#include "subghz_keystore.h" #include #include #include #include #include #define SUBGHZ_KEYSTORE_TAG "SubGhzParser" #define FILE_BUFFER_SIZE 64 #define SUBGHZ_KEYSTORE_FILE_TYPE "Flipper SubGhz Keystore File" #define SUBGHZ_KEYSTORE_FILE_VERSION 0 #define SUBGHZ_KEYSTORE_FILE_ENCRYPTION_KEY_SLOT 1 #define SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE 512 #define SUBGHZ_KEYSTORE_FILE_ENCRYPTED_LINE_SIZE (SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE*2) typedef enum { SubGhzKeystoreEncryptionNone, SubGhzKeystoreEncryptionAES256, } SubGhzKeystoreEncryption; struct SubGhzKeystore { SubGhzKeyArray_t data; }; SubGhzKeystore* subghz_keystore_alloc() { SubGhzKeystore* instance = furi_alloc(sizeof(SubGhzKeystore)); SubGhzKeyArray_init(instance->data); return instance; } void subghz_keystore_free(SubGhzKeystore* instance) { furi_assert(instance); for M_EACH(manufacture_code, instance->data, SubGhzKeyArray_t) { string_clear(manufacture_code->name); manufacture_code->key = 0; } SubGhzKeyArray_clear(instance->data); free(instance); } static void subghz_keystore_add_key(SubGhzKeystore* instance, const char* name, uint64_t key, uint16_t type) { SubGhzKey* manufacture_code = SubGhzKeyArray_push_raw(instance->data); string_init_set_str(manufacture_code->name, name); manufacture_code->key = key; manufacture_code->type = type; } static bool subghz_keystore_process_line(SubGhzKeystore* instance, char* line) { uint64_t key = 0; uint16_t type = 0; char skey[17] = {0}; char name[65] = {0}; int ret = sscanf(line, "%16s:%hu:%64s", skey, &type, name); key = strtoull(skey, NULL, 16); if (ret == 3) { subghz_keystore_add_key(instance, name, key, type); return true; } else { FURI_LOG_E(SUBGHZ_KEYSTORE_TAG, "Failed to load line: %s\r\n", line); return false; } } static void subghz_keystore_mess_with_iv(uint8_t* iv) { // Please do not share decrypted manufacture keys // Sharing them will bring some discomfort to legal owners // And potential legal action against you // While you reading this code think about your own personal responsibility asm volatile( "movs r0, #0x0 \n" "movs r1, #0x0 \n" "movs r2, #0x0 \n" "movs r3, #0x0 \n" "nani: \n" "ldrb r1, [r0, %0]\n" "mov r2, r1 \n" "add r1, r3 \n" "mov r3, r2 \n" "strb r1, [r0, %0]\n" "adds r0, #0x1 \n" "cmp r0, #0xF \n" "bls nani \n" : : "r"(iv) : "r0", "r1", "r2", "r3", "memory"); } static bool subghz_keystore_read_file(SubGhzKeystore* instance, File* file, uint8_t* iv) { bool result = true; char buffer[FILE_BUFFER_SIZE]; char* decrypted_line = furi_alloc(SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE); char* encrypted_line = furi_alloc(SUBGHZ_KEYSTORE_FILE_ENCRYPTED_LINE_SIZE); size_t encrypted_line_cursor = 0; if (iv) furi_hal_crypto_store_load_key(SUBGHZ_KEYSTORE_FILE_ENCRYPTION_KEY_SLOT, iv); size_t ret = 0; do { ret = storage_file_read(file, buffer, FILE_BUFFER_SIZE); for (uint16_t i=0; i < ret; i++) { if (buffer[i] == '\n' && encrypted_line_cursor > 0) { // Process line if(iv) { // Data alignment check, 32 instead of 16 because of hex encoding size_t len = strlen(encrypted_line); if (len % 32 == 0) { // Inplace hex to bin conversion for (size_t i=0; i 0 && result); if (iv) furi_hal_crypto_store_unload_key(SUBGHZ_KEYSTORE_FILE_ENCRYPTION_KEY_SLOT); free(encrypted_line); free(decrypted_line); return result; } bool subghz_keystore_load(SubGhzKeystore* instance, const char* file_name) { furi_assert(instance); bool result = false; uint8_t iv[16]; uint32_t version; SubGhzKeystoreEncryption encryption; string_t filetype; string_init(filetype); Storage* storage = furi_record_open("storage"); FlipperFile* flipper_file = flipper_file_alloc(storage); do { if(!flipper_file_open_read(flipper_file, file_name)) { FURI_LOG_E(SUBGHZ_KEYSTORE_TAG, "Unable to open file for read: %s", file_name); break; } if(!flipper_file_read_header(flipper_file, filetype, &version)) { FURI_LOG_E(SUBGHZ_KEYSTORE_TAG, "Missing