#include "api-hal-subghz.h" #include #include #include #include #include #include #include static volatile SubGhzState api_hal_subghz_state = SubGhzStateInit; static const uint8_t api_hal_subghz_preset_ook_async_regs[][2] = { /* Base setting */ { CC1101_IOCFG0, 0x0D }, // GD0 as async serial data output/input { CC1101_MCSM0, 0x18 }, // Autocalibrate on idle to TRX, ~150us OSC guard time /* Async OOK Specific things */ { CC1101_MDMCFG2, 0x30 }, // ASK/OOK, No preamble/sync { CC1101_PKTCTRL0, 0x32 }, // Async, no CRC, Infinite { CC1101_FREND0, 0x01 }, // OOK/ASK PATABLE /* End */ { 0, 0 }, }; static const uint8_t api_hal_subghz_preset_ook_async_patable[8] = { 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; static const uint8_t api_hal_subghz_preset_mp_regs[][2] = { { CC1101_IOCFG0, 0x0D }, { CC1101_FIFOTHR, 0x07 }, { CC1101_PKTCTRL0, 0x32 }, //{ CC1101_FSCTRL1, 0x0E }, { CC1101_FSCTRL1, 0x06 }, { CC1101_FREQ2, 0x10 }, { CC1101_FREQ1, 0xB0 }, { CC1101_FREQ0, 0x7F }, { CC1101_MDMCFG4, 0x17 }, { CC1101_MDMCFG3, 0x32 }, { CC1101_MDMCFG2, 0x30 }, //<---OOK/ASK { CC1101_MDMCFG1, 0x23 }, { CC1101_MDMCFG0, 0xF8 }, { CC1101_MCSM0, 0x18 }, { CC1101_FOCCFG, 0x18 }, { CC1101_AGCTRL2, 0x07 }, { CC1101_AGCTRL1, 0x00 }, { CC1101_AGCTRL0, 0x91 }, { CC1101_WORCTRL, 0xFB }, { CC1101_FREND1, 0xB6 }, //{ CC1101_FREND0, 0x11 }, { CC1101_FREND0, 0x01 }, { CC1101_FSCAL3, 0xE9 }, { CC1101_FSCAL2, 0x2A }, { CC1101_FSCAL1, 0x00 }, { CC1101_FSCAL0, 0x1F }, { CC1101_TEST2, 0x88 }, { CC1101_TEST1, 0x31 }, { CC1101_TEST0, 0x09 }, /* End */ { 0, 0 }, }; static const uint8_t api_hal_subghz_preset_mp_patable[8] = { 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; static const uint8_t api_hal_subghz_preset_2fsk_packet_regs[][2] = { /* Base setting */ { CC1101_IOCFG0, 0x06 }, // GD0 as async serial data output/input { CC1101_MCSM0, 0x18 }, // Autocalibrate on idle to TRX, ~150us OSC guard time /* Magic */ { CC1101_TEST2, 0x81}, { CC1101_TEST1, 0x35}, { CC1101_TEST0, 0x09}, /* End */ { 0, 0 }, }; static const uint8_t api_hal_subghz_preset_2fsk_packet_patable[8] = { 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; void api_hal_subghz_init() { furi_assert(api_hal_subghz_state == SubGhzStateInit); api_hal_subghz_state = SubGhzStateIdle; const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz); // Reset hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow); cc1101_reset(device); cc1101_write_reg(device, CC1101_IOCFG0, CC1101IocfgHighImpedance); // Prepare GD0 for power on self test hal_gpio_init(&gpio_cc1101_g0, GpioModeInput, GpioPullNo, GpioSpeedLow); // GD0 low cc1101_write_reg(device, CC1101_IOCFG0, CC1101IocfgHW); while(hal_gpio_read(&gpio_cc1101_g0) != false); // GD0 high cc1101_write_reg(device, CC1101_IOCFG0, CC1101IocfgHW | CC1101_IOCFG_INV); while(hal_gpio_read(&gpio_cc1101_g0) != true); // Reset GD0 to floating state cc1101_write_reg(device, CC1101_IOCFG0, CC1101IocfgHighImpedance); hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow); // RF switches hal_gpio_init(&gpio_rf_sw_0, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow); hal_gpio_init(&gpio_rf_sw_1, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow); // Go to sleep cc1101_shutdown(device); api_hal_spi_device_return(device); } void api_hal_subghz_sleep() { furi_assert(api_hal_subghz_state == SubGhzStateIdle); const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz); cc1101_switch_to_idle(device); cc1101_write_reg(device, CC1101_IOCFG0, CC1101IocfgHighImpedance); hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow); cc1101_shutdown(device); api_hal_spi_device_return(device); } void api_hal_subghz_dump_state() { const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz); printf( "[api_hal_subghz] cc1101 chip %d, version %d\r\n", cc1101_get_partnumber(device), cc1101_get_version(device) ); api_hal_spi_device_return(device); } void api_hal_subghz_load_preset(ApiHalSubGhzPreset preset) { if(preset == ApiHalSubGhzPresetOokAsync) { api_hal_subghz_load_registers(api_hal_subghz_preset_ook_async_regs); api_hal_subghz_load_patable(api_hal_subghz_preset_ook_async_patable); } else if(preset == ApiHalSubGhzPreset2FskPacket) { api_hal_subghz_load_registers(api_hal_subghz_preset_2fsk_packet_regs); api_hal_subghz_load_patable(api_hal_subghz_preset_2fsk_packet_patable); } else if(preset == ApiHalSubGhzPresetMP) { api_hal_subghz_load_registers(api_hal_subghz_preset_mp_regs); api_hal_subghz_load_patable(api_hal_subghz_preset_mp_patable); } } uint8_t api_hal_subghz_get_status() { const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz); CC1101StatusRaw st; st.status = cc1101_get_status(device); api_hal_spi_device_return(device); return st.status_raw; } void api_hal_subghz_load_registers(const uint8_t data[][2]) { const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz); cc1101_reset(device); uint32_t i = 0; while (data[i][0]) { cc1101_write_reg(device, data[i][0], data[i][1]); i++; } api_hal_spi_device_return(device); } void api_hal_subghz_load_patable(const uint8_t data[8]) { const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz); cc1101_set_pa_table(device, data); api_hal_spi_device_return(device); } void api_hal_subghz_write_packet(const uint8_t* data, uint8_t size) { const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz); cc1101_flush_tx(device); cc1101_write_fifo(device, data, size); api_hal_spi_device_return(device); } void api_hal_subghz_flush_rx() { const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz); cc1101_flush_rx(device); api_hal_spi_device_return(device); } void api_hal_subghz_read_packet(uint8_t* data, uint8_t* size) { const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz); cc1101_read_fifo(device, data, size); api_hal_spi_device_return(device); } void api_hal_subghz_shutdown() { const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz); // Reset and shutdown cc1101_shutdown(device); api_hal_spi_device_return(device); } void api_hal_subghz_reset() { const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz); hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow); cc1101_switch_to_idle(device); cc1101_reset(device); cc1101_write_reg(device, CC1101_IOCFG0, CC1101IocfgHighImpedance); api_hal_spi_device_return(device); } void api_hal_subghz_idle() { const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz); cc1101_switch_to_idle(device); api_hal_spi_device_return(device); } void api_hal_subghz_rx() { const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz); cc1101_switch_to_rx(device); api_hal_spi_device_return(device); } void api_hal_subghz_tx() { const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz); cc1101_switch_to_tx(device); api_hal_spi_device_return(device); } float api_hal_subghz_get_rssi() { const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz); int32_t rssi_dec = cc1101_get_rssi(device); api_hal_spi_device_return(device); float rssi = rssi_dec; if(rssi_dec >= 128) { rssi = ((rssi - 256.0f) / 2.0f) - 74.0f; } else { rssi = (rssi / 2.0f) - 74.0f; } return rssi; } uint32_t api_hal_subghz_set_frequency_and_path(uint32_t value) { value = api_hal_subghz_set_frequency(value); if(value >= 300000000 && value <= 348000335) { api_hal_subghz_set_path(ApiHalSubGhzPath315); } else if(value >= 387000000 && value <= 464000000) { api_hal_subghz_set_path(ApiHalSubGhzPath433); } else if(value >= 779000000 && value <= 928000000) { api_hal_subghz_set_path(ApiHalSubGhzPath868); } else { furi_check(0); } return value; } uint32_t api_hal_subghz_set_frequency(uint32_t value) { const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz); // Compensate rounding if (value % cc1101_get_frequency_step(device) > (cc1101_get_frequency_step(device) / 2)) { value += cc1101_get_frequency_step(device); } uint32_t real_frequency = cc1101_set_frequency(device, value); cc1101_calibrate(device); api_hal_spi_device_return(device); return real_frequency; } void api_hal_subghz_set_path(ApiHalSubGhzPath path) { if (path == ApiHalSubGhzPath433) { hal_gpio_write(&gpio_rf_sw_0, 0); hal_gpio_write(&gpio_rf_sw_1, 1); } else if (path == ApiHalSubGhzPath315) { hal_gpio_write(&gpio_rf_sw_0, 1); hal_gpio_write(&gpio_rf_sw_1, 0); } else if (path == ApiHalSubGhzPath868) { hal_gpio_write(&gpio_rf_sw_0, 1); hal_gpio_write(&gpio_rf_sw_1, 1); } else if (path == ApiHalSubGhzPathIsolate) { hal_gpio_write(&gpio_rf_sw_0, 0); hal_gpio_write(&gpio_rf_sw_1, 0); } else { furi_check(0); } } void api_hal_subghz_set_async_rx_callback(ApiHalSubGhzCaptureCallback callback, void* context) {} void api_hal_subghz_start_async_rx() {} void api_hal_subghz_stop_async_rx() {} void api_hal_subghz_start_async_tx(uint32_t* buffer, size_t buffer_size, size_t repeat) {} void api_hal_subghz_wait_async_tx() {} void api_hal_subghz_stop_async_tx() {}