghz_protocol_blocks_add_bit(&instance->decoder, 0); instance->decoder.parser_step = ClemsaDecoderStepSaveDuration; } else if( (DURATION_DIFF(instance->decoder.te_last, subghz_protocol_clemsa_const.te_long) < subghz_protocol_clemsa_const.te_delta * 3) && (DURATION_DIFF(duration, subghz_protocol_clemsa_const.te_short) < subghz_protocol_clemsa_const.te_delta)) { subghz_protocol_blocks_add_bit(&instance->decoder, 1); instance->decoder.parser_step = ClemsaDecoderStepSaveDuration; } else if( DURATION_DIFF(duration, subghz_protocol_clemsa_const.te_short * 51) < subghz_protocol_clemsa_const.te_delta * 25) { if((DURATION_DIFF( instance->decoder.te_last, subghz_protocol_clemsa_const.te_short) < subghz_protocol_clemsa_const.te_delta)) { subghz_protocol_blocks_add_bit(&instance->decoder, 0); } else if((DURATION_DIFF( instance->decoder.te_last, subghz_protocol_clemsa_const.te_long) < subghz_protocol_clemsa_const.te_delta * 3)) { subghz_protocol_blocks_add_bit(&instance->decoder, 1); } else { instance->decoder.parser_step = ClemsaDecoderStepReset; } if(instance->decoder.decode_count_bit == subghz_protocol_clemsa_const.min_count_bit_for_found) { instance->generic.data = instance->decoder.decode_data; instance->generic.data_count_bit = instance->decoder.decode_count_bit; if(instance->base.callback) instance->base.callback(&instance->base, instance->base.context); } instance->decoder.parser_step = ClemsaDecoderStepSaveDuration; instance->decoder.decode_data = 0; instance->decoder.decode_count_bit = 0; } else { instance->decoder.parser_step = ClemsaDecoderStepReset; } } else { instance->decoder.parser_step = ClemsaDecoderStepReset; } break; } } /** * Analysis of received data * @param instance Pointer to a SubGhzBlockGeneric* instance */ static void subghz_protocol_clemsa_check_remote_controller(SubGhzBlockGeneric* instance) { instance->serial = (instance->data >> 2) & 0xFFFF; instance->btn = (instance->data & 0x03); } uint8_t subghz_protocol_decoder_clemsa_get_hash_data(void* context) { furi_assert(context); SubGhzProtocolDecoderClemsa* instance = context; return subghz_protocol_blocks_get_hash_data( &instance->decoder, (instance->decoder.decode_count_bit / 8) + 1); } bool subghz_protocol_decoder_clemsa_serialize( void* context, FlipperFormat* flipper_format, SubGhzPresetDefinition* preset) { furi_assert(context); SubGhzProtocolDecoderClemsa* instance = context; return subghz_block_generic_serialize(&instance->generic, flipper_format, preset); } bool subghz_protocol_decoder_clemsa_deserialize(void* context, FlipperFormat* flipper_format) { furi_assert(context); SubGhzProtocolDecoderClemsa* instance = context; bool ret = false; do { if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) { break; } if(instance->generic.data_count_bit != subghz_protocol_clemsa_const.min_count_bit_for_found) { FURI_LOG_E(TAG, "Wrong number of bits in key"); break; } ret = true; } while(false); return ret; } void subghz_protocol_decoder_clemsa_get_string(void* context, FuriString* output) { furi_assert(context); SubGhzProtocolDecoderClemsa* instance = context; subghz_protocol_clemsa_check_remote_controller(&instance->generic); //uint32_t data = (uint32_t)(instance->generic.data & 0xFFFFFF); furi_string_cat_printf( output, "%s %dbit\r\n" "Key:%05lX Btn %X\r\n" " +: " DIP_PATTERN "\r\n" " o: " DIP_PATTERN "\r\n" " -: " DIP_PATTERN "\r\n", instance->generic.protocol_name, instance->generic.data_count_bit, (uint32_t)(instance->generic.data & 0x3FFFF), instance->generic.btn, SHOW_DIP_P(instance->generic.serial, DIP_P), SHOW_DIP_P(instance->generic.serial, DIP_O), SHOW_DIP_P(instance->generic.serial, DIP_N)); }