#include "cc1101.h" #include #include #include #include CC1101Status cc1101_strobe(const ApiHalSpiDevice* device, uint8_t strobe) { uint8_t tx[1] = { strobe }; CC1101Status rx[1] = { 0 }; hal_gpio_write(device->chip_select, false); while(hal_gpio_read(device->bus->miso)); api_hal_spi_bus_trx(device->bus, tx, (uint8_t*)rx, 1, CC1101_TIMEOUT); hal_gpio_write(device->chip_select, true); assert(rx[0].CHIP_RDYn == 0); return rx[0]; } CC1101Status cc1101_write_reg(const ApiHalSpiDevice* device, uint8_t reg, uint8_t data) { uint8_t tx[2] = { reg, data }; CC1101Status rx[2] = { 0 }; hal_gpio_write(device->chip_select, false); while(hal_gpio_read(device->bus->miso)); api_hal_spi_bus_trx(device->bus, tx, (uint8_t*)rx, 2, CC1101_TIMEOUT); hal_gpio_write(device->chip_select, true); assert((rx[0].CHIP_RDYn|rx[1].CHIP_RDYn) == 0); return rx[1]; } CC1101Status cc1101_read_reg(const ApiHalSpiDevice* device, uint8_t reg, uint8_t* data) { assert(sizeof(CC1101Status) == 1); uint8_t tx[2] = { reg|CC1101_READ, 0}; CC1101Status rx[2] = { 0 }; hal_gpio_write(device->chip_select, false); while(hal_gpio_read(device->bus->miso)); api_hal_spi_bus_trx(device->bus, tx, (uint8_t*)rx, 2, CC1101_TIMEOUT); hal_gpio_write(device->chip_select, true); assert((rx[0].CHIP_RDYn) == 0); *data = *(uint8_t*)&rx[1]; return rx[0]; } uint8_t cc1101_get_partnumber(const ApiHalSpiDevice* device) { uint8_t partnumber=0; cc1101_read_reg(device, CC1101_STATUS_PARTNUM|CC1101_BURST, &partnumber); return partnumber; } uint8_t cc1101_get_version(const ApiHalSpiDevice* device) { uint8_t version=0; cc1101_read_reg(device, CC1101_STATUS_VERSION|CC1101_BURST, &version); return version; } uint8_t cc1101_get_rssi(const ApiHalSpiDevice* device) { uint8_t rssi=0; cc1101_read_reg(device, CC1101_STATUS_RSSI|CC1101_BURST, &rssi); return rssi; } void cc1101_reset(const ApiHalSpiDevice* device) { hal_gpio_write(device->chip_select, false); delay_us(1000); hal_gpio_write(device->chip_select, true); delay_us(1000); cc1101_strobe(device, CC1101_STROBE_SRES); } CC1101Status cc1101_get_status(const ApiHalSpiDevice* device) { return cc1101_strobe(device, CC1101_STROBE_SNOP); } void cc1101_shutdown(const ApiHalSpiDevice* device) { cc1101_strobe(device, CC1101_STROBE_SPWD); } void cc1101_calibrate(const ApiHalSpiDevice* device) { cc1101_strobe(device, CC1101_STROBE_SCAL); } void cc1101_switch_to_idle(const ApiHalSpiDevice* device) { cc1101_strobe(device, CC1101_STROBE_SIDLE); } void cc1101_switch_to_rx(const ApiHalSpiDevice* device) { cc1101_strobe(device, CC1101_STROBE_SRX); } void cc1101_switch_to_tx(const ApiHalSpiDevice* device) { cc1101_strobe(device, CC1101_STROBE_STX); } void cc1101_flush_rx(const ApiHalSpiDevice* device) { cc1101_strobe(device, CC1101_STROBE_SFRX); } void cc1101_flush_tx(const ApiHalSpiDevice* device) { cc1101_strobe(device, CC1101_STROBE_SFTX); } uint32_t cc1101_set_frequency(const ApiHalSpiDevice* device, uint32_t value) { uint64_t real_value = (uint64_t)value * 0xFFFF / CC1101_QUARTZ; // Sanity check assert((real_value & 0xFFFFFF) == real_value); cc1101_write_reg(device, CC1101_FREQ2, (real_value >> 16) & 0xFF); cc1101_write_reg(device, CC1101_FREQ1, (real_value >> 8 ) & 0xFF); cc1101_write_reg(device, CC1101_FREQ0, (real_value >> 0 ) & 0xFF); uint64_t real_frequency = real_value * CC1101_QUARTZ / 0xFFFF; return (uint32_t)real_frequency; } uint32_t cc1101_get_frequency_step(const ApiHalSpiDevice* device) { return CC1101_QUARTZ / 0xFFFF; } uint32_t cc1101_set_frequency_offset(const ApiHalSpiDevice* device, uint32_t value) { uint64_t real_value = value * 0x4000 / CC1101_QUARTZ; assert((real_value & 0xFF) == real_value); cc1101_write_reg(device, CC1101_FSCTRL0, (real_value >> 0 ) & 0xFF); uint64_t real_frequency = real_value * CC1101_QUARTZ / 0x4000; return (uint32_t)real_frequency; } uint32_t cc1101_get_frequency_offset_step(const ApiHalSpiDevice* device) { return CC1101_QUARTZ / 0x4000; } void cc1101_set_pa_table(const ApiHalSpiDevice* device, const uint8_t value[8]) { uint8_t tx[9] = { CC1101_PATABLE | CC1101_BURST }; CC1101Status rx[9] = { 0 }; memcpy(&tx[1], &value[0], 8); hal_gpio_write(device->chip_select, false); while(hal_gpio_read(device->bus->miso)); api_hal_spi_bus_trx(device->bus, tx, (uint8_t*)rx, 2, CC1101_TIMEOUT); hal_gpio_write(device->chip_select, true); assert((rx[0].CHIP_RDYn|rx[8].CHIP_RDYn) == 0); } uint8_t cc1101_write_fifo(const ApiHalSpiDevice* device, const uint8_t* data, uint8_t size) { uint8_t buff_tx[64]; uint8_t buff_rx[64]; buff_tx[0] = CC1101_FIFO | CC1101_BURST; memcpy(&buff_tx[1], data, size); // Start transaction hal_gpio_write(device->chip_select, false); // Wait IC to become ready while(hal_gpio_read(device->bus->miso)); // Tell IC what we want api_hal_spi_bus_trx(device->bus, buff_tx, (uint8_t*) buff_rx, size + 1, CC1101_TIMEOUT); // Finish transaction hal_gpio_write(device->chip_select, true); return size; } uint8_t cc1101_read_fifo(const ApiHalSpiDevice* device, uint8_t* data, uint8_t* size) { uint8_t buff_tx[64]; buff_tx[0] = CC1101_FIFO | CC1101_READ | CC1101_BURST; uint8_t buff_rx[2]; // Start transaction hal_gpio_write(device->chip_select, false); // Wait IC to become ready while(hal_gpio_read(device->bus->miso)); // First byte - packet length api_hal_spi_bus_trx(device->bus, buff_tx, buff_rx, 2, CC1101_TIMEOUT); *size = buff_rx[2]; api_hal_spi_bus_trx(device->bus, &buff_tx[1], data, *size, CC1101_TIMEOUT); cc1101_flush_rx(device); hal_gpio_write(device->chip_select, true); return *size; }