#include "subghz_keystore.h" #include #include #include #include #include #define TAG "SubGhzKeystore" #define FILE_BUFFER_SIZE 64 #define SUBGHZ_KEYSTORE_FILE_TYPE "Flipper SubGhz Keystore File" #define SUBGHZ_KEYSTORE_FILE_RAW_TYPE "Flipper SubGhz Keystore RAW File" #define SUBGHZ_KEYSTORE_FILE_VERSION 0 #define SUBGHZ_KEYSTORE_FILE_ENCRYPTION_KEY_SLOT 1 #define SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE 512 #define SUBGHZ_KEYSTORE_FILE_ENCRYPTED_LINE_SIZE (SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE * 2) typedef enum { SubGhzKeystoreEncryptionNone, SubGhzKeystoreEncryptionAES256, } SubGhzKeystoreEncryption; struct SubGhzKeystore { SubGhzKeyArray_t data; }; SubGhzKeystore* subghz_keystore_alloc() { SubGhzKeystore* instance = furi_alloc(sizeof(SubGhzKeystore)); SubGhzKeyArray_init(instance->data); return instance; } void subghz_keystore_free(SubGhzKeystore* instance) { furi_assert(instance); for M_EACH(manufacture_code, instance->data, SubGhzKeyArray_t) { string_clear(manufacture_code->name); manufacture_code->key = 0; } SubGhzKeyArray_clear(instance->data); free(instance); } static void subghz_keystore_add_key( SubGhzKeystore* instance, const char* name, uint64_t key, uint16_t type) { SubGhzKey* manufacture_code = SubGhzKeyArray_push_raw(instance->data); string_init_set_str(manufacture_code->name, name); manufacture_code->key = key; manufacture_code->type = type; } static bool subghz_keystore_process_line(SubGhzKeystore* instance, char* line) { uint64_t key = 0; uint16_t type = 0; char skey[17] = {0}; char name[65] = {0}; int ret = sscanf(line, "%16s:%hu:%64s", skey, &type, name); key = strtoull(skey, NULL, 16); if(ret == 3) { subghz_keystore_add_key(instance, name, key, type); return true; } else { FURI_LOG_E(TAG, "Failed to load line: %s\r\n", line); return false; } } static void subghz_keystore_mess_with_iv(uint8_t* iv) { // Please do not share decrypted manufacture keys // Sharing them will bring some discomfort to legal owners // And potential legal action against you // While you reading this code think about your own personal responsibility asm volatile("movs r0, #0x0 \n" "movs r1, #0x0 \n" "movs r2, #0x0 \n" "movs r3, #0x0 \n" "nani: \n" "ldrb r1, [r0, %0]\n" "mov r2, r1 \n" "add r1, r3 \n" "mov r3, r2 \n" "strb r1, [r0, %0]\n" "adds r0, #0x1 \n" "cmp r0, #0xF \n" "bls nani \n" : : "r"(iv) : "r0", "r1", "r2", "r3", "memory"); } static bool subghz_keystore_read_file(SubGhzKeystore* instance, File* file, uint8_t* iv) { bool result = true; char buffer[FILE_BUFFER_SIZE]; char* decrypted_line = furi_alloc(SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE); char* encrypted_line = furi_alloc(SUBGHZ_KEYSTORE_FILE_ENCRYPTED_LINE_SIZE); size_t encrypted_line_cursor = 0; if(iv) furi_hal_crypto_store_load_key(SUBGHZ_KEYSTORE_FILE_ENCRYPTION_KEY_SLOT, iv); size_t ret = 0; do { ret = storage_file_read(file, buffer, FILE_BUFFER_SIZE); for(uint16_t i = 0; i < ret; i++) { if(buffer[i] == '\n' && encrypted_line_cursor > 0) { // Process line if(iv) { // Data alignment check, 32 instead of 16 because of hex encoding size_t len = strlen(encrypted_line); if(len % 32 == 0) { // Inplace hex to bin conversion for(size_t i = 0; i < len; i += 2) { uint8_t hi_nibble = 0; uint8_t lo_nibble = 