#include "flipper.h" #include "cc1101-workaround/cc1101.h" #define MIN_DBM -120 #define STEP_DBM 10 #define RSSI_DELAY 600 //rssi delay in micro second #define RSSI_THRESHOLD -60 #define START_SUB_BAND 3 #define STOP_SUB_BAND 3 #define NUM_OF_SUB_BANDS 7 #define CAL_INT 20 // cal every 10 channels(every 1MHz) // variables used to calculate rssi uint8_t rssi_dec; int16_t rssi_dBm; uint8_t rssi_offset[NUM_OF_SUB_BANDS] = {74, 74, 74, 74, 74, 74, 74}; #define CHAN_SPA 0.05 // channel spacing // no change in TEST0 WHERE (>430.5MHz) one should change from TEST0=0x0B to 0x09 uint16_t limitTest0Reg[NUM_OF_SUB_BANDS] = {256, 256, 256, 103, 0, 0, 0}; /* setting to use 50khz channel spacing whole band*****************************************/ int16_t rssiTable[256]; uint16_t channelNumber[256]; // counter used to keep track on how many CS has been asserted uint8_t carrierSenseCounter = 0; int16_t calRSSI(uint8_t rssi_dec, uint8_t rssiOffset) { int16_t rssi; if(rssi_dec >= 128) { rssi = (int16_t)((int16_t)(rssi_dec - 256) / 2) - rssiOffset; } else { rssi = (rssi_dec / 2) - rssiOffset; } return rssi; } /* void scanFreq(CC1101* cc1101) { uint8_t calCounter; // to determine when to calibrate uint8_t subBand; uint16_t channel; uint16_t i; float freq; cc1101->SpiWriteReg(CC1101_MCSM0, 0x08); // disalbe FS_AUTOCAL cc1101->SpiWriteReg(CC1101_AGCCTRL2, 0x43 | 0x0C); // MAX_DVGA_GAIN to 11 for fast rssi cc1101->SpiWriteReg(CC1101_AGCCTRL0, 0xB0); // max AGC WAIT_TIME; 0 filter_length cc1101->SetMod(GFSK); // set to GFSK for fast rssi measurement | +8 is dcfilter off // 1) loop through all sub bands for(subBand = START_SUB_BAND; subBand < STOP_SUB_BAND + 1; subBand++) { // 1.1) set subBands freq by FREQ2, FREQ1, FREQ0 cc1101->SetFreq( freqSettings[subBand][0], freqSettings[subBand][1], freqSettings[subBand][2]); // 1.2) set TEST0--maybe! // 1.3) reset calibration counter calCounter = 0; // 1.4) loop throuhg all channels for(channel = firstChannel[subBand]; channel <= lastChannel[subBand]; channel++) { uint8_t pktStatus; // 1.4.1) set channel register cc1101->SetChannel(channel); // 1.4.2) set TEST0 if(channel == limitTest0Reg[subBand]) { //set test0 to 0x09 cc1101->SpiWriteReg(CC1101_TEST0, 0x09); //set FSCAL2 to 0x2A to force VCO HIGH cc1101->SpiWriteReg(CC1101_FSCAL2, 0x2A); //clear calCounter to invoke mannual calibration calCounter = 0; } // 1.4.3) calibrate every 1MHz if(calCounter++ == 0) { // perform a manual calibration by issuing SCAL command cc1101->SpiStrobe(CC1101_SCAL); } // 1.4.4) reset calCounter when 1MHz reached if(calCounter == CAL_INT) { calCounter = 0; } // 1.4.5-6 enter rx mode cc1101->SetReceive(); // 1.4.7 wait for RSSI to be valid: less than 1.5ms delayMicroseconds(RSSI_DELAY); // 1.4.8) read PKTSTATUS register while the radio is in RX state pktStatus = cc1101->SpiReadStatus(CC1101_PKTSTATUS); // 1.4.9) enter IDLE state by issuing a SIDLE command cc1101->SpiStrobe(CC1101_SIDLE); // 1.4.10) check if CS is assearted // //read rssi value and converto to dBm form rssi_dec = (uint8_t)cc1101->SpiReadStatus(CC1101_RSSI); rssi_dBm = calRSSI(rssi_dec, rssi_offset[subBand]); // rssiData[subBand][channel]=rssi_dBm; if(pktStatus & 0x40) { //CS assearted // store rssi value and corresponding channel number