#include #include #include #include #include "lfrfid_protocols.h" #define JITTER_TIME (20) #define MIN_TIME (64 - JITTER_TIME) #define MAX_TIME (80 + JITTER_TIME) #define H10301_DECODED_DATA_SIZE (3) #define H10301_ENCODED_DATA_SIZE_U32 (3) #define H10301_ENCODED_DATA_SIZE (sizeof(uint32_t) * H10301_ENCODED_DATA_SIZE_U32) #define H10301_BIT_SIZE (sizeof(uint32_t) * 8) #define H10301_BIT_MAX_SIZE (H10301_BIT_SIZE * H10301_DECODED_DATA_SIZE) typedef struct { FSKDemod* fsk_demod; } ProtocolH10301Decoder; typedef struct { FSKOsc* fsk_osc; uint8_t encoded_index; uint32_t pulse; } ProtocolH10301Encoder; typedef struct { ProtocolH10301Decoder decoder; ProtocolH10301Encoder encoder; uint32_t encoded_data[H10301_ENCODED_DATA_SIZE_U32]; uint8_t data[H10301_DECODED_DATA_SIZE]; } ProtocolH10301; ProtocolH10301* protocol_h10301_alloc(void) { ProtocolH10301* protocol = malloc(sizeof(ProtocolH10301)); protocol->decoder.fsk_demod = fsk_demod_alloc(MIN_TIME, 6, MAX_TIME, 5); protocol->encoder.fsk_osc = fsk_osc_alloc(8, 10, 50); return protocol; }; void protocol_h10301_free(ProtocolH10301* protocol) { fsk_demod_free(protocol->decoder.fsk_demod); fsk_osc_free(protocol->encoder.fsk_osc); free(protocol); }; uint8_t* protocol_h10301_get_data(ProtocolH10301* protocol) { return protocol->data; }; void protocol_h10301_decoder_start(ProtocolH10301* protocol) { memset(protocol->encoded_data, 0, sizeof(uint32_t) * 3); }; static void protocol_h10301_decoder_store_data(ProtocolH10301* protocol, bool data) { protocol->encoded_data[0] = (protocol->encoded_data[0] << 1) | ((protocol->encoded_data[1] >> 31) & 1); protocol->encoded_data[1] = (protocol->encoded_data[1] << 1) | ((protocol->encoded_data[2] >> 31) & 1); protocol->encoded_data[2] = (protocol->encoded_data[2] << 1) | data; } static bool protocol_h10301_can_be_decoded(const uint32_t* card_data) { const uint8_t* encoded_data = (const uint8_t*)card_data; // packet preamble // raw data if(*(encoded_data + 3) != 0x1D) { return false; } // encoded company/oem // coded with 01 = 0, 10 = 1 transitions // stored in word 0 if((*card_data >> 10 & 0x3FFF) != 0x1556) { return false; } // encoded format/length // coded with 01 = 0, 10 = 1 transitions // stored in word 0 and word 1 if((((*card_data & 0x3FF) << 12) | ((*(card_data + 1) >> 20) & 0xFFF)) != 0x155556) { return false; } // data decoding uint32_t result = 0; // decode from word 1 // coded with 01 = 0, 10 = 1 transitions for(int8_t i = 9; i >= 0; i--) { switch((*(card_data + 1) >> (2 * i)) & 0b11) { case 0b01: result = (result << 1) | 0; break; case 0b10: result = (result << 1) | 1; break; default: return false; break; } } // decode from word 2 // coded with 01 = 0, 10 = 1 transitions for(int8_t i = 15; i >= 0; i--) { switch((*(card_data + 2) >> (2 * i)) & 0b11) { case 0b01: result = (result << 1) | 0; break; case 0b10: result = (result << 1) | 1; break; default: return false; break; } } // trailing parity (odd) test uint8_t parity_sum = 0; for(int8_t i = 0; i < 13; i++) { if(((result >> i) & 1) == 1) { parity_sum++; } } if((parity_sum % 2) != 1) { return false; } // leading parity (even) test parity_sum = 0; for(int8_t i = 13; i < 26; i++) { if(((result >> i) & 1) == 1) { parity_sum++; } } if((parity_sum % 2) == 1) { return false; } return true; } static void protocol_h10301_decode(const uint32_t* card_data, uint8_t* decoded_data) { // data decoding uint32_t result = 0; // decode