0; hex_char_to_hex_nibble(encrypted_line[i], &hi_nibble); hex_char_to_hex_nibble(encrypted_line[i + 1], &lo_nibble); encrypted_line[i / 2] = (hi_nibble << 4) | lo_nibble; } len /= 2; if(furi_hal_crypto_decrypt( (uint8_t*)encrypted_line, (uint8_t*)decrypted_line, len)) { subghz_keystore_process_line(instance, decrypted_line); } else { FURI_LOG_E(TAG, "Decryption failed"); result = false; break; } } else { FURI_LOG_E( TAG, "Invalid encrypted data: %s", encrypted_line); } } else { subghz_keystore_process_line(instance, encrypted_line); } // reset line buffer memset(decrypted_line, 0, SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE); memset(encrypted_line, 0, SUBGHZ_KEYSTORE_FILE_ENCRYPTED_LINE_SIZE); encrypted_line_cursor = 0; } else if(buffer[i] == '\r' || buffer[i] == '\n') { // do not add line endings to the buffer } else { if(encrypted_line_cursor < SUBGHZ_KEYSTORE_FILE_ENCRYPTED_LINE_SIZE) { encrypted_line[encrypted_line_cursor] = buffer[i]; encrypted_line_cursor++; } else { FURI_LOG_E(TAG, "Malformed file"); result = false; break; } } } } while(ret > 0 && result); if(iv) furi_hal_crypto_store_unload_key(SUBGHZ_KEYSTORE_FILE_ENCRYPTION_KEY_SLOT); free(encrypted_line); free(decrypted_line); return result; } bool subghz_keystore_load(SubGhzKeystore* instance, const char* file_name) { furi_assert(instance); bool result = false; uint8_t iv[16]; uint32_t version; SubGhzKeystoreEncryption encryption; string_t filetype; string_init(filetype); Storage* storage = furi_record_open("storage"); FlipperFile* flipper_file = flipper_file_alloc(storage); do { if(!flipper_file_open_existing(flipper_file, file_name)) { FURI_LOG_E(TAG, "Unable to open file for read: %s", file_name); break; } if(!flipper_file_read_header(flipper_file, filetype, &version)) { FURI_LOG_E(TAG, "Missing or incorrect header"); break; } if(!flipper_file_read_uint32(flipper_file, "Encryption", (uint32_t*)&encryption, 1)) { FURI_LOG_E(TAG, "Missing encryption type"); break; } if(strcmp(string_get_cstr(filetype), SUBGHZ_KEYSTORE_FILE_TYPE) != 0 || version != SUBGHZ_KEYSTORE_FILE_VERSION) { FURI_LOG_E(TAG, "Type or version mismatch"); break; } File* file = flipper_file_get_file(flipper_file); if(encryption == SubGhzKeystoreEncryptionNone) { result = subghz_keystore_read_file(instance, file, NULL); } else if(encryption == SubGhzKeystoreEncryptionAES256) { if(!flipper_file_read_hex(flipper_file, "IV", iv, 16)) { FURI_LOG_E(TAG, "Missing IV"); break; } subghz_keystore_mess_with_iv(iv); result = subghz_keystore_read_file(instance, file, iv); } else { FURI_LOG_E(TAG, "Unknown encryption"); break; } } while(0); flipper_file_close(flipper_file); flipper_file_free(flipper_file); furi_record_close("storage"); string_clear(filetype); return result; } bool subghz_keystore_save(SubGhzKeystore* instance, const char* file_name, uint8_t* iv) { furi_assert(instance); bool result = false; Storage* storage = furi_record_open("storage"); char* decrypted_line = furi_alloc(SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE); char* encrypted_line = furi_alloc(SUBGHZ_KEYSTORE_FILE_ENCRYPTED_LINE_SIZE); FlipperFile* flipper_file = flipper_file_alloc(storage); do { if(!flipper_file_open_always(flipper_file, file_name)) { FURI_LOG_E(TAG, "Unable to open file for write: %s", file_name); break; } if(!flipper_file_write_header_cstr( flipper_file, SUBGHZ_KEYSTORE_FILE_TYPE, SUBGHZ_KEYSTORE_FILE_VERSION)) { FURI_LOG_E(TAG, "Unable to add header"); break; } uint32_t encryption = SubGhzKeystoreEncryptionAES256; if(!flipper_file_write_uint32(flipper_file, "Encryption", &encryption, 1)) { FURI_LOG_E(TAG, "Unable to add Encryption"); break; } if(!flipper_file_write_hex(flipper_file, "IV", iv, 16)) { FURI_LOG_E(TAG, "Unable to add IV"); break; } subghz_keystore_mess_with_iv(iv); if(!furi_hal_crypto_store_load_key(SUBGHZ_KEYSTORE_FILE_ENCRYPTION_KEY_SLOT, iv)) { FURI_LOG_E(TAG, "Unable to load encryption key"); break; } File* file = flipper_file_get_file(flipper_file); size_t encrypted_line_count = 0; for M_EACH(key, instance->data, SubGhzKeyArray_t) { // Wipe buffer before packing memset(decrypted_line, 0, SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE); memset(encrypted_line, 0, SUBGHZ_KEYSTORE_FILE_ENCRYPTED_LINE_SIZE); // Form unecreypted line int len = snprintf( decrypted_line, SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE, "%08lX%08lX:%hu:%s", (uint32_t)(key->key >> 32), (uint32_t)key->key, key->type, string_get_cstr(key->name)); // Verify length and align furi_assert(len > 0); if(len % 16 != 0) { len += (16 - len % 16); } furi_assert(len % 16 == 0); furi_assert(len <= SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE); // Form encrypted line if(!furi_hal_crypto_encrypt( (uint8_t*)decrypted_line, (uint8_t*)encrypted_line, len)) { FURI_LOG_E(TAG, "Encryption failed"); break; } // HEX Encode encrypted line const char xx[] = "0123456789ABCDEF"; for(size_t i = 0; i < len; i++) { size_t cursor = len - i - 1; size_t hex_cursor = len * 2 - i * 2 - 1; encrypted_line[hex_cursor] = xx[encrypted_line[cursor] & 0xF]; encrypted_line[hex_cursor - 1] = xx[(encrypted_line[cursor] >> 4) & 0xF]; } storage_file_write(file, encrypted_line, strlen(encrypted_line)); storage_file_write(file, "\n", 1); encrypted_line_count++; FURI_LOG_I( TAG, "Encrypted: `%s` -> `%s`", decrypted_line, encrypted_line); } furi_hal_crypto_store_unload_key(SUBGHZ_KEYSTORE_FILE_ENCRYPTION_KEY_SLOT); result = encrypted_line_count == SubGhzKeyArray_size(instance->data); } while(0); flipper_file_close(flipper_file); flipper_file_free(flipper_file); free(encrypted_line); free(decrypted_line); furi_record_close("storage"); return result; } SubGhzKeyArray_t* subghz_keystore_get_data(SubGhzKeystore* instance) { furi_assert(instance); return &instance->data; } bool subghz_keystore_raw_encrypted_save( const char* input_file_name, const char* output_file_name, uint8_t* iv) { bool encrypted = false; uint32_t version; string_t filetype; string_init(filetype); SubGhzKeystoreEncryption encryption; Storage* storage = furi_record_open("storage"); char* encrypted_line = furi_alloc(SUBGHZ_KEYSTORE_FILE_ENCRYPTED_LINE_SIZE); FlipperFile* input_flipper_file = flipper_file_alloc(storage); do { if(!flipper_file_open_existing(input_flipper_file, input_file_name)) { FURI_LOG_E(TAG, "Unable to open file for read: %s", input_file_name); break; } if(!flipper_file_read_header(input_flipper_file, filetype, &version)) { FURI_LOG_E(TAG, "Missing or incorrect header"); break; } if(!flipper_file_read_uint32(input_flipper_file, "Encryption", (uint32_t*)&encryption, 