#include "furi/check.h" #include "furi/common_defines.h" #include "infrared.h" #include "infrared_common_i.h" #include #include #include "infrared_i.h" #include static void infrared_common_decoder_reset_state(InfraredCommonDecoder* decoder); static inline size_t consume_samples(uint32_t* array, size_t len, size_t shift) { furi_assert(len >= shift); len -= shift; for(int i = 0; i < len; ++i) array[i] = array[i + shift]; return len; } static inline void accumulate_lsb(InfraredCommonDecoder* decoder, bool bit) { uint16_t index = decoder->databit_cnt / 8; uint8_t shift = decoder->databit_cnt % 8; // LSB first if(!shift) decoder->data[index] = 0; if(bit) { decoder->data[index] |= (0x1 << shift); // add 1 } else { (void)decoder->data[index]; // add 0 } ++decoder->databit_cnt; } static bool infrared_check_preamble(InfraredCommonDecoder* decoder) { furi_assert(decoder); bool result = false; bool start_level = (decoder->level + decoder->timings_cnt + 1) % 2; if(decoder->timings_cnt == 0) return false; // align to start at Mark timing if(!start_level) { decoder->timings_cnt = consume_samples(decoder->timings, decoder->timings_cnt, 1); } if(decoder->protocol->timings.preamble_mark == 0) { return true; } while((!result) && (decoder->timings_cnt >= 2)) { float preamble_tolerance = decoder->protocol->timings.preamble_tolerance; uint16_t preamble_mark = decoder->protocol->timings.preamble_mark; uint16_t preamble_space = decoder->protocol->timings.preamble_space; if((MATCH_TIMING(decoder->timings[0], preamble_mark, preamble_tolerance)) && (MATCH_TIMING(decoder->timings[1], preamble_space, preamble_tolerance))) { result = true; } decoder->timings_cnt = consume_samples(decoder->timings, decoder->timings_cnt, 2); } return result; } /** * decoder->protocol->databit_len[0] contains biggest amount of bits, for this protocol. * decoder->protocol->databit_len[1...] contains lesser values, but which can be decoded * for some protocol modifications. */ static InfraredStatus infrared_common_decode_bits(InfraredCommonDecoder* decoder) { furi_assert(decoder); InfraredStatus status = InfraredStatusOk; const InfraredTimings* timings = &decoder->protocol->timings; while(decoder->timings_cnt && (status == InfraredStatusOk)) { bool level = (decoder->level + decoder->timings_cnt + 1) % 2; uint32_t timing = decoder->timings[0]; if(timings->min_split_time && !level) { if(timing > timings->min_split_time) { /* long low timing - check if we're ready for any of protocol modification */ for(int i = 0; decoder->protocol->databit_len[i] && (i < COUNT_OF(decoder->protocol->databit_len)); ++i) { if(decoder->protocol->databit_len[i] == decoder->databit_cnt) { return InfraredStatusReady; } } } else if(decoder->protocol->databit_len[0] == decoder->databit_cnt) { /* short low timing for longest protocol - this is signal is longer than we expected */ return InfraredStatusError; } } status = decoder->protocol->decode(decoder, level, timing); furi_check(decoder->databit_cnt <= decoder->protocol->databit_len[0]); furi_assert(status == InfraredStatusError || status == InfraredStatusOk); if(status == InfraredStatusError) { break; } decoder->timings_cnt = consume_samples(decoder->timings, decoder->timings_cnt, 1); /* check if largest protocol version can be decoded */ if(level && (decoder->protocol->databit_len[0] == decoder->databit_cnt) && !timings->min_split_time) { status = InfraredStatusReady; break; } } return status; } /* Pulse Distance-Width Modulation */ InfraredStatus infrared_common_decode_pdwm(InfraredCommonDecoder* decoder, bool level, uint32_t timing) { furi_assert(decoder); InfraredStatus status = InfraredStatusOk; uint32_t bit_tolerance = decoder->protocol->timings.bit_tolerance; uint16_t bit1_mark = decoder->protocol->timings.bit1_mark; uint16_t bit1_space = decoder->protocol->timings.bit1_space; uint16_t bit0_mark = decoder->protocol->timings.bit0_mark; uint16_t bit0_space = decoder->protocol->timings.bit0_space; bool analyze_timing = level ^ (bit1_mark == bit0_mark); uint16_t bit1 = level ? bit1_mark : bit1_space; uint16_t bit0 = level ? bit0_mark : bit0_space; uint16_t no_info_timing = (bit1_mark == bit0_mark) ? bit1_mark : bit1_space; if(analyze_timing) { if(MATCH_TIMING(timing, bit1, bit_tolerance)) { accumulate_lsb(decoder, 1); } else if(MATCH_TIMING(timing, bit0, bit_tolerance)) { accumulate_lsb(decoder, 0); } else { status = InfraredStatusError; } } else { if(!MATCH_TIMING(timing, no_info_timing, bit_tolerance)) { status = InfraredStatusError; } } return status; } /* level switch detection goes in middle of time-quant */ InfraredStatus infrared_common_decode_manchester(InfraredCommonDecoder* decoder, bool