#include "input_i.h" #define GPIO_Read(input_pin) \ (HAL_GPIO_ReadPin((GPIO_TypeDef*)input_pin.pin->port, input_pin.pin->pin) ^ \ input_pin.pin->inverted) static Input* input = NULL; inline static void input_timer_start(osTimerId_t timer_id, uint32_t ticks) { TimerHandle_t hTimer = (TimerHandle_t)timer_id; furi_check(xTimerChangePeriod(hTimer, ticks, portMAX_DELAY) == pdPASS); } inline static void input_timer_stop(osTimerId_t timer_id) { TimerHandle_t hTimer = (TimerHandle_t)timer_id; furi_check(xTimerStop(hTimer, portMAX_DELAY) == pdPASS); // xTimerStop is not actually stopping timer, // Instead it places stop event into timer queue // This code ensures that timer is stopped while(xTimerIsTimerActive(hTimer) == pdTRUE) osDelay(1); } void input_press_timer_callback(void* arg) { InputPinState* input_pin = arg; InputEvent event; event.sequence = input_pin->counter; event.key = input_pin->pin->key; input_pin->press_counter++; if(input_pin->press_counter == INPUT_LONG_PRESS_COUNTS) { event.type = InputTypeLong; furi_pubsub_publish(input->event_pubsub, &event); } else if(input_pin->press_counter > INPUT_LONG_PRESS_COUNTS) { input_pin->press_counter--; event.type = InputTypeRepeat; furi_pubsub_publish(input->event_pubsub, &event); } } void input_isr(void* _ctx) { osThreadFlagsSet(input->thread, INPUT_THREAD_FLAG_ISR); } const char* input_get_key_name(InputKey key) { for(size_t i = 0; i < input_pins_count; i++) { if(input_pins[i].key == key) { return input_pins[i].name; } } return "Unknown"; } const char* input_get_type_name(InputType type) { switch(type) { case InputTypePress: return "Press"; case InputTypeRelease: return "Release"; case InputTypeShort: return "Short"; case InputTypeLong: return "Long"; case InputTypeRepeat: return "Repeat"; } return "Unknown"; } int32_t input_srv() { input = malloc(sizeof(Input)); input->thread = osThreadGetId(); input->event_pubsub = furi_pubsub_alloc(); furi_record_create("input_events", input->event_pubsub); #ifdef SRV_CLI input->cli = furi_record_open("cli"); if(input->cli) { cli_add_command(input->cli, "input", CliCommandFlagParallelSafe, input_cli, input); } #endif input->pin_states = malloc(input_pins_count * sizeof(InputPinState)); for(size_t i = 0; i < input_pins_count; i++) { GpioPin gpio = {(GPIO_TypeDef*)input_pins[i].port, (uint16_t)input_pins[i].pin}; hal_gpio_add_int_callback(&gpio, input_isr, NULL); input->pin_states[i].pin = &input_pins[i]; input->pin_states[i].state = GPIO_Read(input->pin_states[i]); input->pin_states[i].debounce = INPUT_DEBOUNCE_TICKS_HALF; input->pin_states[i].press_timer = osTimerNew(input_press_timer_callback, osTimerPeriodic, &input->pin_states[i], NULL); input->pin_states[i].press_counter = 0; } while(1) { bool is_changing = false; for(size_t i = 0; i < input_pins_count; i++) { bool state = GPIO_Read(input->pin_states[i]); if(input->pin_states[i].debounce > 0 && input->pin_states[i].debounce < INPUT_DEBOUNCE_TICKS) { is_changing = true; input->pin_states[i].debounce += (state ? 1 : -1); } else if(input->pin_states[i].state != state) { input->pin_states[i].state = state; // Common state info InputEvent event; event.key = input->pin_states[i].pin->key; // Short / Long / Repeat timer routine if(state) { input->counter++; input->pin_states[i].counter = input->counter; event.sequence = input->pin_states[i].counter; input_timer_start(input->pin_states[i].press_timer, INPUT_PRESS_TICKS); } else { event.sequence = input->pin_states[i].counter; input_timer_stop(input->pin_states[i].press_timer); if(input->pin_states[i].press_counter < INPUT_LONG_PRESS_COUNTS) { event.type = InputTypeShort; furi_pubsub_publish(input->event_pubsub, &event); } input->pin_states[i].press_counter = 0; } // Send Press/Release event event.type = input->pin_states[i].state ? InputTypePress : InputTypeRelease; furi_pubsub_publish(input->event_pubsub, &event); } } if(is_changing) { osDelay(1); } else { osThreadFlagsWait(INPUT_THREAD_FLAG_ISR, osFlagsWaitAny, osWaitForever); } } return 0; }