#include #include #include #include "lfrfid_protocols.h" typedef uint64_t EM4100DecodedData; #define EM_HEADER_POS (55) #define EM_HEADER_MASK (0x1FFLLU << EM_HEADER_POS) #define EM_FIRST_ROW_POS (50) #define EM_ROW_COUNT (10) #define EM_COLUMN_COUNT (4) #define EM_BITS_PER_ROW_COUNT (EM_COLUMN_COUNT + 1) #define EM_COLUMN_POS (4) #define EM_STOP_POS (0) #define EM_STOP_MASK (0x1LLU << EM_STOP_POS) #define EM_HEADER_AND_STOP_MASK (EM_HEADER_MASK | EM_STOP_MASK) #define EM_HEADER_AND_STOP_DATA (EM_HEADER_MASK) #define EM4100_DECODED_DATA_SIZE (5) #define EM4100_ENCODED_DATA_SIZE (sizeof(EM4100DecodedData)) #define EM4100_CLOCK_PER_BIT (64) #define EM_READ_SHORT_TIME (256) #define EM_READ_LONG_TIME (512) #define EM_READ_JITTER_TIME (100) #define EM_READ_SHORT_TIME_LOW (EM_READ_SHORT_TIME - EM_READ_JITTER_TIME) #define EM_READ_SHORT_TIME_HIGH (EM_READ_SHORT_TIME + EM_READ_JITTER_TIME) #define EM_READ_LONG_TIME_LOW (EM_READ_LONG_TIME - EM_READ_JITTER_TIME) #define EM_READ_LONG_TIME_HIGH (EM_READ_LONG_TIME + EM_READ_JITTER_TIME) typedef struct { uint8_t data[EM4100_DECODED_DATA_SIZE]; EM4100DecodedData encoded_data; uint8_t encoded_data_index; bool encoded_polarity; ManchesterState decoder_manchester_state; } ProtocolEM4100; ProtocolEM4100* protocol_em4100_alloc(void) { ProtocolEM4100* proto = malloc(sizeof(ProtocolEM4100)); return (void*)proto; }; void protocol_em4100_free(ProtocolEM4100* proto) { free(proto); }; uint8_t* protocol_em4100_get_data(ProtocolEM4100* proto) { return proto->data; }; static void em4100_decode( const uint8_t* encoded_data, const uint8_t encoded_data_size, uint8_t* decoded_data, const uint8_t decoded_data_size) { furi_check(decoded_data_size >= EM4100_DECODED_DATA_SIZE); furi_check(encoded_data_size >= EM4100_ENCODED_DATA_SIZE); uint8_t decoded_data_index = 0; EM4100DecodedData card_data = *((EM4100DecodedData*)(encoded_data)); // clean result memset(decoded_data, 0, decoded_data_size); // header for(uint8_t i = 0; i < 9; i++) { card_data = card_data << 1; } // nibbles uint8_t value = 0; for(uint8_t r = 0; r < EM_ROW_COUNT; r++) { uint8_t nibble = 0; for(uint8_t i = 0; i < 5; i++) { if(i < 4) nibble = (nibble << 1) | (card_data & (1LLU << 63) ? 1 : 0); card_data = card_data << 1; } value = (value << 4) | nibble; if(r % 2) { decoded_data[decoded_data_index] |= value; decoded_data_index++; value = 0; } } } static bool em4100_can_be_decoded(const uint8_t* encoded_data, const uint8_t encoded_data_size) { furi_check(encoded_data_size >= EM4100_ENCODED_DATA_SIZE); const EM4100DecodedData* card_data = (EM4100DecodedData*)encoded_data; // check header and stop bit if((*card_data & EM_HEADER_AND_STOP_MASK) != EM_HEADER_AND_STOP_DATA) return false; // check row parity for(uint8_t i = 0; i < EM_ROW_COUNT; i++) { uint8_t parity_sum = 0; for(uint8_t j = 0; j < EM_BITS_PER_ROW_COUNT; j++) { parity_sum += (*card_data >> (EM_FIRST_ROW_POS - i * EM_BITS_PER_ROW_COUNT + j)) & 1; } if((parity_sum % 2)) { return false; } } // check columns parity for(uint8_t i = 0; i < EM_COLUMN_COUNT; i++) { uint8_t parity_sum = 0; for(uint8_t j = 0; j < EM_ROW_COUNT + 1; j++) { parity_sum += (*card_data >> (EM_COLUMN_POS - i + j * EM_BITS_PER_ROW_COUNT)) & 1; } if((parity_sum % 2)) { return false; } } return true; } void protocol_em4100_decoder_start(ProtocolEM4100* proto) { memset(proto->data, 0, EM4100_DECODED_DATA_SIZE); proto->encoded_data = 0; manchester_advance( proto->decoder_manchester_state, ManchesterEventReset, &proto->decoder_manchester_state, NULL); }; bool protocol_em4100_decoder_feed(ProtocolEM4100* proto, bool level, uint32_t duration) { bool result = false; ManchesterEvent event = ManchesterEventReset; if(duration > EM_READ_SHORT_TIME_LOW && duration < EM_READ_SHORT_TIME_HIGH) { if(!level) { event = ManchesterEventShortHigh; } else { event = ManchesterEventShortLow; } } else