or incorrect header"); break; } if(!flipper_file_read_uint32(flipper_file, "Encryption", (uint32_t*)&encryption)) { FURI_LOG_E(SUBGHZ_KEYSTORE_TAG, "Missing encryption type"); break; } if (strcmp(string_get_cstr(filetype), SUBGHZ_KEYSTORE_FILE_TYPE) != 0 || version != SUBGHZ_KEYSTORE_FILE_VERSION) { FURI_LOG_E(SUBGHZ_KEYSTORE_TAG, "Type or version mismatch"); break; } File* file = flipper_file_get_file(flipper_file); if (encryption == SubGhzKeystoreEncryptionNone) { result = subghz_keystore_read_file(instance, file, NULL); }else if (encryption == SubGhzKeystoreEncryptionAES256) { if(!flipper_file_read_hex_array(flipper_file, "IV", iv, 16)) { FURI_LOG_E(SUBGHZ_KEYSTORE_TAG, "Missing IV"); break; } subghz_keystore_mess_with_iv(iv); result = subghz_keystore_read_file(instance, file, iv); } else { FURI_LOG_E(SUBGHZ_KEYSTORE_TAG, "Unknown encryption"); break; } } while(0); flipper_file_close(flipper_file); flipper_file_free(flipper_file); furi_record_close("storage"); string_clear(filetype); return result; } bool subghz_keystore_save(SubGhzKeystore* instance, const char* file_name, uint8_t* iv) { furi_assert(instance); bool result = false; Storage* storage = furi_record_open("storage"); char* decrypted_line = furi_alloc(SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE); char* encrypted_line = furi_alloc(SUBGHZ_KEYSTORE_FILE_ENCRYPTED_LINE_SIZE); FlipperFile* flipper_file = flipper_file_alloc(storage); do { if(!flipper_file_new_write(flipper_file, file_name)) { FURI_LOG_E(SUBGHZ_KEYSTORE_TAG, "Unable to open file for write: %s", file_name); break; } if(!flipper_file_write_header_cstr(flipper_file, SUBGHZ_KEYSTORE_FILE_TYPE, SUBGHZ_KEYSTORE_FILE_VERSION)) { FURI_LOG_E(SUBGHZ_KEYSTORE_TAG, "Unable to add header"); break; } if(!flipper_file_write_uint32(flipper_file, "Encryption", SubGhzKeystoreEncryptionAES256)) { FURI_LOG_E(SUBGHZ_KEYSTORE_TAG, "Unable to add Encryption"); break; } if(!flipper_file_write_hex_array(flipper_file, "IV", iv, 16)) { FURI_LOG_E(SUBGHZ_KEYSTORE_TAG, "Unable to add IV"); break; } subghz_keystore_mess_with_iv(iv); if(!furi_hal_crypto_store_load_key(SUBGHZ_KEYSTORE_FILE_ENCRYPTION_KEY_SLOT, iv)) { FURI_LOG_E(SUBGHZ_KEYSTORE_TAG, "Unable to load encryption key"); break; } File* file = flipper_file_get_file(flipper_file); size_t encrypted_line_count = 0; for M_EACH( key, instance->data, SubGhzKeyArray_t) { // Wipe buffer before packing memset(decrypted_line, 0, SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE); memset(encrypted_line, 0, SUBGHZ_KEYSTORE_FILE_ENCRYPTED_LINE_SIZE); // Form unecreypted line int len = snprintf( decrypted_line, SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE, "%08lX%08lX:%hu:%s", (uint32_t)(key->key>>32), (uint32_t)key->key, key->type, string_get_cstr(key->name)); // Verify length and align furi_assert(len > 0); if (len % 16 != 0) { len += (16 - len % 16); } furi_assert(len % 16 == 0); furi_assert(len <= SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE); // Form encrypted line if(!furi_hal_crypto_encrypt((uint8_t*)decrypted_line, (uint8_t*)encrypted_line, len)) { FURI_LOG_E(SUBGHZ_KEYSTORE_TAG, "Encryption failed"); break; } // HEX Encode encrypted line const char xx[]= "0123456789ABCDEF"; for (size_t i=0; i>4) & 0xF]; } storage_file_write(file, encrypted_line, strlen(encrypted_line)); storage_file_write(file, "\n", 1); encrypted_line_count++; FURI_LOG_I(SUBGHZ_KEYSTORE_TAG, "Encrypted: `%s` -> `%s`", decrypted_line, encrypted_line); } furi_hal_crypto_store_unload_key(SUBGHZ_KEYSTORE_FILE_ENCRYPTION_KEY_SLOT); result = encrypted_line_count == SubGhzKeyArray_size(instance->data); } while(0); flipper_file_close(flipper_file); flipper_file_free(flipper_file); free(encrypted_line); free(decrypted_line); furi_record_close("storage"); return result; } SubGhzKeyArray_t* subghz_keystore_get_data(SubGhzKeystore* instance) { furi_assert(instance); return &instance->data; }