#include "subghz_protocol_common.h" #include #include SubGhzProtocolCommonEncoder* subghz_protocol_encoder_common_alloc() { SubGhzProtocolCommonEncoder* instance = malloc(sizeof(SubGhzProtocolCommonEncoder)); instance->upload = malloc(SUBGHZ_ENCODER_UPLOAD_MAX_SIZE * sizeof(LevelDuration)); instance->start = true; instance->repeat = 10; //default number of repeat return instance; } void subghz_protocol_encoder_common_free(SubGhzProtocolCommonEncoder* instance) { furi_assert(instance); if(instance->callback_end) { instance->callback_end((SubGhzProtocolCommon*)instance->context_end); } free(instance->upload); free(instance); } size_t subghz_encoder_common_get_repeat_left(SubGhzProtocolCommonEncoder* instance) { furi_assert(instance); return instance->repeat; } void subghz_protocol_encoder_common_set_callback( SubGhzProtocolCommonEncoder* instance, SubGhzProtocolCommonEncoderCallback callback, void* context) { furi_assert(instance); furi_assert(callback); instance->callback = callback; instance->context = context; } void subghz_protocol_encoder_common_set_callback_end( SubGhzProtocolCommonEncoder* instance, SubGhzProtocolCommonEncoderCallbackEnd callback_end, void* context_end) { furi_assert(instance); furi_assert(callback_end); instance->callback_end = callback_end; instance->context_end = context_end; } LevelDuration subghz_protocol_encoder_common_yield(void* context) { SubGhzProtocolCommonEncoder* instance = context; if(instance->callback) { return instance->callback((SubGhzProtocolCommon*)instance->context); } if(instance->repeat == 0) { return level_duration_reset(); } LevelDuration ret = instance->upload[instance->front]; if(++instance->front == instance->size_upload) { instance->repeat--; instance->front = 0; } return ret; } void subghz_protocol_common_add_bit(SubGhzProtocolCommon* common, uint8_t bit) { common->code_found = common->code_found << 1 | bit; common->code_count_bit++; } bool subghz_protocol_common_check_interval( SubGhzProtocolCommon* common, uint32_t duration, uint16_t duration_check) { if((duration_check >= (duration - common->te_delta)) && (duration_check <= (duration + common->te_delta))) { return true; } else { return false; } } uint64_t subghz_protocol_common_reverse_key(uint64_t key, uint8_t count_bit) { uint64_t key_reverse = 0; for(uint8_t i = 0; i < count_bit; i++) { key_reverse = key_reverse << 1 | bit_read(key, i); } return key_reverse; } void subghz_protocol_common_set_callback( SubGhzProtocolCommon* common, SubGhzProtocolCommonCallback callback, void* context) { common->callback = callback; common->context = context; } void subghz_protocol_common_to_str(SubGhzProtocolCommon* instance, string_t output) { if(instance->to_string) { instance->to_string(instance, output); } else { uint32_t code_found_hi = instance->code_found >> 32; uint32_t code_found_lo = instance->code_found & 0x00000000ffffffff; uint64_t code_found_reverse = subghz_protocol_common_reverse_key(instance->code_found, instance->code_count_bit); uint32_t code_found_reverse_hi = code_found_reverse >> 32; uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff; if(code_found_hi > 0) { string_cat_printf( output, "Protocol %s, %d Bit\r\n" " KEY:0x%lX%08lX\r\n" " YEK:0x%lX%08lX\r\n" " SN:0x%05lX BTN:%02X\r\n", instance->name, instance->code_count_bit, code_found_hi, code_found_lo, code_found_reverse_hi, code_found_reverse_lo, instance->serial, instance->btn); } else { string_cat_printf( output, "Protocol %s, %d Bit\r\n" " KEY:0x%lX%lX\r\n" " YEK:0x%lX%lX\r\n" " SN:0x%05lX BTN:%02X\r\n", instance->name, instance->code_count_bit, code_found_hi, code_found_lo, code_found_reverse_hi, code_found_reverse_lo, instance->serial, instance->btn); } } } bool subghz_protocol_common_read_hex(string_t str, uint8_t* buff, uint16_t len) { string_strim(str); uint8_t nibble_high = 0; uint8_t nibble_low = 0; bool parsed = true; for(uint16_t i = 0; i < len; i++) { if(hex_char_to_hex_nibble(string_get_char(str, 0), &nibble_high) && hex_char_to_hex_nibble(string_get_char(str, 1), &nibble_low)) { buff[i] = (nibble_high << 4) | nibble_low; if(string_size(str) > 2) { string_right(str, 2); } else if(i < len - 1) { parsed = false; break; }; } else { parsed = false; break; } } return parsed; } bool subghz_protocol_common_to_save_file( SubGhzProtocolCommon* instance, FlipperFormat* flipper_format) { furi_assert(instance); furi_assert(flipper_format); bool res = false; do { if(!flipper_format_write_string_cstr(flipper_format, "Protocol", instance->name)) { FURI_LOG_E(SUBGHZ_PARSER_TAG, "Unable to add Protocol"); break; } uint32_t temp = instance->code_last_count_bit; if(!flipper_format_write_uint32(flipper_format, "Bit", &temp, 1)) { FURI_LOG_E(SUBGHZ_PARSER_TAG, "Unable to add Bit"); break; } uint8_t key_data[sizeof(uint64_t)] = {0}; for(size_t i = 0; i < sizeof(uint64_t); i++) { key_data[sizeof(uint64_t) - i - 1] = (instance->code_last_found >> i * 8) & 0xFF; } if(!flipper_format_write_hex(flipper_format, "Key", key_data, sizeof(uint64_t))) { FURI_LOG_E(SUBGHZ_PARSER_TAG, "Unable to add Key"); break; } res = true; } while(false); return res; } bool subghz_protocol_common_to_load_protocol_from_file( SubGhzProtocolCommon* instance, FlipperFormat* flipper_format) { furi_assert(instance); furi_assert(flipper_format); bool loaded = false; string_t temp_str; string_init(temp_str); uint32_t temp_data = 0; do { if(!flipper_format_read_uint32(flipper_format, "Bit", (uint32_t*)&temp_data, 1)) { FURI_LOG_E(SUBGHZ_PARSER_TAG, "Missing Bit"); break; } instance->code_last_count_bit = (uint8_t)temp_data; uint8_t key_data[sizeof(uint64_t)] = {0}; if(!flipper_format_read_hex(flipper_format, "Key", key_data, sizeof(uint64_t))) { FURI_LOG_E(SUBGHZ_PARSER_TAG, "Missing Key"); break; } for(uint8_t i = 0; i < sizeof(uint64_t); i++) { instance->code_last_found = instance->code_last_found << 8 | key_data[i]; } loaded = true; } while(0); string_clear(temp_str); return loaded; }