#include "linear.h" #include "../blocks/const.h" #include "../blocks/decoder.h" #include "../blocks/encoder.h" #include "../blocks/generic.h" #include "../blocks/math.h" #define TAG "SubGhzProtocolLinear" #define DIP_PATTERN "%c%c%c%c%c%c%c%c%c%c" #define DATA_TO_DIP(dip) \ (dip & 0x0200 ? '1' : '0'), (dip & 0x0100 ? '1' : '0'), (dip & 0x0080 ? '1' : '0'), \ (dip & 0x0040 ? '1' : '0'), (dip & 0x0020 ? '1' : '0'), (dip & 0x0010 ? '1' : '0'), \ (dip & 0x0008 ? '1' : '0'), (dip & 0x0004 ? '1' : '0'), (dip & 0x0002 ? '1' : '0'), \ (dip & 0x0001 ? '1' : '0') static const SubGhzBlockConst subghz_protocol_linear_const = { .te_short = 500, .te_long = 1500, .te_delta = 150, .min_count_bit_for_found = 10, }; struct SubGhzProtocolDecoderLinear { SubGhzProtocolDecoderBase base; SubGhzBlockDecoder decoder; SubGhzBlockGeneric generic; }; struct SubGhzProtocolEncoderLinear { SubGhzProtocolEncoderBase base; SubGhzProtocolBlockEncoder encoder; SubGhzBlockGeneric generic; }; typedef enum { LinearDecoderStepReset = 0, LinearDecoderStepSaveDuration, LinearDecoderStepCheckDuration, } LinearDecoderStep; const SubGhzProtocolDecoder subghz_protocol_linear_decoder = { .alloc = subghz_protocol_decoder_linear_alloc, .free = subghz_protocol_decoder_linear_free, .feed = subghz_protocol_decoder_linear_feed, .reset = subghz_protocol_decoder_linear_reset, .get_hash_data = subghz_protocol_decoder_linear_get_hash_data, .serialize = subghz_protocol_decoder_linear_serialize, .deserialize = subghz_protocol_decoder_linear_deserialize, .get_string = subghz_protocol_decoder_linear_get_string, }; const SubGhzProtocolEncoder subghz_protocol_linear_encoder = { .alloc = subghz_protocol_encoder_linear_alloc, .free = subghz_protocol_encoder_linear_free, .deserialize = subghz_protocol_encoder_linear_deserialize, .stop = subghz_protocol_encoder_linear_stop, .yield = subghz_protocol_encoder_linear_yield, }; const SubGhzProtocol subghz_protocol_linear = { .name = SUBGHZ_PROTOCOL_LINEAR_NAME, .type = SubGhzProtocolTypeStatic, .flag = SubGhzProtocolFlag_315 | SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable | SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save | SubGhzProtocolFlag_Send, .decoder = &subghz_protocol_linear_decoder, .encoder = &subghz_protocol_linear_encoder, }; void* subghz_protocol_encoder_linear_alloc(SubGhzEnvironment* environment) { UNUSED(environment); SubGhzProtocolEncoderLinear* instance = malloc(sizeof(SubGhzProtocolEncoderLinear)); instance->base.protocol = &subghz_protocol_linear; instance->generic.protocol_name = instance->base.protocol->name; instance->encoder.repeat = 10; instance->encoder.size_upload = 28; //max 10bit*2 + 2 (start, stop) instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration)); instance->encoder.is_runing = false; return instance; } void subghz_protocol_encoder_linear_free(void* context) { furi_assert(context); SubGhzProtocolEncoderLinear* instance = context; free(instance->encoder.upload); free(instance); } /** * Generating an upload from data. * @param instance Pointer to a SubGhzProtocolEncoderLinear instance * @return true On success */ static bool subghz_protocol_encoder_linear_get_upload(SubGhzProtocolEncoderLinear* instance) { furi_assert(instance); size_t index = 0; size_t size_upload = (instance->generic.data_count_bit * 2); if(size_upload > instance->encoder.size_upload) { FURI_LOG_E(TAG, "Size upload exceeds allocated encoder buffer."); return false; } else { instance->encoder.size_upload = size_upload; } //Send key data for(uint8_t i = instance->generic.data_count_bit; i > 1; i--) { if(bit_read(instance->generic.data, i - 1)) { //send bit 1 instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_linear_const.te_short * 3); instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_linear_const.te_short); } else { //send bit 0 instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_linear_const.te_short); instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_linear_const.te_short * 3); } } //Send end bit if(bit_read(instance->generic.data, 0)) { //send bit 1 instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_linear_const.te_short * 3); //Send PT_GUARD instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_linear_const.te_short * 42); } else { //send bit 0 instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_linear_const.te_short); //Send PT_GUARD instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_linear_const.te_short * 44); } return true; } bool subghz_protocol_encoder_linear_deserialize(void* context, FlipperFormat* flipper_format) { furi_assert(context); SubGhzProtocolEncoderLinear* instance = context; bool res = false; do { if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) { FURI_LOG_E(TAG, "Deserialize error"); break; } //optional parameter parameter flipper_format_read_uint32( flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1); subghz_protocol_encoder_linear_get_upload(instance); instance->encoder.is_runing = true; res = true; } while(false); return res; } void subghz_protocol_encoder_linear_stop(void* context) { SubGhzProtocolEncoderLinear* instance = context; instance->encoder.is_runing = false; } LevelDuration