#include "came_atomo.h" #include #include "../blocks/const.h" #include "../blocks/decoder.h" #include "../blocks/encoder.h" #include "../blocks/generic.h" #include "../blocks/math.h" #define TAG "SubGhzProtocoCameAtomo" #define SUBGHZ_NO_CAME_ATOMO_RAINBOW_TABLE 0xFFFFFFFFFFFFFFFF static const SubGhzBlockConst subghz_protocol_came_atomo_const = { .te_short = 600, .te_long = 1200, .te_delta = 250, .min_count_bit_for_found = 62, }; struct SubGhzProtocolDecoderCameAtomo { SubGhzProtocolDecoderBase base; SubGhzBlockDecoder decoder; SubGhzBlockGeneric generic; ManchesterState manchester_saved_state; const char* came_atomo_rainbow_table_file_name; }; struct SubGhzProtocolEncoderCameAtomo { SubGhzProtocolEncoderBase base; SubGhzProtocolBlockEncoder encoder; SubGhzBlockGeneric generic; }; typedef enum { CameAtomoDecoderStepReset = 0, CameAtomoDecoderStepDecoderData, } CameAtomoDecoderStep; const SubGhzProtocolDecoder subghz_protocol_came_atomo_decoder = { .alloc = subghz_protocol_decoder_came_atomo_alloc, .free = subghz_protocol_decoder_came_atomo_free, .feed = subghz_protocol_decoder_came_atomo_feed, .reset = subghz_protocol_decoder_came_atomo_reset, .get_hash_data = subghz_protocol_decoder_came_atomo_get_hash_data, .serialize = subghz_protocol_decoder_came_atomo_serialize, .deserialize = subghz_protocol_decoder_came_atomo_deserialize, .get_string = subghz_protocol_decoder_came_atomo_get_string, }; const SubGhzProtocolEncoder subghz_protocol_came_atomo_encoder = { .alloc = NULL, .free = NULL, .deserialize = NULL, .stop = NULL, .yield = NULL, }; const SubGhzProtocol subghz_protocol_came_atomo = { .name = SUBGHZ_PROTOCOL_CAME_ATOMO_NAME, .type = SubGhzProtocolTypeDynamic, .flag = SubGhzProtocolFlag_433 | SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable, .decoder = &subghz_protocol_came_atomo_decoder, .encoder = &subghz_protocol_came_atomo_encoder, }; void* subghz_protocol_decoder_came_atomo_alloc(SubGhzEnvironment* environment) { SubGhzProtocolDecoderCameAtomo* instance = malloc(sizeof(SubGhzProtocolDecoderCameAtomo)); instance->base.protocol = &subghz_protocol_came_atomo; instance->generic.protocol_name = instance->base.protocol->name; instance->came_atomo_rainbow_table_file_name = subghz_environment_get_came_atomo_rainbow_table_file_name(environment); if(instance->came_atomo_rainbow_table_file_name) { FURI_LOG_I( TAG, "Loading rainbow table from %s", instance->came_atomo_rainbow_table_file_name); } return instance; } void subghz_protocol_decoder_came_atomo_free(void* context) { furi_assert(context); SubGhzProtocolDecoderCameAtomo* instance = context; instance->came_atomo_rainbow_table_file_name = NULL; free(instance); } void subghz_protocol_decoder_came_atomo_reset(void* context) { furi_assert(context); SubGhzProtocolDecoderCameAtomo* instance = context; instance->decoder.parser_step = CameAtomoDecoderStepReset; manchester_advance( instance->manchester_saved_state, ManchesterEventReset, &instance->manchester_saved_state, NULL); } void subghz_protocol_decoder_came_atomo_feed(void* context, bool level, uint32_t duration) { furi_assert(context); SubGhzProtocolDecoderCameAtomo* instance = context; ManchesterEvent event = ManchesterEventReset; switch(instance->decoder.parser_step) { case CameAtomoDecoderStepReset: if((!level) && (DURATION_DIFF(duration, subghz_protocol_came_atomo_const.te_long * 60) < subghz_protocol_came_atomo_const.te_delta * 40)) { //Found header CAME instance->decoder.parser_step = CameAtomoDecoderStepDecoderData; instance->decoder.decode_data = 0; instance->decoder.decode_count_bit = 1; manchester_advance( instance->manchester_saved_state, ManchesterEventReset, &instance->manchester_saved_state, NULL); manchester_advance( instance->manchester_saved_state, ManchesterEventShortLow, &instance->manchester_saved_state, NULL); } break; case CameAtomoDecoderStepDecoderData: if(!level) { if(DURATION_DIFF(duration, subghz_protocol_came_atomo_const.te_short) < subghz_protocol_came_atomo_const.te_delta) { event = ManchesterEventShortLow; } else if( DURATION_DIFF(duration, subghz_protocol_came_atomo_const.te_long) < subghz_protocol_came_atomo_const.te_delta) { event = ManchesterEventLongLow; } else if( duration >= ((uint32_t)subghz_protocol_came_atomo_const.te_long * 2 + subghz_protocol_came_atomo_const.te_delta)) { if(instance->decoder.decode_count_bit == subghz_protocol_came_atomo_const.min_count_bit_for_found) { instance->generic.data = instance->decoder.decode_data; instance->generic.data_count_bit = instance->decoder.decode_count_bit; if(instance->base.callback) instance->base.callback(&instance->base, instance->base.context); } instance->decoder.decode_data = 0; instance->decoder.decode_count_bit = 1; manchester_advance( instance->manchester_saved_state, ManchesterEventReset, &instance->manchester_saved_state, NULL); manchester_advance( instance->manchester_saved_state, ManchesterEventShortLow, &instance->manchester_saved_state, NULL); } else { instance->decoder.parser_step = CameAtomoDecoderStepReset; } } else { if(DURATION_DIFF(duration, subghz_protocol_came_atomo_const.te_short) < subghz_protocol_came_atomo_const.te_delta) { event = ManchesterEventShortHigh; } else if( DURATION_DIFF(duration, subghz_protocol_came_atomo_const.te_long) < subghz_protocol_came_atomo_const.te_delta) { event = ManchesterEventLongHigh; } else { instance->decoder.parser_step = CameAtomoDecoderStepReset; } } if(event != ManchesterEventReset) { bool data; bool data_ok = manchester_advance( instance->manchester_saved_state, event, &instance->manchester_saved_state, &data); if(data_ok) { instance->decoder.decode_data = (instance->decoder.decode_data << 1) | !data; instance->decoder.decode_count_bit++; } } break; } } /** * Read bytes from rainbow table * @param file_name Full path to rainbow table the file * @param number_atomo_magic_xor Сell number in the array * @return atomo_magic_xor */ static uint64_t subghz_protocol_came_atomo_get_magic_xor_in_file( const char* file_name, uint8_t number_atomo_magic_xor) { if(!strcmp(file_name, "")) return SUBGHZ_NO_CAME_ATOMO_RAINBOW_TABLE; uint8_t buffer[sizeof(uint64_t)] = {0}; uint32_t address = number_atomo_magic_xor * sizeof(uint64_t); uint64_t atomo_magic_xor = 0; if(subghz_keystore_raw_get_data(file_name, address, buffer, sizeof(uint64_t))) { for(size_t i = 0; i < sizeof(uint64_t); i++) { atomo_magic_xor = (atomo_magic_xor << 8) | buffer[i]; } } else { atomo_magic_xor = SUBGHZ_NO_CAME_ATOMO_RAINBOW_TABLE; } return atomo_magic_xor; } /** * Analysis of received data * @param instance Pointer to a SubGhzBlockGeneric* instance * @param file_name Full path to rainbow table the file */ static void subghz_protocol_came_atomo_remote_controller( SubGhzBlockGeneric* instance, const char* file_name) { /* * 0x1fafef3ed0f7d9ef * 0x185fcc1531ee86e7 * 0x184fa96912c567ff * 0x187f8a42f3dc38f7 * 0x186f63915492a5cd * 0x181f40bab58bfac5 * 0x180f25c696a01bdd * 0x183f06ed77b944d5 * 0x182ef661d83d21a9 * 0x18ded54a39247ea1 * 0x18ceb0361a0f9fb9 * 0x18fe931dfb16c0b1 * 0x18ee7ace5c585d8b * ........ * transmission consists of 99 parcels with increasing counter while holding down the button * with each new press, the counter in the encrypted part increases * * 0x1FAFF13ED0F7D9EF * 0x1FAFF11ED0F7D9EF * 0x1FAFF10ED0F7D9EF * 0x1FAFF0FED0F7D9EF * 0x1FAFF0EED0F7D9EF * 0x1FAFF0DED0F7D9EF * 0x1FAFF0CED0F7D9EF * 0x1FAFF0BED0F7D9EF * 0x1FAFF0AED0F7D9EF * * where 0x1FAF - parcel counter, 0хF0A - button press counter, * 0xED0F7D9E - serial number, 0хF - key * 0x1FAF parcel counter - 1 in the parcel queue ^ 0x185F = 0x07F0 * 0x185f ^ 0x185F = 0x0000 * 0x184f ^ 0x185F = 0x0010 * 0x187f ^ 0x185F = 0x0020 * ..... * 0x182e ^ 0x185F = 0x0071 * 0x18de ^ 0x185F = 0x0081 * ..... * 0x1e43 ^ 0x185F = 0x061C * where the last nibble is incremented every 8 samples * * Decode * * 0x1cf6931dfb16c0b1 => 0x1cf6 * 0x1cf6 ^ 0x185F = 0x04A9 * 0x04A9 => 0x04A = 74 (dec) * 74+1 % 32(atomo_magic_xor) = 11 * GET atomo_magic_xor[11] = 0xXXXXXXXXXXXXXXXX * 0x931dfb16c0b1 ^ 0xXXXXXXXXXXXXXXXX = 0xEF3ED0F7D9EF * 0xEF3 ED0F7D9E F => 0xEF3 - CNT, 0xED0F7D9E - SN, 0xF - key * * */ uint16_t parcel_counter = instance->data >> 48; parcel_counter = parcel_counter ^ 0x185F; parcel_counter >>= 4; uint8_t ind = (parcel_counter + 1) % 32; uint64_t temp_data = instance->data & 0x0000FFFFFFFFFFFF; uint64_t atomo_magic_xor = subghz_protocol_came_atomo_get_magic_xor_in_file(file_name, ind); if(atomo_magic_xor != SUBGHZ_NO_CAME_ATOMO_RAINBOW_TABLE) { temp_data = temp_data ^ atomo_magic_xor; instance->cnt = temp_data >> 36; instance->serial = (temp_data >> 4) & 0x000FFFFFFFF; instance->btn = temp_data & 0xF; } else { instance->cnt = 0; instance->serial = 0; instance->btn = 0; } } uint8_t subghz_protocol_decoder_came_atomo_get_hash_data(void* context) { furi_assert(context); SubGhzProtocolDecoderCameAtomo* instance = context; return subghz_protocol_blocks_get_hash_data( &instance->decoder, (instance->decoder.decode_count_bit / 8) + 1); } bool subghz_protocol_decoder_came_atomo_serialize( void* context, FlipperFormat* flipper_format, uint32_t frequency, FuriHalSubGhzPreset preset) { furi_assert(context); SubGhzProtocolDecoderCameAtomo* instance = context; return subghz_block_generic_serialize(&instance->generic, flipper_format, frequency, preset); } bool subghz_protocol_decoder_came_atomo_deserialize(void* context, FlipperFormat* flipper_format) { furi_assert(context); SubGhzProtocolDecoderCameAtomo* instance = context; return subghz_block_generic_deserialize(&instance->generic, flipper_format); } void subghz_protocol_decoder_came_atomo_get_string(void* context, string_t output) { furi_assert(context); SubGhzProtocolDecoderCameAtomo* instance = context; subghz_protocol_came_atomo_remote_controller( &instance->generic, instance->came_atomo_rainbow_table_file_name); uint32_t code_found_hi = instance->generic.data >> 32; uint32_t code_found_lo = instance->generic.data & 0x00000000ffffffff; string_cat_printf( output, "%s %db\r\n" "Key:0x%lX%08lX\r\n" "Sn:0x%08lX Btn:0x%01X\r\n" "Cnt:0x%03X\r\n", instance->generic.protocol_name, instance->generic.data_count_bit, code_found_hi, code_found_lo, instance->generic.serial, instance->generic.btn, instance->generic.cnt); }