1)) { FURI_LOG_E(TAG, "Missing encryption type"); break; } if(strcmp(string_get_cstr(filetype), SUBGHZ_KEYSTORE_FILE_RAW_TYPE) != 0 || version != SUBGHZ_KEYSTORE_FILE_VERSION) { FURI_LOG_E(TAG, "Type or version mismatch"); break; } if(encryption != SubGhzKeystoreEncryptionNone) { FURI_LOG_E(TAG, "Already encryption"); break; } File* input_file = flipper_file_get_file(input_flipper_file); FlipperFile* output_flipper_file = flipper_file_alloc(storage); if(!flipper_file_open_always(output_flipper_file, output_file_name)) { FURI_LOG_E(TAG, "Unable to open file for write: %s", output_file_name); break; } if(!flipper_file_write_header_cstr( output_flipper_file, string_get_cstr(filetype), SUBGHZ_KEYSTORE_FILE_VERSION)) { FURI_LOG_E(TAG, "Unable to add header"); break; } uint32_t encryption = SubGhzKeystoreEncryptionAES256; if(!flipper_file_write_uint32( output_flipper_file, "Encryption", &encryption, 1)) { FURI_LOG_E(TAG, "Unable to add Encryption"); break; } if(!flipper_file_write_hex(output_flipper_file, "IV", iv, 16)) { FURI_LOG_E(TAG, "Unable to add IV"); break; } if(!flipper_file_write_string_cstr(output_flipper_file, "Encrypt_data", "RAW")) { FURI_LOG_E(TAG, "Unable to add Encrypt_data"); break; } subghz_keystore_mess_with_iv(iv); if(!furi_hal_crypto_store_load_key(SUBGHZ_KEYSTORE_FILE_ENCRYPTION_KEY_SLOT, iv)) { FURI_LOG_E(TAG, "Unable to load encryption key"); break; } File* output_file = flipper_file_get_file(output_flipper_file); char buffer[FILE_BUFFER_SIZE]; bool result = true; size_t ret = 0; furi_assert(FILE_BUFFER_SIZE % 16 == 0); //skip the end of the previous line "\n" storage_file_read(input_file, buffer, 1); do { memset(buffer, 0, FILE_BUFFER_SIZE); ret = storage_file_read(input_file, buffer, FILE_BUFFER_SIZE); if(ret == 0) { break; } for(uint16_t i = 0; i < FILE_BUFFER_SIZE - 1; i += 2) { uint8_t hi_nibble = 0; uint8_t lo_nibble = 0; hex_char_to_hex_nibble(buffer[i], &hi_nibble); hex_char_to_hex_nibble(buffer[i + 1], &lo_nibble); buffer[i / 2] = (hi_nibble << 4) | lo_nibble; } memset(encrypted_line, 0, SUBGHZ_KEYSTORE_FILE_ENCRYPTED_LINE_SIZE); // Form encrypted line if(!furi_hal_crypto_encrypt( (uint8_t*)buffer, (uint8_t*)encrypted_line, FILE_BUFFER_SIZE / 2)) { FURI_LOG_E(TAG, "Encryption failed"); result = false; break; } // HEX Encode encrypted line const char xx[] = "0123456789ABCDEF"; for(size_t i = 0; i < FILE_BUFFER_SIZE / 2; i++) { size_t cursor = FILE_BUFFER_SIZE / 2 - i - 1; size_t hex_cursor = FILE_BUFFER_SIZE - i * 2 - 1; encrypted_line[hex_cursor] = xx[encrypted_line[cursor] & 0xF]; encrypted_line[hex_cursor - 1] = xx[(encrypted_line[cursor] >> 4) & 0xF]; } storage_file_write(output_file, encrypted_line, strlen(encrypted_line)); } while(ret > 0 && result); flipper_file_close(output_flipper_file); flipper_file_free(output_flipper_file); furi_hal_crypto_store_unload_key(SUBGHZ_KEYSTORE_FILE_ENCRYPTION_KEY_SLOT); if(!result) break; encrypted = true; } while(0); flipper_file_close(input_flipper_file); flipper_file_free(input_flipper_file); free(encrypted_line); furi_record_close("storage"); return encrypted; } bool subghz_keystore_raw_get_data(const char* file_name, size_t offset, uint8_t* data, size_t len) { bool result = false; uint8_t iv[16]; uint32_t