from word 1 // coded with 01 = 0, 10 = 1 transitions for(int8_t i = 9; i >= 0; i--) { switch((*(card_data + 1) >> (2 * i)) & 0b11) { case 0b01: result = (result << 1) | 0; break; case 0b10: result = (result << 1) | 1; break; default: break; } } // decode from word 2 // coded with 01 = 0, 10 = 1 transitions for(int8_t i = 15; i >= 0; i--) { switch((*(card_data + 2) >> (2 * i)) & 0b11) { case 0b01: result = (result << 1) | 0; break; case 0b10: result = (result << 1) | 1; break; default: break; } } uint8_t data[H10301_DECODED_DATA_SIZE] = { (uint8_t)(result >> 17), (uint8_t)(result >> 9), (uint8_t)(result >> 1)}; memcpy(decoded_data, &data, H10301_DECODED_DATA_SIZE); } bool protocol_h10301_decoder_feed(ProtocolH10301* protocol, bool level, uint32_t duration) { bool value; uint32_t count; bool result = false; fsk_demod_feed(protocol->decoder.fsk_demod, level, duration, &value, &count); if(count > 0) { for(size_t i = 0; i < count; i++) { protocol_h10301_decoder_store_data(protocol, value); if(protocol_h10301_can_be_decoded(protocol->encoded_data)) { protocol_h10301_decode(protocol->encoded_data, protocol->data); result = true; break; } } } return result; }; static void protocol_h10301_write_raw_bit(bool bit, uint8_t position, uint32_t* card_data) { if(bit) { card_data[position / H10301_BIT_SIZE] |= 1UL << (H10301_BIT_SIZE - (position % H10301_BIT_SIZE) - 1); } else { card_data[position / H10301_BIT_SIZE] &= ~(1UL << (H10301_BIT_SIZE - (position % H10301_BIT_SIZE) - 1)); } } static void protocol_h10301_write_bit(bool bit, uint8_t position, uint32_t* card_data) { protocol_h10301_write_raw_bit(bit, position + 0, card_data); protocol_h10301_write_raw_bit(!bit, position + 1, card_data); } void protocol_h10301_encode(const uint8_t* decoded_data, uint8_t* encoded_data) { uint32_t card_data[H10301_DECODED_DATA_SIZE] = {0, 0, 0}; uint32_t fc_cn = (decoded_data[0] << 16) | (decoded_data[1] << 8) | decoded_data[2]; // even parity sum calculation (high 12 bits of data) uint8_t even_parity_sum = 0; for(int8_t i = 12; i < 24; i++) { if(((fc_cn >> i) & 1) == 1) { even_parity_sum++; } } // odd parity sum calculation (low 12 bits of data) uint8_t odd_parity_sum = 1; for(int8_t i = 0; i < 12; i++) { if(((fc_cn >> i) & 1) == 1) { odd_parity_sum++; } } // 0x1D preamble protocol_h10301_write_raw_bit(0, 0, card_data); protocol_h10301_write_raw_bit(0, 1, card_data); protocol_h10301_write_raw_bit(0, 2, card_data); protocol_h10301_write_raw_bit(1, 3, card_data); protocol_h10301_write_raw_bit(1, 4, card_data); protocol_h10301_write_raw_bit(1, 5, card_data); protocol_h10301_write_raw_bit(0, 6, card_data); protocol_h10301_write_raw_bit(1, 7, card_data); // company / OEM code 1 protocol_h10301_write_bit(0, 8, card_data); protocol_h10301_write_bit(0, 10, card_data); protocol_h10301_write_bit(0, 12, card_data); protocol_h10301_write_bit(0, 14, card_data); protocol_h10301_write_bit(0, 16, card_data); protocol_h10301_write_bit(0, 18, card_data); protocol_h10301_write_bit(1, 20, card_data); // card format / length 1 protocol_h10301_write_bit(0, 22, card_data); protocol_h10301_write_bit(0, 24, card_data); protocol_h10301_write_bit(0, 26, card_data); protocol_h10301_write_bit(0, 28, card_data); protocol_h10301_write_bit(0, 30, card_data); protocol_h10301_write_bit(0, 32, card_data); protocol_h10301_write_bit(0, 34, card_data); protocol_h10301_write_bit(0, 36, card_data); protocol_h10301_write_bit(0, 