rssiTable[carrierSenseCounter] = rssi_dBm; channelNumber[carrierSenseCounter] = channel; carrierSenseCounter++; } #ifdef CC1101_DEBUG printf("rssi_dBm: %d\n", rssi_dBm); #endif } // end channel lop // 1.5)before moving to next sub band, // scan through rssiTable to find highest rssi value for(i = 0; i < carrierSenseCounter; i++) { if(rssiTable[i] > highRSSI[subBand]) { highRSSI[subBand] = rssiTable[i]; selectedChannel[subBand] = channelNumber[i]; } } // printf("subBand:------------------>"); // Serial.println(subBand); // Serial.print("selectedChannel:"); // Serial.println(selectedChannel[subBand]); // Serial.print("highRSSI:"); // Serial.println(highRSSI[subBand]); // 1.6) reset carrierSenseCounter carrierSenseCounter = 0; } // end band loop // 2) when all sub bands has been scanned , find best subband and channel int16_t tempRssi = MIN_DBM; for(subBand = 0; subBand < NUM_OF_SUB_BANDS; subBand++) { if(highRSSI[subBand] > tempRssi) { tempRssi = highRSSI[subBand]; activeChannel = selectedChannel[subBand]; activeBand = subBand; } } // printf("activeBand:**********> %d, activeChannel %d,\n", activeBand, activeChannel); cc1101->SpiWriteReg(CC1101_MCSM0, 0x18); //enable FS_AUTOCAL cc1101->SpiWriteReg(CC1101_AGCCTRL2, 0x43); //back to recommended config cc1101->SpiWriteReg(CC1101_AGCCTRL0, 0x91); //back to recommended config } void tx(CC1101* cc1101, uint8_t band, uint16_t channel, uint16_t miniSec) { cc1101->SetFreq(freqSettings[band][0], freqSettings[band][1], freqSettings[band][2]); cc1101->SetChannel(channel); // digitalWrite(19,0); cc1101->SetTransmit(); delay(miniSec); cc1101->SpiStrobe(CC1101_SIDLE); } */ typedef struct { float base_freq; uint8_t settings[3]; // FREQ2, FREQ1, FREQ0 uint8_t first_channel; uint8_t last_channel; } Band; typedef struct { Band* band; uint16_t channel; } FreqConfig; Band bands[NUM_OF_SUB_BANDS] = { {387, {0x0E, 0xE2, 0x76}, 0, 255}, {399.8, {0x0F, 0x60, 0x76}, 0, 255}, {412.6, {0x0F, 0xDE, 0x76}, 0, 255}, {425.4, {0x10, 0x5C, 0x76}, 160, 180}, {438.2, {0x10, 0xDA, 0x76}, 0, 255}, {451, {0x11, 0x58, 0x8F}, 0, 255}, {463.8, {0x11, 0xD6, 0x8F}, 0, 4}, }; FreqConfig FREQ_LIST[] = { {&bands[0], 0}, {&bands[0], 50}, {&bands[0], 100}, {&bands[0], 150}, {&bands[0], 200}, {&bands[1], 0}, {&bands[1], 50}, {&bands[1], 100}, {&bands[1], 150}, {&bands[1], 200}, {&bands[2], 0}, {&bands[2], 50}, {&bands[2], 100}, {&bands[2], 150}, {&bands[2], 200}, {&bands[3], 160}, {&bands[3], 170}, {&bands[4], 0}, {&bands[4], 50}, {&bands[4], 100}, {&bands[4], 150}, {&bands[4], 200}, {&bands[5], 0}, {&bands[5], 50}, {&bands[5], 100}, {&bands[5], 150}, {&bands[5], 200}, {&bands[6], 0}, }; typedef enum { EventTypeTick, EventTypeKey, } EventType; typedef struct { union { InputEvent input; } value; EventType type; } Event; typedef enum { ModeRx, ModeTx } Mode; typedef struct { Mode mode; size_t active_freq; } State; static void render_callback(CanvasApi* canvas, void* ctx) { State* state = (State*)acquire_mutex((ValueMutex*)ctx, 25); canvas->clear(canvas); canvas->set_color(canvas, ColorBlack); canvas->set_font(canvas, FontPrimary); canvas->draw_str(canvas, 2, 12, "cc1101 workaround"); { char buf[24]; FreqConfig conf = FREQ_LIST[state->active_freq]; float freq = conf.band->base_freq + CHAN_SPA * conf.channel; sprintf(buf, "freq: %ld.