#include "emmarine.h" #include "decoder-emmarine.h" #include #include constexpr uint32_t clocks_in_us = 64; constexpr uint32_t short_time = 255 * clocks_in_us; constexpr uint32_t long_time = 510 * clocks_in_us; constexpr uint32_t jitter_time = 100 * clocks_in_us; constexpr uint32_t short_time_low = short_time - jitter_time; constexpr uint32_t short_time_high = short_time + jitter_time; constexpr uint32_t long_time_low = long_time - jitter_time; constexpr uint32_t long_time_high = long_time + jitter_time; void DecoderEMMarine::reset_state() { ready = false; readed_data = 0; manchester_advance( manchester_saved_state, ManchesterEventReset, &manchester_saved_state, nullptr); } void printEM_raw(uint64_t data) { // header for(uint8_t i = 0; i < 9; i++) { printf("%u ", data & (1LLU << 63) ? 1 : 0); data = data << 1; } printf("\r\n"); // nibbles for(uint8_t r = 0; r < 11; r++) { printf(" "); uint8_t value = 0; for(uint8_t i = 0; i < 5; i++) { printf("%u ", data & (1LLU << 63) ? 1 : 0); if(i < 4) value = (value << 1) | (data & (1LLU << 63) ? 1 : 0); data = data << 1; } printf("0x%X", value); printf("\r\n"); } } void printEM_data(uint64_t data) { printf("EM "); // header for(uint8_t i = 0; i < 9; i++) { data = data << 1; } // nibbles for(uint8_t r = 0; r < EM_ROW_COUNT; r++) { uint8_t value = 0; for(uint8_t i = 0; i < 5; i++) { if(i < 4) value = (value << 1) | (data & (1LLU << 63) ? 1 : 0); data = data << 1; } printf("%X", value); if(r % 2) printf(" "); } printf("\r\n"); } void copyEM_data(uint64_t data, uint8_t* result, uint8_t result_size) { furi_assert(result_size >= 5); uint8_t result_index = 0; // clean result memset(result, 0, result_size); // header for(uint8_t i = 0; i < 9; i++) { data = data << 1; } // nibbles uint8_t value = 0; for(uint8_t r = 0; r < EM_ROW_COUNT; r++) { uint8_t nibble = 0; for(uint8_t i = 0; i < 5; i++) { if(i < 4) nibble = (nibble << 1) | (data & (1LLU << 63) ? 1 : 0); data = data << 1; } value = (value << 4) | nibble; if(r % 2) { result[result_index] |= value; result_index++; value = 0; } } } bool DecoderEMMarine::read(uint8_t* data, uint8_t data_size) { bool result = false; if(ready) { result = true; copyEM_data(readed_data, data, data_size); ready = false; } return result; } void DecoderEMMarine::process_front(bool polarity, uint32_t time) { if(ready) return; if(time < short_time_low) return; ManchesterEvent event = ManchesterEventReset; if(time > short_time_low && time < short_time_high) { if(polarity) { event = ManchesterEventShortHigh; } else { event = ManchesterEventShortLow; } } else if(time > long_time_low && time < long_time_high) { if(polarity) { event = ManchesterEventLongHigh; } else { event = ManchesterEventLongLow; } } if(event != ManchesterEventReset) { bool data; bool data_ok = manchester_advance(manchester_saved_state, event, &manchester_saved_state, &data); if(data_ok) { readed_data = (readed_data << 1) | data; // header and stop bit if((readed_data & EM_HEADER_AND_STOP_MASK) != EM_HEADER_AND_STOP_DATA) return; // row parity for(uint8_t i = 0; i < EM_ROW_COUNT; i++) { uint8_t parity_sum = 0; for(uint8_t j = 0; j < 5; j++) { parity_sum += (readed_data >> (EM_FIRST_ROW_POS - i * 5 + j)) & 1; } if((parity_sum % 2)) { return; } } // columns parity for(uint8_t i = 0; i < 4; i++) { uint8_t parity_sum = 0; for(uint8_t j = 0; j < EM_ROW_COUNT + 1; j++) { parity_sum += (readed_data >> (EM_COLUMN_POS - i + j * 5)) & 1; } if((parity_sum % 2)) { return; } } // checks ok ready = true; } } } DecoderEMMarine::DecoderEMMarine() { reset_state(); }