#include "protocol-hid-h10301.h" #include typedef uint32_t HID10301CardData; constexpr uint8_t HID10301Count = 3; constexpr uint8_t HID10301BitSize = sizeof(HID10301CardData) * 8; static void write_raw_bit(bool bit, uint8_t position, HID10301CardData* card_data) { if(bit) { card_data[position / HID10301BitSize] |= 1UL << (HID10301BitSize - (position % HID10301BitSize) - 1); } else { card_data[position / (sizeof(HID10301CardData) * 8)] &= ~(1UL << (HID10301BitSize - (position % HID10301BitSize) - 1)); } } static void write_bit(bool bit, uint8_t position, HID10301CardData* card_data) { write_raw_bit(bit, position + 0, card_data); write_raw_bit(!bit, position + 1, card_data); } uint8_t ProtocolHID10301::get_encoded_data_size() { return sizeof(HID10301CardData) * HID10301Count; } uint8_t ProtocolHID10301::get_decoded_data_size() { return 3; } void ProtocolHID10301::encode( const uint8_t* decoded_data, const uint8_t decoded_data_size, uint8_t* encoded_data, const uint8_t encoded_data_size) { furi_check(decoded_data_size >= get_decoded_data_size()); furi_check(encoded_data_size >= get_encoded_data_size()); HID10301CardData card_data[HID10301Count] = {0, 0, 0}; uint32_t fc_cn = (decoded_data[0] << 16) | (decoded_data[1] << 8) | decoded_data[2]; // even parity sum calculation (high 12 bits of data) uint8_t even_parity_sum = 0; for(int8_t i = 12; i < 24; i++) { if(((fc_cn >> i) & 1) == 1) { even_parity_sum++; } } // odd parity sum calculation (low 12 bits of data) uint8_t odd_parity_sum = 1; for(int8_t i = 0; i < 12; i++) { if(((fc_cn >> i) & 1) == 1) { odd_parity_sum++; } } // 0x1D preamble write_raw_bit(0, 0, card_data); write_raw_bit(0, 1, card_data); write_raw_bit(0, 2, card_data); write_raw_bit(1, 3, card_data); write_raw_bit(1, 4, card_data); write_raw_bit(1, 5, card_data); write_raw_bit(0, 6, card_data); write_raw_bit(1, 7, card_data); // company / OEM code 1 write_bit(0, 8, card_data); write_bit(0, 10, card_data); write_bit(0, 12, card_data); write_bit(0, 14, card_data); write_bit(0, 16, card_data); write_bit(0, 18, card_data); write_bit(1, 20, card_data); // card format / length 1 write_bit(0, 22, card_data); write_bit(0, 24, card_data); write_bit(0, 26, card_data); write_bit(0, 28, card_data); write_bit(0, 30, card_data); write_bit(0, 32, card_data); write_bit(0, 34, card_data); write_bit(0, 36, card_data); write_bit(0, 38, card_data); write_bit(0, 40, card_data); write_bit(1, 42, card_data); // even parity bit write_bit((even_parity_sum % 2), 44, card_data); // data for(uint8_t i = 0; i < 24; i++) { write_bit((fc_cn >> (23 - i)) & 1, 46 + (i * 2), card_data); } // odd parity bit write_bit((odd_parity_sum % 2), 94, card_data); memcpy(encoded_data, &card_data, get_encoded_data_size()); } void ProtocolHID10301::decode( const uint8_t* encoded_data, const uint8_t encoded_data_size, uint8_t* decoded_data, const uint8_t decoded_data_size) { furi_check(decoded_data_size >= get_decoded_data_size()); furi_check(encoded_data_size >= get_encoded_data_size()); const HID10301CardData* card_data = reinterpret_cast(encoded_data); // data decoding uint32_t result = 0; // decode from word 1 // coded with 01 = 0, 10 = 1 transitions for(int8_t i = 9; i >= 0; i--) { switch((*(card_data + 1) >> (2 * i)) & 0b11) { case 0b01: result = (result << 1) | 0; break; case 0b10: result = (result << 1) | 1; break; default: break; } } // decode from word 2 // coded with 01 = 0, 10 = 1 transitions for(int8_t i = 15; i >= 0; i--) { switch((*(card_data + 2) >> (2 * i)) & 0b11) { case 0b01: result = (result << 1) | 0; break; case 0b10: result = (result << 1) | 1; break; default: break; } } uint8_t data[3] = {(uint8_t)(result >> 17), (uint8_t)(result >> 9), (uint8_t)(result >> 1)}; memcpy(decoded_data, &data, get_decoded_data_size()); } bool ProtocolHID10301::can_be_decoded(const uint8_t* encoded_data, const uint8_t encoded_data_size) { furi_check(encoded_data_size >= get_encoded_data_size()); const HID10301CardData* card_data = reinterpret_cast(encoded_data); // packet preamble // raw data if(*(encoded_data + 3) != 0x1D) { return false; } // encoded company/oem // coded with 01 = 0, 10 = 1 transitions // stored in word 0 if((*card_data >> 10 & 0x3FFF) != 0x1556) { return false; } // encoded format/length // coded with 01 = 0, 10 = 1 transitions // stored in word 0 and word 1 if((((*card_data & 0x3FF) << 12) | ((*(card_data + 1) >> 20) & 0xFFF)) != 0x155556) { return false; } // data decoding uint32_t result = 0; // decode from word 1 // coded with 01 = 0, 10 = 1 transitions for(int8_t i = 9; i >= 0; i--) { switch((*(card_data + 1) >> (2 * i)) & 0b11) { case 0b01: result = (result << 1) | 0; break; case 0b10: result = (result << 1) | 1; break; default: return false; break; } } // decode from word 2 // coded with 01 = 0, 10 = 1 transitions for(int8_t i = 15; i >= 0; i--) { switch((*(card_data + 2) >> (2 * i)) & 0b11) { case 0b01: result = (result << 1) | 0; break; case 0b10: result = (result << 1) | 1; break; default: return false; break; } } // trailing parity (odd) test uint8_t parity_sum = 0; for(int8_t i = 0; i < 13; i++) { if(((result >> i) & 1) == 1) { parity_sum++; } } if((parity_sum % 2) != 1) { return false; } // leading parity (even) test parity_sum = 0; for(int8_t i = 13; i < 26; i++) { if(((result >> i) & 1) == 1) { parity_sum++; } } if((parity_sum % 2) == 1) { return false; } return true; }