#include "doitrand.h" #include "../blocks/const.h" #include "../blocks/decoder.h" #include "../blocks/encoder.h" #include "../blocks/generic.h" #include "../blocks/math.h" #define TAG "SubGhzProtocolDoitrand" #define DIP_PATTERN "%c%c%c%c%c%c%c%c%c%c" #define CNT_TO_DIP(dip) \ (dip & 0x0001 ? '1' : '0'), (dip & 0x0100 ? '1' : '0'), (dip & 0x0080 ? '1' : '0'), \ (dip & 0x0040 ? '1' : '0'), (dip & 0x0020 ? '1' : '0'), (dip & 0x1000 ? '1' : '0'), \ (dip & 0x0800 ? '1' : '0'), (dip & 0x0400 ? '1' : '0'), (dip & 0x0200 ? '1' : '0'), \ (dip & 0x0002 ? '1' : '0') static const SubGhzBlockConst subghz_protocol_doitrand_const = { .te_short = 400, .te_long = 1100, .te_delta = 150, .min_count_bit_for_found = 37, }; struct SubGhzProtocolDecoderDoitrand { SubGhzProtocolDecoderBase base; SubGhzBlockDecoder decoder; SubGhzBlockGeneric generic; }; struct SubGhzProtocolEncoderDoitrand { SubGhzProtocolEncoderBase base; SubGhzProtocolBlockEncoder encoder; SubGhzBlockGeneric generic; }; typedef enum { DoitrandDecoderStepReset = 0, DoitrandDecoderStepFoundStartBit, DoitrandDecoderStepSaveDuration, DoitrandDecoderStepCheckDuration, } DoitrandDecoderStep; const SubGhzProtocolDecoder subghz_protocol_doitrand_decoder = { .alloc = subghz_protocol_decoder_doitrand_alloc, .free = subghz_protocol_decoder_doitrand_free, .feed = subghz_protocol_decoder_doitrand_feed, .reset = subghz_protocol_decoder_doitrand_reset, .get_hash_data = subghz_protocol_decoder_doitrand_get_hash_data, .serialize = subghz_protocol_decoder_doitrand_serialize, .deserialize = subghz_protocol_decoder_doitrand_deserialize, .get_string = subghz_protocol_decoder_doitrand_get_string, }; const SubGhzProtocolEncoder subghz_protocol_doitrand_encoder = { .alloc = subghz_protocol_encoder_doitrand_alloc, .free = subghz_protocol_encoder_doitrand_free, .deserialize = subghz_protocol_encoder_doitrand_deserialize, .stop = subghz_protocol_encoder_doitrand_stop, .yield = subghz_protocol_encoder_doitrand_yield, }; const SubGhzProtocol subghz_protocol_doitrand = { .name = SUBGHZ_PROTOCOL_DOITRAND_NAME, .type = SubGhzProtocolTypeStatic, .flag = SubGhzProtocolFlag_433 | SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable | SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save | SubGhzProtocolFlag_Send, .decoder = &subghz_protocol_doitrand_decoder, .encoder = &subghz_protocol_doitrand_encoder, }; void* subghz_protocol_encoder_doitrand_alloc(SubGhzEnvironment* environment) { UNUSED(environment); SubGhzProtocolEncoderDoitrand* instance = malloc(sizeof(SubGhzProtocolEncoderDoitrand)); instance->base.protocol = &subghz_protocol_doitrand; instance->generic.protocol_name = instance->base.protocol->name; instance->encoder.repeat = 10; instance->encoder.size_upload = 128; instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration)); instance->encoder.is_running = false; return instance; } void subghz_protocol_encoder_doitrand_free(void* context) { furi_assert(context); SubGhzProtocolEncoderDoitrand* instance = context; free(instance->encoder.upload); free(instance); } /** * Generating an upload from data. * @param instance Pointer to a SubGhzProtocolEncoderDoitrand instance * @return true On success */ static bool subghz_protocol_encoder_doitrand_get_upload(SubGhzProtocolEncoderDoitrand* instance) { furi_assert(instance); size_t index = 0; size_t size_upload = (instance->generic.data_count_bit * 2) + 2; if(size_upload > instance->encoder.size_upload) { FURI_LOG_E(TAG, "Size upload exceeds allocated encoder buffer."); return false; } else { instance->encoder.size_upload = size_upload; } //Send header instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_doitrand_const.te_short * 62); //Send start bit instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_doitrand_const.te_short * 2 - 100); //Send key data for(uint8_t i = instance->generic.data_count_bit; i > 0; i--) { if(bit_read(instance->generic.data, i - 1)) { //send bit 1 instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_doitrand_const.te_long); instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_doitrand_const.te_short); } else { //send bit 0 instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_doitrand_const.te_short); instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_doitrand_const.te_long); } } return true; } bool subghz_protocol_encoder_doitrand_deserialize(void* context, FlipperFormat* flipper_format) { furi_assert(context); SubGhzProtocolEncoderDoitrand* instance = context; bool res = false; do { if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) { FURI_LOG_E(TAG, "Deserialize error"); break; } if(instance->generic.data_count_bit != subghz_protocol_doitrand_const.min_count_bit_for_found) { FURI_LOG_E(TAG, "Wrong number of bits in key"); break; } //optional parameter parameter flipper_format_read_uint32( flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1); if(!subghz_protocol_encoder_doitrand_get_upload(instance)) break; instance->encoder.is_running = true; res = true; } while(false); return res; } void subghz_protocol_encoder_doitrand_stop(void* context) { SubGhzProtocolEncoderDoitrand* instance = context; instance->encoder.is_running = false; } LevelDuration subghz_protocol_encoder_doitrand_yield(void* context) { SubGhzProtocolEncoderDoitrand* instance = context; if(instance->encoder.repeat == 0 || !instance->encoder.is_running) { instance->encoder.is_running = false; return level_duration_reset(); } LevelDuration ret = instance->encoder.upload[instance->encoder.front]; if(++instance->encoder.front == instance->encoder.size_upload) { instance->encoder.repeat--; instance->encoder.front = 0; } return ret; } void* subghz_protocol_decoder_doitrand_alloc(SubGhzEnvironment* environment) { UNUSED(environment); SubGhzProtocolDecoderDoitrand* instance = malloc(sizeof(SubGhzProtocolDecoderDoitrand)); instance->base.protocol = &subghz_protocol_doitrand; instance->generic.protocol_name = instance->base.protocol->name; return instance; } void subghz_protocol_decoder_doitrand_free(void* context) { furi_assert(context); SubGhzProtocolDecoderDoitrand* instance = context; free(instance); } void subghz_protocol_decoder_doitrand_reset(void* context) { furi_assert(context); SubGhzProtocolDecoderDoitrand* instance = context; instance->decoder.parser_step = DoitrandDecoderStepReset; } void subghz_protocol_decoder_doitrand_feed(void* context, bool level, uint32_t duration) { furi_assert(context); SubGhzProtocolDecoderDoitrand* instance = context; switch(instance->decoder.parser_step) { case DoitrandDecoderStepReset: if((!level) && (DURATION_DIFF(duration, subghz_protocol_doitrand_const.te_short * 62) < subghz_protocol_doitrand_const.te_delta * 30)) { //Found Preambula instance->decoder.parser_step = DoitrandDecoderStepFoundStartBit; } break; case DoitrandDecoderStepFoundStartBit: if(level && ((DURATION_DIFF(duration, (subghz_protocol_doitrand_const.te_short * 2)) < subghz_protocol_doitrand_const.te_delta * 3))) { //Found start bit instance->decoder.parser_step = DoitrandDecoderStepSaveDuration; instance->decoder.decode_data = 0; instance->decoder.decode_count_bit = 0; } else { instance->decoder.parser_step = DoitrandDecoderStepReset; } break; case DoitrandDecoderStepSaveDuration: if(!level) { if(duration >= ((uint32_t)subghz_protocol_doitrand_const.te_short * 10 + subghz_protocol_doitrand_const.te_delta)) { instance->decoder.parser_step = DoitrandDecoderStepFoundStartBit; if(instance->decoder.decode_count_bit == subghz_protocol_doitrand_const.min_count_bit_for_found) { instance->generic.data = instance->decoder.decode_data; instance->generic.data_count_bit = instance->decoder.decode_count_bit; if(instance->base.callback) instance->base.callback(&instance->base, instance->base.context); } instance->decoder.decode_data = 0; instance->decoder.decode_count_bit = 0; break; } else { instance->decoder.te_last = duration; instance->decoder.parser_step = DoitrandDecoderStepCheckDuration; } } break; case DoitrandDecoderStepCheckDuration: if(level) { if((DURATION_DIFF(instance->decoder.te_last, subghz_protocol_doitrand_const.te_short) < subghz_protocol_doitrand_const.te_delta) && (DURATION_DIFF(duration, subghz_protocol_doitrand_const.te_long) < subghz_protocol_doitrand_const.te_delta * 3)) { subghz_protocol_blocks_add_bit(&instance->decoder, 0); instance->decoder.parser_step = DoitrandDecoderStepSaveDuration; } else if( (DURATION_DIFF(instance->decoder.te_last, subghz_protocol_doitrand_const.te_long) < subghz_protocol_doitrand_const.te_delta * 3) && (DURATION_DIFF(duration, subghz_protocol_doitrand_const.te_short) < subghz_protocol_doitrand_const.te_delta)) { subghz_protocol_blocks_add_bit(&instance->decoder, 1); instance->decoder.parser_step = DoitrandDecoderStepSaveDuration; } else { instance->decoder.parser_step = DoitrandDecoderStepReset; } } else { instance->decoder.parser_step = DoitrandDecoderStepReset; } break; } } /** * Analysis of received data * @param instance Pointer to a SubGhzBlockGeneric* instance */ static void subghz_protocol_doitrand_check_remote_controller(SubGhzBlockGeneric* instance) { /* * 67892345 0 k 1 * 0000082F5F => 00000000000000000 10 000010111101011111 * 0002082F5F => 00000000000100000 10 000010111101011111 * 0200082F5F => 00010000000000000 10 000010111101011111 * 0400082F5F => 00100000000000000 10 000010111101011111 * 0800082F5F => 01000000000000000 10 000010111101011111 * 1000082F5F => 10000000000000000 10 000010111101011111 * 0020082F5F => 00000001000000000 10 000010111101011111 * 0040082F5F => 00000010000000000 10 000010111101011111 * 0080082F5F => 00000100000000000 10 000010111101011111 * 0100082F5F => 00001000000000000 10 000010111101011111 * 000008AF5F => 00000000000000000 10 001010111101011111 * 1FE208AF5F => 11111111000100000 10 001010111101011111 * * 0...9 - DIP * k- KEY */ instance->cnt = (instance->data >> 24) | ((instance->data >> 15) & 0x1); instance->btn = ((instance->data >> 18) & 0x3); } uint8_t subghz_protocol_decoder_doitrand_get_hash_data(void* context) { furi_assert(context); SubGhzProtocolDecoderDoitrand* instance = context; return subghz_protocol_blocks_get_hash_data( &instance->decoder, (instance->decoder.decode_count_bit / 8) + 1); } bool subghz_protocol_decoder_doitrand_serialize( void* context, FlipperFormat* flipper_format, SubGhzPresetDefinition* preset) { furi_assert(context); SubGhzProtocolDecoderDoitrand* instance = context; return subghz_block_generic_serialize(&instance->generic, flipper_format, preset); } bool subghz_protocol_decoder_doitrand_deserialize(void* context, FlipperFormat* flipper_format) { furi_assert(context); SubGhzProtocolDecoderDoitrand* instance = context; bool ret = false; do { if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) { break; } if(instance->generic.data_count_bit != subghz_protocol_doitrand_const.min_count_bit_for_found) { FURI_LOG_E(TAG, "Wrong number of bits in key"); break; } ret = true; } while(false); return ret; } void subghz_protocol_decoder_doitrand_get_string(void* context, FuriString* output) { furi_assert(context); SubGhzProtocolDecoderDoitrand* instance = context; subghz_protocol_doitrand_check_remote_controller(&instance->generic); furi_string_cat_printf( output, "%s %dbit\r\n" "Key:%02lX%08lX\r\n" "Btn:%lX\r\n" "DIP:" DIP_PATTERN "\r\n", instance->generic.protocol_name, instance->generic.data_count_bit, (uint32_t)(instance->generic.data >> 32) & 0xFFFFFFFF, (uint32_t)(instance->generic.data & 0xFFFFFFFF), instance->generic.btn, CNT_TO_DIP(instance->generic.cnt)); }