version; SubGhzKeystoreEncryption encryption; string_t str_temp; string_init(str_temp); Storage* storage = furi_record_open("storage"); char* decrypted_line = furi_alloc(SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE); FlipperFile* flipper_file = flipper_file_alloc(storage); do { if(!flipper_file_open_existing(flipper_file, file_name)) { FURI_LOG_E(TAG, "Unable to open file for read: %s", file_name); break; } if(!flipper_file_read_header(flipper_file, str_temp, &version)) { FURI_LOG_E(TAG, "Missing or incorrect header"); break; } if(!flipper_file_read_uint32(flipper_file, "Encryption", (uint32_t*)&encryption, 1)) { FURI_LOG_E(TAG, "Missing encryption type"); break; } if(strcmp(string_get_cstr(str_temp), SUBGHZ_KEYSTORE_FILE_RAW_TYPE) != 0 || version != SUBGHZ_KEYSTORE_FILE_VERSION) { FURI_LOG_E(TAG, "Type or version mismatch"); break; } File* file = flipper_file_get_file(flipper_file); if(encryption != SubGhzKeystoreEncryptionAES256) { FURI_LOG_E(TAG, "Unknown encryption"); break; } if(offset < 16) { if(!flipper_file_read_hex(flipper_file, "IV", iv, 16)) { FURI_LOG_E(TAG, "Missing IV"); break; } subghz_keystore_mess_with_iv(iv); } if(!flipper_file_read_string(flipper_file, "Encrypt_data", str_temp)) { FURI_LOG_E(TAG, "Missing Encrypt_data"); break; } size_t bufer_size; if(len <= (16 - offset % 16)) { bufer_size = 32; } else { bufer_size = (((len) / 16) + 2) * 32; } furi_assert(SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE >= bufer_size / 2); char buffer[bufer_size]; size_t ret = 0; bool decrypted = true; //skip the end of the previous line "\n" storage_file_read(file, buffer, 1); size_t size = storage_file_size(file); size -= storage_file_tell(file); if(size < (offset * 2 + len * 2)) { FURI_LOG_E(TAG, "Seek position exceeds file size"); break; } if(offset >= 16) { storage_file_seek(file, ((offset / 16) - 1) * 32, false); ret = storage_file_read(file, buffer, 32); furi_assert(ret == 32); for(uint16_t i = 0; i < ret - 1; i += 2) { uint8_t hi_nibble = 0; uint8_t lo_nibble = 0; hex_char_to_hex_nibble(buffer[i], &hi_nibble); hex_char_to_hex_nibble(buffer[i + 1], &lo_nibble); iv[i / 2] = (hi_nibble << 4) | lo_nibble; } } if(!furi_hal_crypto_store_load_key(SUBGHZ_KEYSTORE_FILE_ENCRYPTION_KEY_SLOT, iv)) { FURI_LOG_E(TAG, "Unable to load encryption key"); break; } do { memset(buffer, 0, bufer_size); ret = storage_file_read(file, buffer, bufer_size); furi_assert(ret == bufer_size); for(uint16_t i = 0; i < ret - 1; i += 2) { uint8_t hi_nibble = 0; uint8_t lo_nibble = 0; hex_char_to_hex_nibble(buffer[i], &hi_nibble); hex_char_to_hex_nibble(buffer[i + 1], &lo_nibble); buffer[i / 2] = (hi_nibble << 4) | lo_nibble; } memset(decrypted_line, 0, SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE); if(!furi_hal_crypto_decrypt( (uint8_t*)buffer, (uint8_t*)decrypted_line, bufer_size / 2)) { decrypted = false; FURI_LOG_E(TAG, "Decryption failed"); break; } memcpy(data, (uint8_t*)decrypted_line + (offset - (offset / 16) * 16), len); } while(0); furi_hal_crypto_store_unload_key(SUBGHZ_KEYSTORE_FILE_ENCRYPTION_KEY_SLOT); if(decrypted) result = true; } while(0); flipper_file_close(flipper_file); flipper_file_free(flipper_file); furi_record_close("storage"); free(decrypted_line); string_clear(str_temp); return result; }