%02ld MHz", (uint32_t)freq, (uint32_t)(freq * 100.) % 100); canvas->set_font(canvas, FontSecondary); canvas->draw_str(canvas, 2, 25, buf); } release_mutex((ValueMutex*)ctx, state); } static void input_callback(InputEvent* input_event, void* ctx) { osMessageQueueId_t event_queue = (QueueHandle_t)ctx; Event event; event.type = EventTypeKey; event.value.input = *input_event; osMessageQueuePut(event_queue, &event, 0, 0); } extern "C" void cc1101_workaround(void* p) { osMessageQueueId_t event_queue = osMessageQueueNew(1, sizeof(Event), NULL); assert(event_queue); State _state; _state.mode = ModeRx; _state.active_freq = 0; ValueMutex state_mutex; if(!init_mutex(&state_mutex, &_state, sizeof(State))) { printf("[cc1101] cannot create mutex\n"); furiac_exit(NULL); } Widget* widget = widget_alloc(); widget_draw_callback_set(widget, render_callback, &state_mutex); widget_input_callback_set(widget, input_callback, event_queue); // Open GUI and register widget GuiApi* gui = (GuiApi*)furi_open("gui"); if(gui == NULL) { printf("[cc1101] gui is not available\n"); furiac_exit(NULL); } gui->add_widget(gui, widget, WidgetLayerFullscreen); printf("[cc1101] creating device\n"); CC1101 cc1101(GpioPin{CC1101_CS_GPIO_Port, CC1101_CS_Pin}); printf("[cc1101] init device\n"); uint8_t address = cc1101.Init(); if(address > 0) { printf("[cc1101] init done: %d\n", address); } else { printf("[cc1101] init fail\n"); furiac_exit(NULL); } // RX filter bandwidth 58.035714(0xFD) 100k(0xCD) 200k(0x8D) cc1101.SpiWriteReg(CC1101_MDMCFG4, 0xCD); // datarate config 250kBaud for the purpose of fast rssi measurement cc1101.SpiWriteReg(CC1101_MDMCFG3, 0x3B); // FEC preamble etc. last 2 bits for channel spacing cc1101.SpiWriteReg(CC1101_MDMCFG1, 0x20); // 50khz channel spacing cc1101.SpiWriteReg(CC1101_MDMCFG0, 0xF8); Event event; while(1) { if(osMessageQueueGet(event_queue, &event, NULL, osWaitForever) == osOK) { State* state = (State*)acquire_mutex_block(&state_mutex); if(event.type == EventTypeKey) { if(event.value.input.state && event.value.input.input == InputBack) { printf("[cc1101] bye!\n"); // TODO remove all widgets create by app widget_enabled_set(widget, false); furiac_exit(NULL); } if(event.value.input.state && event.value.input.input == InputUp) { if(state->active_freq > 0) { state->active_freq--; } } if(event.value.input.state && event.value.input.input == InputDown) { if(state->active_freq < (sizeof(FREQ_LIST)/sizeof(FREQ_LIST[0]) - 1)) { state->active_freq++; } } } release_mutex(&state_mutex, state); widget_update(widget); } } /* while(1) { for(uint8_t i = 0; i <= NUM_OF_SUB_BANDS; i++) { highRSSI[i] = MIN_DBM; } activeChannel = 300; tx(&cc1101, activeBand, activeChannel, 500); scanFreq(&cc1101); if(activeChannel < 256 && highRSSI[activeBand] > RSSI_THRESHOLD) { float freq = base_freq[activeBand] + CHAN_SPA * activeChannel; printf( "channel: %d, freq: %d, RSSI: %d\n", activeChannel, (uint32_t)(freq * 1000), highRSSI[activeBand] ); * if(tx_on) { tx(&cc1101, activeBand, activeChannel, 500); } else { osDelay(1000); } * } else { // printf("0 carrier sensed\n"); } * uint8_t band = 4; // 438.2 MHz * cc1101.SetFreq(freqSettings[band][0], freqSettings[band][1], freqSettings[band][2]); cc1101.SetChannel(0); cc1101.SetTransmit(); delay(5000); cc1101.SpiStrobe(CC1101_SIDLE); * delay(1000); } */ }