#include #include typedef enum { EventTypeTick, EventTypeKey, EventTypeRx } EventType; typedef struct { bool value; uint32_t dwt_value; } RxEvent; typedef struct { union { InputEvent input; RxEvent rx; } value; EventType type; } AppEvent; typedef struct { uint32_t freq_khz; bool on; uint8_t customer_id; uint32_t em_data; bool dirty; } State; static void render_callback(Canvas* canvas, void* ctx) { State* state = (State*)acquire_mutex((ValueMutex*)ctx, 25); canvas_clear(canvas); canvas_set_color(canvas, ColorBlack); canvas_set_font(canvas, FontPrimary); canvas_draw_str(canvas, 2, 12, "LF RFID"); canvas_draw_str(canvas, 2, 24, state->on ? "Reading" : "Emulating"); char buf[14]; sprintf(buf, "%d kHz", (int)state->freq_khz); canvas_draw_str(canvas, 2, 36, buf); sprintf(buf, "%02d:%010ld", state->customer_id, state->em_data); canvas_draw_str(canvas, 2, 45, buf); release_mutex((ValueMutex*)ctx, state); } static void input_callback(InputEvent* input_event, void* ctx) { osMessageQueueId_t event_queue = ctx; AppEvent event; event.type = EventTypeKey; event.value.input = *input_event; osMessageQueuePut(event_queue, &event, 0, 0); } extern TIM_HandleTypeDef TIM_C; void em4100_emulation(uint8_t* data, GpioPin* pin); void prepare_data(uint32_t ID, uint32_t VENDOR, uint8_t* data); GpioPin debug_0 = {.pin = GPIO_PIN_2, .port = GPIOB}; GpioPin debug_1 = {.pin = GPIO_PIN_3, .port = GPIOC}; extern COMP_HandleTypeDef hcomp1; void comparator_trigger_callback(void* hcomp, void* comp_ctx) { if((COMP_HandleTypeDef*)hcomp != &hcomp1) return; // gpio_write(&debug_0, true); osMessageQueueId_t event_queue = comp_ctx; AppEvent event; event.type = EventTypeRx; event.value.rx.value = (HAL_COMP_GetOutputLevel(hcomp) == COMP_OUTPUT_LEVEL_HIGH); event.value.rx.dwt_value = DWT->CYCCNT; osMessageQueuePut(event_queue, &event, 0, 0); // gpio_write(&debug_0, false); } const uint8_t ROW_SIZE = 4; const uint8_t LINE_SIZE = 10; static bool even_check(uint8_t* buf) { uint8_t col_parity_sum[ROW_SIZE]; for(uint8_t col = 0; col < ROW_SIZE; col++) { col_parity_sum[col] = 0; } // line parity for(uint8_t line = 0; line < LINE_SIZE; line++) { printf("%d: ", line); uint8_t parity_sum = 0; for(uint8_t col = 0; col < ROW_SIZE; col++) { parity_sum += buf[line * (ROW_SIZE + 1) + col]; col_parity_sum[col] += buf[line * (ROW_SIZE + 1) + col]; printf("%d ", buf[line * (ROW_SIZE + 1) + col]); } if((1 & parity_sum) != buf[line * (ROW_SIZE + 1) + ROW_SIZE]) { printf( "line parity fail at %d (%d : %d)\n", line, parity_sum, buf[line * (ROW_SIZE + 1) + ROW_SIZE]); return false; } printf("\r\n"); } for(uint8_t col = 0; col < ROW_SIZE; col++) { if((1 & col_parity_sum[col]) != buf[LINE_SIZE * (ROW_SIZE + 1) + col]) { printf( "col parity fail at %d (%d : %d)\n", col, col_parity_sum[col], buf[LINE_SIZE * (ROW_SIZE + 1) + col]); return false; } } return true; } static void extract_data(uint8_t* buf, uint8_t* customer, uint32_t* em_data) { uint32_t data = 0; uint8_t offset = 0; printf("customer: "); for(uint8_t line = 0; line < 2; line++) { for(uint8_t col = 0; col < ROW_SIZE; col++) { uint32_t bit = buf[line * (ROW_SIZE + 1) + col]; data |= bit << (7 - offset); printf("%d ", bit); offset++; } } printf("\r\n"); *customer = data; data = 0; offset = 0; printf("data: "); for(uint8_t line = 2; line < LINE_SIZE; line++) { for(uint8_t col = 0; col < ROW_SIZE; col++) { uint32_t bit = buf[line * (ROW_SIZE + 1) + col]; data |= bit << (31 - offset); printf("%d ", bit); offset++; } } printf("\r\n"); *em_data = data; } void lf_rfid_workaround(void* p) { osMessageQueueId_t event_queue = osMessageQueueNew(1, sizeof(AppEvent), NULL); // create pin GpioPin pull_pin = {.pin = RFID_PULL_Pin, .port = RFID_PULL_GPIO_Port}; // TODO open record GpioPin* pull_pin_record = &pull_pin; gpio_init(pull_pin_record, GpioModeOutputPushPull); gpio_init(&debug_0, GpioModeOutputPushPull); gpio_init(&debug_1, GpioModeOutputPushPull); // pulldown iBtn pin to