#include "princeton.h" #include "../blocks/const.h" #include "../blocks/decoder.h" #include "../blocks/encoder.h" #include "../blocks/generic.h" #include "../blocks/math.h" /* * Help * https://phreakerclub.com/447 * */ #define TAG "SubGhzProtocolPrinceton" static const SubGhzBlockConst subghz_protocol_princeton_const = { .te_short = 400, .te_long = 1200, .te_delta = 300, .min_count_bit_for_found = 24, }; struct SubGhzProtocolDecoderPrinceton { SubGhzProtocolDecoderBase base; SubGhzBlockDecoder decoder; SubGhzBlockGeneric generic; uint32_t te; uint32_t last_data; }; struct SubGhzProtocolEncoderPrinceton { SubGhzProtocolEncoderBase base; SubGhzProtocolBlockEncoder encoder; SubGhzBlockGeneric generic; uint32_t te; }; typedef enum { PrincetonDecoderStepReset = 0, PrincetonDecoderStepSaveDuration, PrincetonDecoderStepCheckDuration, } PrincetonDecoderStep; const SubGhzProtocolDecoder subghz_protocol_princeton_decoder = { .alloc = subghz_protocol_decoder_princeton_alloc, .free = subghz_protocol_decoder_princeton_free, .feed = subghz_protocol_decoder_princeton_feed, .reset = subghz_protocol_decoder_princeton_reset, .get_hash_data = subghz_protocol_decoder_princeton_get_hash_data, .serialize = subghz_protocol_decoder_princeton_serialize, .deserialize = subghz_protocol_decoder_princeton_deserialize, .get_string = subghz_protocol_decoder_princeton_get_string, }; const SubGhzProtocolEncoder subghz_protocol_princeton_encoder = { .alloc = subghz_protocol_encoder_princeton_alloc, .free = subghz_protocol_encoder_princeton_free, .deserialize = subghz_protocol_encoder_princeton_deserialize, .stop = subghz_protocol_encoder_princeton_stop, .yield = subghz_protocol_encoder_princeton_yield, }; const SubGhzProtocol subghz_protocol_princeton = { .name = SUBGHZ_PROTOCOL_PRINCETON_NAME, .type = SubGhzProtocolTypeStatic, .flag = SubGhzProtocolFlag_433 | SubGhzProtocolFlag_868 | SubGhzProtocolFlag_315 | SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable | SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save | SubGhzProtocolFlag_Send, .decoder = &subghz_protocol_princeton_decoder, .encoder = &subghz_protocol_princeton_encoder, }; void* subghz_protocol_encoder_princeton_alloc(SubGhzEnvironment* environment) { UNUSED(environment); SubGhzProtocolEncoderPrinceton* instance = malloc(sizeof(SubGhzProtocolEncoderPrinceton)); instance->base.protocol = &subghz_protocol_princeton; instance->generic.protocol_name = instance->base.protocol->name; instance->encoder.repeat = 10; instance->encoder.size_upload = 52; //max 24bit*2 + 2 (start, stop) instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration)); instance->encoder.is_running = false; return instance; } void subghz_protocol_encoder_princeton_free(void* context) { furi_assert(context); SubGhzProtocolEncoderPrinceton* instance = context; free(instance->encoder.upload); free(instance); } /** * Generating an upload from data. * @param instance Pointer to a SubGhzProtocolEncoderPrinceton instance * @return true On success */ static bool subghz_protocol_encoder_princeton_get_upload(SubGhzProtocolEncoderPrinceton* instance) { furi_assert(instance); size_t index = 0; size_t size_upload = (instance->generic.data_count_bit * 2) + 2; if(size_upload > instance->encoder.size_upload) { FURI_LOG_E(TAG, "Size upload exceeds allocated encoder buffer."); return false; } else { instance->encoder.size_upload = size_upload; } //Send key data for(uint8_t i = instance->generic.data_count_bit; i > 0; i--) { if(bit_read(instance->generic.data, i - 1)) { //send bit 1 instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)instance->te * 3); instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)instance->te); } else { //send bit 0 instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)instance->te); instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)instance->te * 3); } } //Send Stop bit instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)instance->te); //Send PT_GUARD instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)instance->te * 30); return true; } bool subghz_protocol_encoder_princeton_deserialize(void* context, FlipperFormat* flipper_format) { furi_assert(context); SubGhzProtocolEncoderPrinceton* instance = context; bool res = false; do { if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) { FURI_LOG_E(TAG, "Deserialize error"); break; } if(!flipper_format_rewind(flipper_format)) { FURI_LOG_E(TAG, "Rewind error"); break; } if(!flipper_format_read_uint32(flipper_format, "TE", (uint32_t*)&instance->te, 1)) { FURI_LOG_E(TAG, "Missing TE"); break; } if(instance->generic.data_count_bit != subghz_protocol_princeton_const.min_count_bit_for_found) { FURI_LOG_E(TAG, "Wrong number of bits in key"); break; } //optional parameter parameter flipper_format_read_uint32( flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1); if(!subghz_protocol_encoder_princeton_get_upload(instance)) break; instance->encoder.is_running = true; res = true; } while(false); return res; } void subghz_protocol_encoder_princeton_stop(void* context) { SubGhzProtocolEncoderPrinceton* instance = context; instance->encoder.is_running = false; } LevelDuration subghz_protocol_encoder_princeton_yield(void* context) { SubGhzProtocolEncoderPrinceton* instance = context; if(instance->encoder.repeat == 0 || !instance->encoder.is_running) { instance->encoder.is_running = false; return level_duration_reset(); } LevelDuration ret = instance->encoder.upload[instance->encoder.front]; if(++instance->encoder.front == instance->encoder.size_upload) { instance->encoder.repeat--; instance->encoder.front = 0; } return ret; } void* subghz_protocol_decoder_princeton_alloc(SubGhzEnvironment* environment) { UNUSED(environment); SubGhzProtocolDecoderPrinceton* instance = malloc(sizeof(SubGhzProtocolDecoderPrinceton)); instance->base.protocol = &subghz_protocol_princeton; instance->generic.protocol_name = instance->base.protocol->name; return instance; } void subghz_protocol_decoder_princeton_free(void* context) { furi_assert(context); SubGhzProtocolDecoderPrinceton* instance = context; free(instance); } void subghz_protocol_decoder_princeton_reset(void* context) { furi_assert(context); SubGhzProtocolDecoderPrinceton* instance = context; instance->decoder.parser_step = PrincetonDecoderStepReset; instance->last_data = 0; } void subghz_protocol_decoder_princeton_feed(void* context, bool level, uint32_t duration) { furi_assert(context); SubGhzProtocolDecoderPrinceton* instance = context; switch(instance->decoder.parser_step) { case PrincetonDecoderStepReset: if((!level) && (DURATION_DIFF(duration, subghz_protocol_princeton_const.te_short * 36) < subghz_protocol_princeton_const.te_delta * 36)) { //Found Preambula instance->decoder.parser_step = PrincetonDecoderStepSaveDuration; instance->decoder.decode_data = 0; instance->decoder.decode_count_bit = 0; instance->te = 0; } break; case PrincetonDecoderStepSaveDuration: //save duration if(level) { instance->decoder.te_last = duration; instance->te += duration; instance->decoder.parser_step = PrincetonDecoderStepCheckDuration; } break; case PrincetonDecoderStepCheckDuration: if(!level) { if(duration >= ((uint32_t)subghz_protocol_princeton_const.te_short * 10 + subghz_protocol_princeton_const.te_delta)) { instance->decoder.parser_step = PrincetonDecoderStepSaveDuration; if(instance->decoder.decode_count_bit == subghz_protocol_princeton_const.min_count_bit_for_found) { if((instance->last_data == instance->decoder.decode_data) && instance->last_data) { instance->te /= (instance->decoder.decode_count_bit * 4 + 1); instance->generic.data = instance->decoder.decode_data; instance->generic.data_count_bit = instance->decoder.decode_count_bit; if(instance->base.callback) instance->base.callback(&instance->base, instance->base.context); } instance->last_data = instance->decoder.decode_data; } instance->decoder.decode_data = 0; instance->decoder.decode_count_bit = 0; instance->te = 0; break; } instance->te += duration; if((DURATION_DIFF(instance->decoder.te_last, subghz_protocol_princeton_const.te_short) < subghz_protocol_princeton_const.te_delta) && (DURATION_DIFF(duration, subghz_protocol_princeton_const.te_long) < subghz_protocol_princeton_const.te_delta * 3)) { subghz_protocol_blocks_add_bit(&instance->decoder, 0); instance->decoder.parser_step = PrincetonDecoderStepSaveDuration; } else if( (DURATION_DIFF(instance->decoder.te_last, subghz_protocol_princeton_const.te_long) < subghz_protocol_princeton_const.te_delta * 3) && (DURATION_DIFF(duration, subghz_protocol_princeton_const.te_short) < subghz_protocol_princeton_const.te_delta)) { subghz_protocol_blocks_add_bit(&instance->decoder, 1); instance->decoder.parser_step = PrincetonDecoderStepSaveDuration; } else { instance->decoder.parser_step = PrincetonDecoderStepReset; } } else { instance->decoder.parser_step = PrincetonDecoderStepReset; } break; } } /** * Analysis of received data * @param instance Pointer to a SubGhzBlockGeneric* instance */ static void subghz_protocol_princeton_check_remote_controller(SubGhzBlockGeneric* instance) { instance->serial = instance->data >> 4; instance->btn = instance->data & 0xF; } uint8_t subghz_protocol_decoder_princeton_get_hash_data(void* context) { furi_assert(context); SubGhzProtocolDecoderPrinceton* instance = context; return subghz_protocol_blocks_get_hash_data( &instance->decoder, (instance->decoder.decode_count_bit / 8) + 1); } bool subghz_protocol_decoder_princeton_serialize( void* context, FlipperFormat* flipper_format, SubGhzPresetDefinition* preset) { furi_assert(context); SubGhzProtocolDecoderPrinceton* instance = context; bool res = subghz_block_generic_serialize(&instance->generic, flipper_format, preset); if(res && !flipper_format_write_uint32(flipper_format, "TE", &instance->te, 1)) { FURI_LOG_E(TAG, "Unable to add TE"); res = false; } return res; } bool subghz_protocol_decoder_princeton_deserialize(void* context, FlipperFormat* flipper_format) { furi_assert(context); SubGhzProtocolDecoderPrinceton* instance = context; bool res = false; do { if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) { FURI_LOG_E(TAG, "Deserialize error"); break; } if(instance->generic.data_count_bit != subghz_protocol_princeton_const.min_count_bit_for_found) { FURI_LOG_E(TAG, "Wrong number of bits in key"); break; } if(!flipper_format_rewind(flipper_format)) { FURI_LOG_E(TAG, "Rewind error"); break; } if(!flipper_format_read_uint32(flipper_format, "TE", (uint32_t*)&instance->te, 1)) { FURI_LOG_E(TAG, "Missing TE"); break; } res = true; } while(false); return res; } void subghz_protocol_decoder_princeton_get_string(void* context, FuriString* output) { furi_assert(context); SubGhzProtocolDecoderPrinceton* instance = context; subghz_protocol_princeton_check_remote_controller(&instance->generic); uint32_t data_rev = subghz_protocol_blocks_reverse_key( instance->generic.data, instance->generic.data_count_bit); furi_string_cat_printf( output, "%s %dbit\r\n" "Key:0x%08lX\r\n" "Yek:0x%08lX\r\n" "Sn:0x%05lX Btn:%01X\r\n" "Te:%dus\r\n", instance->generic.protocol_name, instance->generic.data_count_bit, (uint32_t)(instance->generic.data & 0xFFFFFF), data_rev, instance->generic.serial, instance->generic.btn, instance->te); }