if(duration > EM_READ_LONG_TIME_LOW && duration < EM_READ_LONG_TIME_HIGH) { if(!level) { event = ManchesterEventLongHigh; } else { event = ManchesterEventLongLow; } } if(event != ManchesterEventReset) { bool data; bool data_ok = manchester_advance( proto->decoder_manchester_state, event, &proto->decoder_manchester_state, &data); if(data_ok) { proto->encoded_data = (proto->encoded_data << 1) | data; if(em4100_can_be_decoded((uint8_t*)&proto->encoded_data, sizeof(EM4100DecodedData))) { em4100_decode( (uint8_t*)&proto->encoded_data, sizeof(EM4100DecodedData), proto->data, EM4100_DECODED_DATA_SIZE); result = true; } } } return result; }; static void em4100_write_nibble(bool low_nibble, uint8_t data, EM4100DecodedData* encoded_data) { uint8_t parity_sum = 0; uint8_t start = 0; if(!low_nibble) start = 4; for(int8_t i = (start + 3); i >= start; i--) { parity_sum += (data >> i) & 1; *encoded_data = (*encoded_data << 1) | ((data >> i) & 1); } *encoded_data = (*encoded_data << 1) | ((parity_sum % 2) & 1); } bool protocol_em4100_encoder_start(ProtocolEM4100* proto) { // header proto->encoded_data = 0b111111111; // data for(uint8_t i = 0; i < EM4100_DECODED_DATA_SIZE; i++) { em4100_write_nibble(false, proto->data[i], &proto->encoded_data); em4100_write_nibble(true, proto->data[i], &proto->encoded_data); } // column parity and stop bit uint8_t parity_sum; for(uint8_t c = 0; c < EM_COLUMN_COUNT; c++) { parity_sum = 0; for(uint8_t i = 1; i <= EM_ROW_COUNT; i++) { uint8_t parity_bit = (proto->encoded_data >> (i * EM_BITS_PER_ROW_COUNT - 1)) & 1; parity_sum += parity_bit; } proto->encoded_data = (proto->encoded_data << 1) | ((parity_sum % 2) & 1); } // stop bit proto->encoded_data = (proto->encoded_data << 1) | 0; proto->encoded_data_index = 0; proto->encoded_polarity = true; return true; }; LevelDuration protocol_em4100_encoder_yield(ProtocolEM4100* proto) { bool level = (proto->encoded_data >> (63 - proto->encoded_data_index)) & 1; uint32_t duration = EM4100_CLOCK_PER_BIT / 2; if(proto->encoded_polarity) { proto->encoded_polarity = false; } else { level = !level; proto->encoded_polarity = true; proto->encoded_data_index++; if(proto->encoded_data_index >= 64) { proto->encoded_data_index = 0; } } return level_duration_make(level, duration); }; bool protocol_em4100_write_data(ProtocolEM4100* protocol, void* data) { LFRFIDWriteRequest* request = (LFRFIDWriteRequest*)data; bool result = false; protocol_em4100_encoder_start(protocol); if(request->write_type == LFRFIDWriteTypeT5577) { request->t5577.block[0] = (LFRFID_T5577_MODULATION_MANCHESTER | LFRFID_T5577_BITRATE_RF_64 | (2 << LFRFID_T5577_MAXBLOCK_SHIFT)); request->t5577.block[1] = protocol->encoded_data; request->t5577.block[2] = protocol->encoded_data >> 32; request->t5577.blocks_to_write = 3; result = true; } return result; }; void protocol_em4100_render_data(ProtocolEM4100* protocol, string_t result) { uint8_t* data = protocol->data; string_printf(result, "FC: %03u, Card: %05u", data[2], (uint16_t)((data[3] << 8) | (data[4]))); }; const ProtocolBase protocol_em4100 = { .name = "EM4100", .manufacturer = "EM-Micro", .data_size = EM4100_DECODED_DATA_SIZE, .features = LFRFIDFeatureASK | LFRFIDFeaturePSK, .validate_count = 3, .alloc = (ProtocolAlloc)protocol_em4100_alloc, .free = (ProtocolFree)protocol_em4100_free, .get_data = (ProtocolGetData)protocol_em4100_get_data, .decoder = { .start = (ProtocolDecoderStart)protocol_em4100_decoder_start, .feed = (ProtocolDecoderFeed)protocol_em4100_decoder_feed, }, .encoder = { .start = (ProtocolEncoderStart)protocol_em4100_encoder_start, .yield = (ProtocolEncoderYield)protocol_em4100_encoder_yield, }, .render_data = (ProtocolRenderData)protocol_em4100_render_data, .render_brief_data = (ProtocolRenderData)protocol_em4100_render_data, .write_data = (ProtocolWriteData)protocol_em4100_write_data, };