prevent interference from ibutton gpio_init((GpioPin*)&ibutton_gpio, GpioModeOutputOpenDrain); gpio_write((GpioPin*)&ibutton_gpio, false); // init ctx void* comp_ctx = (void*)event_queue; // start comp HAL_COMP_Start(&hcomp1); uint8_t emulation_data[64]; State _state; _state.freq_khz = 125; _state.on = false; _state.customer_id = 00; _state.em_data = 4378151; _state.dirty = true; ValueMutex state_mutex; if(!init_mutex(&state_mutex, &_state, sizeof(State))) { printf("cannot create mutex\r\n"); furiac_exit(NULL); } Widget* widget = widget_alloc(); widget_draw_callback_set(widget, render_callback, &state_mutex); widget_input_callback_set(widget, input_callback, event_queue); // Open GUI and register widget Gui* gui = furi_record_open("gui"); gui_add_widget(gui, widget, GuiLayerFullscreen); AppEvent event; uint32_t prev_dwt; int8_t symbol = -1; // init state bool center = false; size_t symbol_cnt = 0; GpioPin* led_record = (GpioPin*)&led_gpio[1]; gpio_init(led_record, GpioModeOutputOpenDrain); uint8_t buf[64]; for(size_t i = 0; i < 64; i++) { buf[i] = 0; } while(1) { osStatus_t event_status = osMessageQueueGet(event_queue, &event, NULL, 100); if(event.type == EventTypeRx && event_status == osOK) { uint32_t dt = (event.value.rx.dwt_value - prev_dwt) / (SystemCoreClock / 1000000.0f); prev_dwt = event.value.rx.dwt_value; if(dt > 384) { // change symbol 0->1 or 1->0 symbol = event.value.rx.value; center = true; } else { // same symbol as prev or center center = !center; } /* gpio_write(&debug_1, true); delay_us(center ? 10 : 30); gpio_write(&debug_1, false); */ if(center && symbol != -1) { /* gpio_write(&debug_0, true); delay_us(symbol ? 10 : 30); gpio_write(&debug_0, false); */ buf[symbol_cnt] = symbol; symbol_cnt++; } // check preamble if(symbol_cnt <= 9 && symbol == 0) { symbol_cnt = 0; symbol = -1; } // check stop bit if(symbol_cnt == 64 && symbol == 1) { symbol_cnt = 0; symbol = -1; } if(symbol_cnt == 64) { if(even_check(&buf[9])) { State* state = (State*)acquire_mutex_block(&state_mutex); extract_data(&buf[9], &state->customer_id, &state->em_data); printf("customer: %02d, data: %010lu\n", state->customer_id, state->em_data); release_mutex(&state_mutex, state); gpio_write(led_record, false); osDelay(100); gpio_write(led_record, true); } symbol_cnt = 0; } } else { State* state = (State*)acquire_mutex_block(&state_mutex); if(event_status == osOK) { if(event.type == EventTypeKey) { // press events if(event.value.input.state && event.value.input.input == InputBack) { hal_pwmn_stop(&TIM_C, TIM_CHANNEL_1); // TODO: move to furiac_onexit gpio_init(pull_pin_record, GpioModeInput); gpio_init((GpioPin*)&ibutton_gpio, GpioModeInput); // TODO remove all widgets create by app widget_enabled_set(widget, false); furiac_exit(NULL); } if(event.value.input.state && event.value.input.input == InputUp) { state->dirty = true; state->freq_khz += 10; } if(event.value.input.state && event.value.input.input == InputDown) { state->dirty = true; state->freq_khz -= 10; } if(event.value.input.state && event.value.input.input == InputLeft) { } if(event.value.input.state && event.value.input.input == InputRight) { } if(event.value.input.state && event.value.input.input == InputOk) { state->dirty = true; state->on = !state->on; } } } else { // event timeout } if(state->dirty) { if(!state->on) { prepare_data(state->em_data, state->customer_id, emulation_data); } if(state->on) { gpio_write(pull_pin_record, false); api_interrupt_add( comparator_trigger_callback, InterruptTypeComparatorTrigger, comp_ctx); } else { api_interrupt_remove( comparator_trigger_callback, InterruptTypeComparatorTrigger); } hal_pwmn_set( state->on ? 0.5 : 0.0, (float)(state->freq_khz * 1000), &LFRFID_TIM, LFRFID_CH); state->dirty = false; } if(!state->on) { em4100_emulation(emulation_data, pull_pin_record); } // common code, for example, force update UI widget_update(widget); release_mutex(&state_mutex, state); } } }