#include "nero_radio.h" #include "../blocks/const.h" #include "../blocks/decoder.h" #include "../blocks/encoder.h" #include "../blocks/generic.h" #include "../blocks/math.h" #define TAG "SubGhzProtocolNeroRadio" static const SubGhzBlockConst subghz_protocol_nero_radio_const = { .te_short = 200, .te_long = 400, .te_delta = 80, .min_count_bit_for_found = 56, }; struct SubGhzProtocolDecoderNeroRadio { SubGhzProtocolDecoderBase base; SubGhzBlockDecoder decoder; SubGhzBlockGeneric generic; uint16_t header_count; }; struct SubGhzProtocolEncoderNeroRadio { SubGhzProtocolEncoderBase base; SubGhzProtocolBlockEncoder encoder; SubGhzBlockGeneric generic; }; typedef enum { NeroRadioDecoderStepReset = 0, NeroRadioDecoderStepCheckPreambula, NeroRadioDecoderStepSaveDuration, NeroRadioDecoderStepCheckDuration, } NeroRadioDecoderStep; const SubGhzProtocolDecoder subghz_protocol_nero_radio_decoder = { .alloc = subghz_protocol_decoder_nero_radio_alloc, .free = subghz_protocol_decoder_nero_radio_free, .feed = subghz_protocol_decoder_nero_radio_feed, .reset = subghz_protocol_decoder_nero_radio_reset, .get_hash_data = subghz_protocol_decoder_nero_radio_get_hash_data, .serialize = subghz_protocol_decoder_nero_radio_serialize, .deserialize = subghz_protocol_decoder_nero_radio_deserialize, .get_string = subghz_protocol_decoder_nero_radio_get_string, }; const SubGhzProtocolEncoder subghz_protocol_nero_radio_encoder = { .alloc = subghz_protocol_encoder_nero_radio_alloc, .free = subghz_protocol_encoder_nero_radio_free, .deserialize = subghz_protocol_encoder_nero_radio_deserialize, .stop = subghz_protocol_encoder_nero_radio_stop, .yield = subghz_protocol_encoder_nero_radio_yield, }; const SubGhzProtocol subghz_protocol_nero_radio = { .name = SUBGHZ_PROTOCOL_NERO_RADIO_NAME, .type = SubGhzProtocolTypeStatic, .flag = SubGhzProtocolFlag_433 | SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable | SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save | SubGhzProtocolFlag_Send, .decoder = &subghz_protocol_nero_radio_decoder, .encoder = &subghz_protocol_nero_radio_encoder, }; void* subghz_protocol_encoder_nero_radio_alloc(SubGhzEnvironment* environment) { UNUSED(environment); SubGhzProtocolEncoderNeroRadio* instance = malloc(sizeof(SubGhzProtocolEncoderNeroRadio)); instance->base.protocol = &subghz_protocol_nero_radio; instance->generic.protocol_name = instance->base.protocol->name; instance->encoder.repeat = 10; instance->encoder.size_upload = 256; instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration)); instance->encoder.is_runing = false; return instance; } void subghz_protocol_encoder_nero_radio_free(void* context) { furi_assert(context); SubGhzProtocolEncoderNeroRadio* instance = context; free(instance->encoder.upload); free(instance); } /** * Generating an upload from data. * @param instance Pointer to a SubGhzProtocolEncoderNeroRadio instance * @return true On success */ static bool subghz_protocol_encoder_nero_radio_get_upload(SubGhzProtocolEncoderNeroRadio* instance) { furi_assert(instance); size_t index = 0; size_t size_upload = 49 * 2 + 2 + (instance->generic.data_count_bit * 2); if(size_upload > instance->encoder.size_upload) { FURI_LOG_E(TAG, "Size upload exceeds allocated encoder buffer."); return false; } else { instance->encoder.size_upload = size_upload; } //Send header for(uint8_t i = 0; i < 49; i++) { instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_nero_radio_const.te_short); instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_nero_radio_const.te_short); } //Send start bit instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_nero_radio_const.te_short * 4); instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_nero_radio_const.te_short); //Send key data for(uint8_t i = instance->generic.data_count_bit; i > 1; i--) { if(bit_read(instance->generic.data, i - 1)) { //send bit 1 instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_nero_radio_const.te_long); instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_nero_radio_const.te_short); } else { //send bit 0 instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_nero_radio_const.te_short); instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_nero_radio_const.te_long); } } if(bit_read(instance->generic.data, 0)) { //send bit 1 instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_nero_radio_const.te_long); instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_nero_radio_const.te_short * 37); } else { //send bit 0 instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_nero_radio_const.te_short); instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_nero_radio_const.te_short * 37); } return true; } bool subghz_protocol_encoder_nero_radio_deserialize(void* context, FlipperFormat* flipper_format) { furi_assert(context); SubGhzProtocolEncoderNeroRadio* instance = context; bool res = false; do { if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) { FURI_LOG_E(TAG, "Deserialize error"); break; } //optional parameter parameter flipper_format_read_uint32( flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1); subghz_protocol_encoder_nero_radio_get_upload(instance); instance->encoder.is_runing = true; res = true; } while(false); return res; } void subghz_protocol_encoder_nero_radio_stop(void* context) { SubGhzProtocolEncoderNeroRadio* instance = context; instance->encoder.is_runing = false; } LevelDuration subghz_protocol_encoder_nero_radio_yield(void* context) { SubGhzProtocolEncoderNeroRadio* instance = context; if(instance->encoder.repeat == 0 || !instance->encoder.is_runing) { instance->encoder.is_runing = false; return level_duration_reset(); } LevelDuration ret = instance->encoder.upload[instance->encoder.front]; if(++instance->encoder.front == instance->encoder.size_upload) { instance->encoder.repeat--; instance->encoder.front = 0; } return ret; } void* subghz_protocol_decoder_nero_radio_alloc(SubGhzEnvironment* environment) { UNUSED(environment); SubGhzProtocolDecoderNeroRadio* instance = malloc(sizeof(SubGhzProtocolDecoderNeroRadio)); instance->base.protocol = &subghz_protocol_nero_radio; instance->generic.protocol_name = instance->base.protocol->name; return instance; } void subghz_protocol_decoder_nero_radio_free(void* context) { furi_assert(context); SubGhzProtocolDecoderNeroRadio* instance = context; free(instance); } void subghz_protocol_decoder_nero_radio_reset(void* context) { furi_assert(context); SubGhzProtocolDecoderNeroRadio* instance = context; instance->decoder.parser_step = NeroRadioDecoderStepReset; } void subghz_protocol_decoder_nero_radio_feed(void* context, bool level, uint32_t duration) { furi_assert(context); SubGhzProtocolDecoderNeroRadio* instance = context; switch(instance->decoder.parser_step) { case NeroRadioDecoderStepReset: if((level) && (DURATION_DIFF(duration, subghz_protocol_nero_radio_const.te_short) < subghz_protocol_nero_radio_const.te_delta)) { instance->decoder.parser_step = NeroRadioDecoderStepCheckPreambula; instance->decoder.te_last = duration; instance->header_count = 0; } break; case NeroRadioDecoderStepCheckPreambula: if(level) { if((DURATION_DIFF(duration, subghz_protocol_nero_radio_const.te_short) < subghz_protocol_nero_radio_const.te_delta) || (DURATION_DIFF(duration, subghz_protocol_nero_radio_const.te_short * 4) < subghz_protocol_nero_radio_const.te_delta)) { instance->decoder.te_last = duration; } else { instance->decoder.parser_step = NeroRadioDecoderStepReset; } } else if( DURATION_DIFF(duration, subghz_protocol_nero_radio_const.te_short) < subghz_protocol_nero_radio_const.te_delta) { if(DURATION_DIFF(instance->decoder.te_last, subghz_protocol_nero_radio_const.te_short) < subghz_protocol_nero_radio_const.te_delta) { // Found header instance->header_count++; break; } else if( DURATION_DIFF( instance->decoder.te_last, subghz_protocol_nero_radio_const.te_short * 4) < subghz_protocol_nero_radio_const.te_delta) { // Found start bit if(instance->header_count > 40) { instance->decoder.parser_step = NeroRadioDecoderStepSaveDuration; instance->decoder.decode_data = 0; instance->decoder.decode_count_bit = 0; } else { instance->decoder.parser_step = NeroRadioDecoderStepReset; } } else { instance->decoder.parser_step = NeroRadioDecoderStepReset; } } else { instance->decoder.parser_step = NeroRadioDecoderStepReset; } break; case NeroRadioDecoderStepSaveDuration: if(level) { instance->decoder.te_last = duration; instance->decoder.parser_step = NeroRadioDecoderStepCheckDuration; } else { instance->decoder.parser_step = NeroRadioDecoderStepReset; } break; case NeroRadioDecoderStepCheckDuration: if(!level) { if(duration >= ((uint32_t)subghz_protocol_nero_radio_const.te_short * 10 + subghz_protocol_nero_radio_const.te_delta * 2)) { //Found stop bit if(DURATION_DIFF( instance->decoder.te_last, subghz_protocol_nero_radio_const.te_short) < subghz_protocol_nero_radio_const.te_delta) { subghz_protocol_blocks_add_bit(&instance->decoder, 0); } else if( DURATION_DIFF( instance->decoder.te_last, subghz_protocol_nero_radio_const.te_long) < subghz_protocol_nero_radio_const.te_delta) { subghz_protocol_blocks_add_bit(&instance->decoder, 1); } instance->decoder.parser_step = NeroRadioDecoderStepReset; if(instance->decoder.decode_count_bit >= subghz_protocol_nero_radio_const.min_count_bit_for_found) { instance->generic.data = instance->decoder.decode_data; instance->generic.data_count_bit = instance->decoder.decode_count_bit; if(instance->base.callback) instance->base.callback(&instance->base, instance->base.context); } instance->decoder.decode_data = 0; instance->decoder.decode_count_bit = 0; instance->decoder.parser_step = NeroRadioDecoderStepReset; break; } else if( (DURATION_DIFF( instance->decoder.te_last, subghz_protocol_nero_radio_const.te_short) < subghz_protocol_nero_radio_const.te_delta) && (DURATION_DIFF(duration, subghz_protocol_nero_radio_const.te_long) < subghz_protocol_nero_radio_const.te_delta)) { subghz_protocol_blocks_add_bit(&instance->decoder, 0); instance->decoder.parser_step = NeroRadioDecoderStepSaveDuration; } else if( (DURATION_DIFF( instance->decoder.te_last, subghz_protocol_nero_radio_const.te_long) < subghz_protocol_nero_radio_const.te_delta) && (DURATION_DIFF(duration, subghz_protocol_nero_radio_const.te_short) < subghz_protocol_nero_radio_const.te_delta)) { subghz_protocol_blocks_add_bit(&instance->decoder, 1); instance->decoder.parser_step = NeroRadioDecoderStepSaveDuration; } else { instance->decoder.parser_step = NeroRadioDecoderStepReset; } } else { instance->decoder.parser_step = NeroRadioDecoderStepReset; } break; } } uint8_t subghz_protocol_decoder_nero_radio_get_hash_data(void* context) { furi_assert(context); SubGhzProtocolDecoderNeroRadio* instance = context; return subghz_protocol_blocks_get_hash_data( &instance->decoder, (instance->decoder.decode_count_bit / 8) + 1); } bool subghz_protocol_decoder_nero_radio_serialize( void* context, FlipperFormat* flipper_format, SubGhzPresetDefinition* preset) { furi_assert(context); SubGhzProtocolDecoderNeroRadio* instance = context; return subghz_block_generic_serialize(&instance->generic, flipper_format, preset); } bool subghz_protocol_decoder_nero_radio_deserialize(void* context, FlipperFormat* flipper_format) { furi_assert(context); SubGhzProtocolDecoderNeroRadio* instance = context; return subghz_block_generic_deserialize(&instance->generic, flipper_format); } void subghz_protocol_decoder_nero_radio_get_string(void* context, string_t output) { furi_assert(context); SubGhzProtocolDecoderNeroRadio* instance = context; uint32_t code_found_hi = instance->generic.data >> 32; uint32_t code_found_lo = instance->generic.data & 0x00000000ffffffff; uint64_t code_found_reverse = subghz_protocol_blocks_reverse_key( instance->generic.data, instance->generic.data_count_bit); uint32_t code_found_reverse_hi = code_found_reverse >> 32; uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff; string_cat_printf( output, "%s %dbit\r\n" "Key:0x%lX%08lX\r\n" "Yek:0x%lX%08lX\r\n", instance->generic.protocol_name, instance->generic.data_count_bit, code_found_hi, code_found_lo, code_found_reverse_hi, code_found_reverse_lo); }