level, uint32_t timing) { furi_assert(decoder); uint16_t bit = decoder->protocol->timings.bit1_mark; uint16_t tolerance = decoder->protocol->timings.bit_tolerance; bool* switch_detect = &decoder->switch_detect; furi_assert((*switch_detect == true) || (*switch_detect == false)); bool single_timing = MATCH_TIMING(timing, bit, tolerance); bool double_timing = MATCH_TIMING(timing, 2 * bit, tolerance); if(!single_timing && !double_timing) { return InfraredStatusError; } if(decoder->protocol->manchester_start_from_space && (decoder->databit_cnt == 0)) { *switch_detect = 1; /* fake as we were previously in the middle of time-quant */ accumulate_lsb(decoder, 0); } if(*switch_detect == 0) { if(double_timing) { return InfraredStatusError; } /* only single timing - level switch required in the middle of time-quant */ *switch_detect = 1; } else { /* double timing means we're in the middle of time-quant again */ if(single_timing) *switch_detect = 0; } if(*switch_detect) { if(decoder->protocol->databit_len[0] == decoder->databit_cnt) { return InfraredStatusError; } accumulate_lsb(decoder, level); } return InfraredStatusOk; } InfraredMessage* infrared_common_decoder_check_ready(InfraredCommonDecoder* decoder) { InfraredMessage* message = NULL; bool found_length = false; for(int i = 0; decoder->protocol->databit_len[i] && (i < COUNT_OF(decoder->protocol->databit_len)); ++i) { if(decoder->protocol->databit_len[i] == decoder->databit_cnt) { found_length = true; break; } } if(found_length && decoder->protocol->interpret(decoder)) { decoder->databit_cnt = 0; message = &decoder->message; if(decoder->protocol->decode_repeat) { decoder->state = InfraredCommonDecoderStateProcessRepeat; } else { decoder->state = InfraredCommonDecoderStateWaitPreamble; } } return message; } InfraredMessage* infrared_common_decode(InfraredCommonDecoder* decoder, bool level, uint32_t duration) { furi_assert(decoder); InfraredMessage* message = 0; InfraredStatus status = InfraredStatusError; if(decoder->level == level) { infrared_common_decoder_reset(decoder); } decoder->level = level; // start with low level (Space timing) decoder->timings[decoder->timings_cnt] = duration; decoder->timings_cnt++; furi_check(decoder->timings_cnt <= sizeof(decoder->timings)); while(1) { switch(decoder->state) { case InfraredCommonDecoderStateWaitPreamble: if(infrared_check_preamble(decoder)) { decoder->state = InfraredCommonDecoderStateDecode; decoder->databit_cnt = 0; decoder->switch_detect = false; continue; } break; case InfraredCommonDecoderStateDecode: status = infrared_common_decode_bits(decoder); if(status == InfraredStatusReady) { message = infrared_common_decoder_check_ready(decoder); if(message) { continue; } else if(decoder->protocol->databit_len[0] == decoder->databit_cnt) { /* error: can't decode largest protocol - begin decoding from start */ decoder->state = InfraredCommonDecoderStateWaitPreamble; } } else if(status == InfraredStatusError) { infrared_common_decoder_reset_state(decoder); continue; } break; case InfraredCommonDecoderStateProcessRepeat: status = decoder->protocol->decode_repeat(decoder); if(status == InfraredStatusError) { infrared_common_decoder_reset_state(decoder); continue; } else if(status == InfraredStatusReady) { decoder->message.repeat = true; message = &decoder->message; } break; } break; } return message; } void* infrared_common_decoder_alloc(const InfraredCommonProtocolSpec* protocol) { furi_assert(protocol); /* protocol->databit_len[0] has to contain biggest value of bits that can be decoded */ for(int i = 1; i < COUNT_OF(protocol->databit_len); ++i) { furi_assert(protocol->databit_len[i] <= protocol->databit_len[0]); } uint32_t alloc_size = sizeof(InfraredCommonDecoder) + protocol->databit_len[0] / 8 + !!(protocol->databit_len[0] % 8); InfraredCommonDecoder* decoder = malloc(alloc_size); decoder->protocol = protocol; decoder->level = true; return decoder; } void infrared_common_decoder_free(InfraredCommonDecoder* decoder) { furi_assert(decoder); free(decoder); } void infrared_common_decoder_reset_state(InfraredCommonDecoder* decoder) { decoder->state = InfraredCommonDecoderStateWaitPreamble; decoder->databit_cnt = 0; decoder->switch_detect = false; decoder->message.protocol = InfraredProtocolUnknown; if(decoder->protocol->timings.preamble_mark == 0) { if(decoder->timings_cnt > 0) { decoder->timings_cnt = consume_samples(decoder->timings, decoder->timings_cnt, 1); } } } void infrared_common_decoder_reset(InfraredCommonDecoder* decoder) { furi_assert(decoder); infrared_common_decoder_reset_state(decoder); decoder->timings_cnt = 0; }