#include #include #include #include "lfrfid_protocols.h" #define KERI_PREAMBLE_BIT_SIZE (33) #define KERI_PREAMBLE_DATA_SIZE (5) #define KERI_ENCODED_BIT_SIZE (64) #define KERI_ENCODED_DATA_SIZE (((KERI_ENCODED_BIT_SIZE) / 8) + KERI_PREAMBLE_DATA_SIZE) #define KERI_ENCODED_DATA_LAST ((KERI_ENCODED_BIT_SIZE) / 8) #define KERI_DECODED_BIT_SIZE (28) #define KERI_DECODED_DATA_SIZE (4) #define KERI_US_PER_BIT (255) #define KERI_ENCODER_PULSES_PER_BIT (16) typedef struct { uint8_t data_index; uint8_t bit_clock_index; bool last_bit; bool current_polarity; bool pulse_phase; } ProtocolKeriEncoder; typedef struct { uint8_t encoded_data[KERI_ENCODED_DATA_SIZE]; uint8_t negative_encoded_data[KERI_ENCODED_DATA_SIZE]; uint8_t corrupted_encoded_data[KERI_ENCODED_DATA_SIZE]; uint8_t corrupted_negative_encoded_data[KERI_ENCODED_DATA_SIZE]; uint8_t data[KERI_DECODED_DATA_SIZE]; ProtocolKeriEncoder encoder; } ProtocolKeri; ProtocolKeri* protocol_keri_alloc(void) { ProtocolKeri* protocol = malloc(sizeof(ProtocolKeri)); return protocol; }; void protocol_keri_free(ProtocolKeri* protocol) { free(protocol); }; uint8_t* protocol_keri_get_data(ProtocolKeri* protocol) { return protocol->data; }; void protocol_keri_decoder_start(ProtocolKeri* protocol) { memset(protocol->encoded_data, 0, KERI_ENCODED_DATA_SIZE); memset(protocol->negative_encoded_data, 0, KERI_ENCODED_DATA_SIZE); memset(protocol->corrupted_encoded_data, 0, KERI_ENCODED_DATA_SIZE); memset(protocol->corrupted_negative_encoded_data, 0, KERI_ENCODED_DATA_SIZE); }; static bool protocol_keri_check_preamble(uint8_t* data, size_t bit_index) { // Preamble 11100000 00000000 00000000 00000000 1 if(*(uint32_t*)&data[bit_index / 8] != 0b00000000000000000000000011100000) return false; if(bit_lib_get_bit(data, bit_index + 32) != 1) return false; return true; } static bool protocol_keri_can_be_decoded(uint8_t* data) { if(!protocol_keri_check_preamble(data, 0)) return false; if(!protocol_keri_check_preamble(data, 64)) return false; ///if(bit_lib_get_bit(data, 61) != 0) return false; //if(bit_lib_get_bit(data, 60) != 0) return false; return true; } static bool protocol_keri_decoder_feed_internal(bool polarity, uint32_t time, uint8_t* data) { time += (KERI_US_PER_BIT / 2); size_t bit_count = (time / KERI_US_PER_BIT); bool result = false; if(bit_count < KERI_ENCODED_BIT_SIZE) { for(size_t i = 0; i < bit_count; i++) { bit_lib_push_bit(data, KERI_ENCODED_DATA_SIZE, polarity); if(protocol_keri_can_be_decoded(data)) { result = true; break; } } } return result; } static void protocol_keri_descramble(uint32_t* fc, uint32_t* cn, uint32_t* internal_id) { const uint8_t card_to_id[] = {255, 255, 255, 255, 13, 12, 20, 5, 16, 6, 21, 17, 8, 255, 0, 7, 10, 15, 255, 11, 4, 1, 255, 18, 255, 19, 2, 14, 3, 9, 255, 255}; const uint8_t card_to_fc[] = {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 255, 255, 255, 255, 2, 255, 255, 255, 3, 255, 4, 255, 255, 255, 255, 255, 1, 255}; *fc = 0; *cn = 0; for(uint8_t card_idx = 0; card_idx < 32; card_idx++) { bool bit = (*internal_id >> card_idx) & 1; // Card ID if(card_to_id[card_idx] < 32) { *cn = *cn | (bit << card_to_id[card_idx]); } // Card FC if(card_to_fc[card_idx] < 32) { *fc = *fc | (bit << card_to_fc[card_idx]); } } } static void protocol_keri_decoder_save(uint8_t* data_to, const uint8_t* data_from) { uint32_t id = bit_lib_get_bits_32(data_from, 32, 32); data_to[3] = (uint8_t)id; data_to[2] = (uint8_t)(id >>= 8); data_to[1] = (uint8_t)(id >>= 8); data_to[0] = (uint8_t)(id >>= 8); } bool protocol_keri_decoder_feed(ProtocolKeri* protocol, bool level, uint32_t duration) { bool result = false; if(duration > (KERI_US_PER_BIT / 2)) { if(protocol_keri_decoder_feed_internal(level, duration, protocol->encoded_data)) { protocol_keri_decoder_save(protocol->data, protocol->encoded_data); result = true; return result; } if(protocol_keri_decoder_feed_internal(!level, duration, protocol->negative_encoded_data)) { protocol_keri_decoder_save(protocol->data, protocol->negative_encoded_data); result = true; return result; } } if(duration > (KERI_US_PER_BIT / 4)) { // Try to decode wrong phase synced data if(level) { duration += 120; } else { if(duration > 120) { duration -= 120; } } if(protocol_keri_decoder_feed_internal(level, duration, protocol->corrupted_encoded_data)) { protocol_keri_decoder_save(protocol->data, protocol->corrupted_encoded_data); result = true; return result; } if(protocol_keri_decoder_feed_internal( !level, duration, protocol->corrupted_negative_encoded_data)) { protocol_keri_decoder_save(protocol->data, protocol->corrupted_negative_encoded_data); result = true; return result; } } return result; }; bool protocol_keri_encoder_start(ProtocolKeri* protocol) { memset(protocol->encoded_data, 0, KERI_ENCODED_DATA_SIZE); *(uint32_t*)&protocol->encoded_data[0] = 0b00000000000000000000000011100000; bit_lib_copy_bits(protocol->encoded_data, 32, 32, protocol->data, 0); bit_lib_set_bits(protocol->encoded_data, 32, 1, 1); protocol->encoder.last_bit = bit_lib_get_bit(protocol->encoded_data, KERI_ENCODED_BIT_SIZE - 1); protocol->encoder.data_index = 0; protocol->encoder.current_polarity = true; protocol->encoder.pulse_phase = true; protocol->encoder.bit_clock_index = 0; return true; }; LevelDuration protocol_keri_encoder_yield(ProtocolKeri* protocol) { LevelDuration level_duration; ProtocolKeriEncoder* encoder = &protocol->encoder; if(encoder->pulse_phase) { level_duration = level_duration_make(encoder->current_polarity, 1); encoder->pulse_phase = false; } else { level_duration = level_duration_make(!encoder->current_polarity, 1); encoder->pulse_phase = true; encoder->bit_clock_index++; if(encoder->bit_clock_index >= KERI_ENCODER_PULSES_PER_BIT) { encoder->bit_clock_index = 0; bool current_bit = bit_lib_get_bit(protocol->encoded_data, encoder->data_index); if(current_bit != encoder->last_bit) { encoder->current_polarity = !encoder->current_polarity; } encoder->last_bit = current_bit; bit_lib_increment_index(encoder->data_index, KERI_ENCODED_BIT_SIZE); } } return level_duration; }; void protocol_keri_render_data(ProtocolKeri* protocol, FuriString* result) { uint32_t data = bit_lib_get_bits_32(protocol->data, 0, 32); uint32_t internal_id = data & 0x7FFFFFFF; uint32_t fc = 0; uint32_t cn = 0; protocol_keri_descramble(&fc, &cn, &data); furi_string_printf(result, "Internal ID: %lu\r\nFC: %lu, Card: %lu\r\n", internal_id, fc, cn); } bool protocol_keri_write_data(ProtocolKeri* protocol, void* data) { LFRFIDWriteRequest* request = (LFRFIDWriteRequest*)data; bool result = false; // Start bit should be always set protocol->data[0] |= (1 << 7); protocol_keri_encoder_start(protocol); if(request->write_type == LFRFIDWriteTypeT5577) { request->t5577.block[0] = LFRFID_T5577_TESTMODE_DISABLED | LFRFID_T5577_X_MODE | LFRFID_T5577_MODULATION_PSK1 | LFRFID_T5577_PSKCF_RF_2 | (2 << LFRFID_T5577_MAXBLOCK_SHIFT); request->t5577.block[0] |= 0xF << 18; request->t5577.block[1] = bit_lib_get_bits_32(protocol->encoded_data, 0, 32); request->t5577.block[2] = bit_lib_get_bits_32(protocol->encoded_data, 32, 32); request->t5577.blocks_to_write = 3; result = true; } return result; }; const ProtocolBase protocol_keri = { .name = "Keri", .manufacturer = "Keri", .data_size = KERI_DECODED_DATA_SIZE, .features = LFRFIDFeaturePSK, .validate_count = 6, .alloc = (ProtocolAlloc)protocol_keri_alloc, .free = (ProtocolFree)protocol_keri_free, .get_data = (ProtocolGetData)protocol_keri_get_data, .decoder = { .start = (ProtocolDecoderStart)protocol_keri_decoder_start, .feed = (ProtocolDecoderFeed)protocol_keri_decoder_feed, }, .encoder = { .start = (ProtocolEncoderStart)protocol_keri_encoder_start, .yield = (ProtocolEncoderYield)protocol_keri_encoder_yield, }, .render_data = (ProtocolRenderData)protocol_keri_render_data, .render_brief_data = (ProtocolRenderData)protocol_keri_render_data, .write_data = (ProtocolWriteData)protocol_keri_write_data, };