38, card_data); protocol_h10301_write_bit(0, 40, card_data); protocol_h10301_write_bit(1, 42, card_data); // even parity bit protocol_h10301_write_bit((even_parity_sum % 2), 44, card_data); // data for(uint8_t i = 0; i < 24; i++) { protocol_h10301_write_bit((fc_cn >> (23 - i)) & 1, 46 + (i * 2), card_data); } // odd parity bit protocol_h10301_write_bit((odd_parity_sum % 2), 94, card_data); memcpy(encoded_data, &card_data, H10301_ENCODED_DATA_SIZE); } bool protocol_h10301_encoder_start(ProtocolH10301* protocol) { protocol_h10301_encode(protocol->data, (uint8_t*)protocol->encoded_data); protocol->encoder.encoded_index = 0; protocol->encoder.pulse = 0; return true; }; LevelDuration protocol_h10301_encoder_yield(ProtocolH10301* protocol) { bool level = 0; uint32_t duration = 0; // if pulse is zero, we need to output high, otherwise we need to output low if(protocol->encoder.pulse == 0) { // get bit uint8_t bit = (protocol->encoded_data[protocol->encoder.encoded_index / H10301_BIT_SIZE] >> ((H10301_BIT_SIZE - 1) - (protocol->encoder.encoded_index % H10301_BIT_SIZE))) & 1; // get pulse from oscillator bool advance = fsk_osc_next(protocol->encoder.fsk_osc, bit, &duration); if(advance) { protocol->encoder.encoded_index++; if(protocol->encoder.encoded_index >= (H10301_BIT_MAX_SIZE)) { protocol->encoder.encoded_index = 0; } } // duration diveded by 2 because we need to output high and low duration = duration / 2; protocol->encoder.pulse = duration; level = true; } else { // output low half and reset pulse duration = protocol->encoder.pulse; protocol->encoder.pulse = 0; level = false; } return level_duration_make(level, duration); }; bool protocol_h10301_write_data(ProtocolH10301* protocol, void* data) { LFRFIDWriteRequest* request = (LFRFIDWriteRequest*)data; bool result = false; // Correct protocol data by redecoding protocol_h10301_encoder_start(protocol); protocol_h10301_decode(protocol->encoded_data, protocol->data); protocol_h10301_encoder_start(protocol); if(request->write_type == LFRFIDWriteTypeT5577) { request->t5577.block[0] = LFRFID_T5577_MODULATION_FSK2a | LFRFID_T5577_BITRATE_RF_50 | (3 << LFRFID_T5577_MAXBLOCK_SHIFT); request->t5577.block[1] = protocol->encoded_data[0]; request->t5577.block[2] = protocol->encoded_data[1]; request->t5577.block[3] = protocol->encoded_data[2]; request->t5577.blocks_to_write = 4; result = true; } return result; }; void protocol_h10301_render_data(ProtocolH10301* protocol, FuriString* result) { uint8_t* data = protocol->data; furi_string_printf( result, "FC: %u\r\n" "Card: %u", data[0], (uint16_t)((data[1] << 8) | (data[2]))); }; const ProtocolBase protocol_h10301 = { .name = "H10301", .manufacturer = "HID", .data_size = H10301_DECODED_DATA_SIZE, .features = LFRFIDFeatureASK, .validate_count = 3, .alloc = (ProtocolAlloc)protocol_h10301_alloc, .free = (ProtocolFree)protocol_h10301_free, .get_data = (ProtocolGetData)protocol_h10301_get_data, .decoder = { .start = (ProtocolDecoderStart)protocol_h10301_decoder_start, .feed = (ProtocolDecoderFeed)protocol_h10301_decoder_feed, }, .encoder = { .start = (ProtocolEncoderStart)protocol_h10301_encoder_start, .yield = (ProtocolEncoderYield)protocol_h10301_encoder_yield, }, .render_data = (ProtocolRenderData)protocol_h10301_render_data, .render_brief_data = (ProtocolRenderData)protocol_h10301_render_data, .write_data = (ProtocolWriteData)protocol_h10301_write_data, };