subghz_protocol_encoder_linear_yield(void* context) { SubGhzProtocolEncoderLinear* instance = context; if(instance->encoder.repeat == 0 || !instance->encoder.is_runing) { instance->encoder.is_runing = false; return level_duration_reset(); } LevelDuration ret = instance->encoder.upload[instance->encoder.front]; if(++instance->encoder.front == instance->encoder.size_upload) { instance->encoder.repeat--; instance->encoder.front = 0; } return ret; } void* subghz_protocol_decoder_linear_alloc(SubGhzEnvironment* environment) { UNUSED(environment); SubGhzProtocolDecoderLinear* instance = malloc(sizeof(SubGhzProtocolDecoderLinear)); instance->base.protocol = &subghz_protocol_linear; instance->generic.protocol_name = instance->base.protocol->name; return instance; } void subghz_protocol_decoder_linear_free(void* context) { furi_assert(context); SubGhzProtocolDecoderLinear* instance = context; free(instance); } void subghz_protocol_decoder_linear_reset(void* context) { furi_assert(context); SubGhzProtocolDecoderLinear* instance = context; instance->decoder.parser_step = LinearDecoderStepReset; } void subghz_protocol_decoder_linear_feed(void* context, bool level, uint32_t duration) { furi_assert(context); SubGhzProtocolDecoderLinear* instance = context; switch(instance->decoder.parser_step) { case LinearDecoderStepReset: if((!level) && (DURATION_DIFF(duration, subghz_protocol_linear_const.te_short * 42) < subghz_protocol_linear_const.te_delta * 20)) { //Found header Linear instance->decoder.decode_data = 0; instance->decoder.decode_count_bit = 0; instance->decoder.parser_step = LinearDecoderStepSaveDuration; } break; case LinearDecoderStepSaveDuration: if(level) { instance->decoder.te_last = duration; instance->decoder.parser_step = LinearDecoderStepCheckDuration; } else { instance->decoder.parser_step = LinearDecoderStepReset; } break; case LinearDecoderStepCheckDuration: if(!level) { //save interval if(duration >= (subghz_protocol_linear_const.te_short * 5)) { instance->decoder.parser_step = LinearDecoderStepReset; //checking that the duration matches the guardtime if((DURATION_DIFF(duration, subghz_protocol_linear_const.te_short * 42) > subghz_protocol_linear_const.te_delta * 20)) { break; } if(DURATION_DIFF(instance->decoder.te_last, subghz_protocol_linear_const.te_short) < subghz_protocol_linear_const.te_delta) { subghz_protocol_blocks_add_bit(&instance->decoder, 0); } else if( DURATION_DIFF(instance->decoder.te_last, subghz_protocol_linear_const.te_long) < subghz_protocol_linear_const.te_delta) { subghz_protocol_blocks_add_bit(&instance->decoder, 1); } if(instance->decoder.decode_count_bit == subghz_protocol_linear_const.min_count_bit_for_found) { instance->generic.serial = 0x0; instance->generic.btn = 0x0; instance->generic.data = instance->decoder.decode_data; instance->generic.data_count_bit = instance->decoder.decode_count_bit; if(instance->base.callback) instance->base.callback(&instance->base, instance->base.context); } break; } if((DURATION_DIFF(instance->decoder.te_last, subghz_protocol_linear_const.te_short) < subghz_protocol_linear_const.te_delta) && (DURATION_DIFF(duration, subghz_protocol_linear_const.te_long) < subghz_protocol_linear_const.te_delta)) { subghz_protocol_blocks_add_bit(&instance->decoder, 0); instance->decoder.parser_step = LinearDecoderStepSaveDuration; } else if( (DURATION_DIFF(instance->decoder.te_last, subghz_protocol_linear_const.te_long) < subghz_protocol_linear_const.te_delta) && (DURATION_DIFF(duration, subghz_protocol_linear_const.te_short) < subghz_protocol_linear_const.te_delta)) { subghz_protocol_blocks_add_bit(&instance->decoder, 1); instance->decoder.parser_step = LinearDecoderStepSaveDuration; } else { instance->decoder.parser_step = LinearDecoderStepReset; } } else { instance->decoder.parser_step = LinearDecoderStepReset; } break; } } uint8_t subghz_protocol_decoder_linear_get_hash_data(void* context) { furi_assert(context); SubGhzProtocolDecoderLinear* instance = context; return subghz_protocol_blocks_get_hash_data( &instance->decoder, (instance->decoder.decode_count_bit / 8) + 1); } bool subghz_protocol_decoder_linear_serialize( void* context, FlipperFormat* flipper_format, SubGhzPesetDefinition* preset) { furi_assert(context); SubGhzProtocolDecoderLinear* instance = context; return subghz_block_generic_serialize(&instance->generic, flipper_format, preset); } bool subghz_protocol_decoder_linear_deserialize(void* context, FlipperFormat* flipper_format) { furi_assert(context); SubGhzProtocolDecoderLinear* instance = context; return subghz_block_generic_deserialize(&instance->generic, flipper_format); } void subghz_protocol_decoder_linear_get_string(void* context, string_t output) { furi_assert(context); SubGhzProtocolDecoderLinear* instance = context; uint32_t code_found_lo = instance->generic.data & 0x00000000ffffffff; uint64_t code_found_reverse = subghz_protocol_blocks_reverse_key( instance->generic.data, instance->generic.data_count_bit); uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff; string_cat_printf( output, "%s %dbit\r\n" "Key:0x%08lX\r\n" "Yek:0x%08lX\r\n" "DIP:" DIP_PATTERN "\r\n", instance->generic.protocol_name, instance->generic.data_count_bit, code_found_lo, code_found_reverse_lo, DATA_TO_DIP(code_found_lo)); }