#include #include #include #include typedef enum { EventTypeTick, EventTypeKey, EventTypeRx } EventType; typedef struct { uint8_t dummy; } RxEvent; typedef struct { union { InputEvent input; RxEvent rx; } value; EventType type; } AppEvent; typedef struct { uint32_t freq_khz; bool on; uint8_t customer_id; uint32_t em_data; bool dirty; bool dirty_freq; } State; static void render_callback(Canvas* canvas, void* ctx) { State* state = (State*)acquire_mutex((ValueMutex*)ctx, 25); canvas_clear(canvas); canvas_set_color(canvas, ColorBlack); canvas_set_font(canvas, FontPrimary); canvas_draw_str(canvas, 2, 12, "LF RFID"); canvas_draw_str(canvas, 2, 24, state->on ? "Reading" : "Emulating"); char buf[14]; sprintf(buf, "%d kHz", (int)state->freq_khz); canvas_draw_str(canvas, 2, 36, buf); sprintf(buf, "%02d:%010ld", state->customer_id, state->em_data); canvas_draw_str(canvas, 2, 45, buf); release_mutex((ValueMutex*)ctx, state); } static void input_callback(InputEvent* input_event, void* ctx) { osMessageQueueId_t event_queue = ctx; AppEvent event; event.type = EventTypeKey; event.value.input = *input_event; osMessageQueuePut(event_queue, &event, 0, 0); } extern TIM_HandleTypeDef TIM_C; void em4100_emulation(uint8_t* data, GpioPin* pin); void prepare_data(uint32_t ID, uint32_t VENDOR, uint8_t* data); GpioPin debug_0 = {.pin = GPIO_PIN_2, .port = GPIOB}; GpioPin debug_1 = {.pin = GPIO_PIN_3, .port = GPIOC}; extern COMP_HandleTypeDef hcomp1; typedef struct { osMessageQueueId_t event_queue; uint32_t prev_dwt; int8_t symbol; bool center; size_t symbol_cnt; StreamBufferHandle_t stream_buffer; uint8_t* int_buffer; } ComparatorCtx; void init_comp_ctx(ComparatorCtx* ctx) { ctx->prev_dwt = 0; ctx->symbol = -1; // init state ctx->center = false; ctx->symbol_cnt = 0; xStreamBufferReset(ctx->stream_buffer); for(size_t i = 0; i < 64; i++) { ctx->int_buffer[i] = 0; } } void comparator_trigger_callback(void* hcomp, void* comp_ctx) { ComparatorCtx* ctx = (ComparatorCtx*)comp_ctx; uint32_t dt = (DWT->CYCCNT - ctx->prev_dwt) / (SystemCoreClock / 1000000.0f); ctx->prev_dwt = DWT->CYCCNT; if(dt < 150) return; // supress noise // wait message will be consumed if(xStreamBufferBytesAvailable(ctx->stream_buffer) == 64) return; gpio_write(&debug_0, true); // TOOD F4 and F5 differ bool rx_value = get_rfid_in_level(); if(dt > 384) { // change symbol 0->1 or 1->0 ctx->symbol = rx_value; ctx->center = true; } else { // same symbol as prev or center ctx->center = !ctx->center; } /* gpio_write(&debug_1, true); delay_us(center ? 10 : 30); gpio_write(&debug_1, false); */ BaseType_t xHigherPriorityTaskWoken = pdFALSE; if(ctx->center && ctx->symbol != -1) { /* gpio_write(&debug_0, true); delay_us(symbol ? 10 : 30); gpio_write(&debug_0, false); */ ctx->int_buffer[ctx->symbol_cnt] = ctx->symbol; ctx->symbol_cnt++; } // check preamble if(ctx->symbol_cnt <= 9 && ctx->symbol == 0) { ctx->symbol_cnt = 0; ctx->symbol = -1; } // check stop bit if(ctx->symbol_cnt == 64 && ctx->symbol == 1) { ctx->symbol_cnt = 0; ctx->symbol = -1; } // TODO // write only 9..64 symbols directly to streambuffer if(ctx->symbol_cnt == 64) { if(xStreamBufferSendFromISR( ctx->stream_buffer, ctx->int_buffer, 64, &xHigherPriorityTaskWoken) == 64) { AppEvent event; event.type = EventTypeRx; osMessageQueuePut(ctx->event_queue, &event, 0, 0); } ctx->symbol_cnt = 0; } gpio_write(&debug_0, false); portYIELD_FROM_ISR(xHigherPriorityTaskWoken); } const uint8_t ROW_SIZE = 4; const uint8_t LINE_SIZE = 10; static bool even_check(uint8_t* buf) { uint8_t col_parity_sum[ROW_SIZE]; for(uint8_t col = 0; col < ROW_SIZE; col++) { col_parity_sum[col] = 0; } // line parity for(uint8_t line = 0; line < LINE_SIZE; line++) { printf("%d: ", line); uint8_t parity_sum = 0; for(uint8_t col = 0; col < ROW_SIZE; col++) { parity_sum += buf[line * (ROW_SIZE + 1) + col]; col_parity_sum[col] += buf[line * (ROW_SIZE + 1) + col]; printf("%d ", buf[line * (ROW_SIZE + 1) + col]); } if((1 & parity_sum) != buf[line * (ROW_SIZE + 1) + ROW_SIZE]) { printf( "line parity fail at %d (%d : %d)\n", line, parity_sum, buf[line * (ROW_SIZE + 1) + ROW_SIZE]); return false; } printf("\r\n"); } for(uint8_t col = 0; col < ROW_SIZE; col++) { if((1 & col_parity_sum[col]) != buf[LINE_SIZE * (ROW_SIZE + 1) + col]) { printf( "col parity fail at %d (%d : %d)\n", col, col_parity_sum[col], buf[LINE_SIZE * (ROW_SIZE + 1) + col]); return false; } } return true; } static void extract_data(uint8_t* buf, uint8_t* customer, uint32_t* em_data) { uint32_t data = 0; uint8_t offset = 0; printf("customer: "); for(uint8_t line = 0; line < 2; line++) { for(uint8_t col = 0; col < ROW_SIZE; col++) { uint32_t bit = buf[line * (ROW_SIZE + 1) + col]; data |= bit << (7 - offset); printf("%ld ", bit); offset++; } } printf("\r\n"); *customer = data; data = 0; offset = 0; printf("data: "); for(uint8_t line = 2; line < LINE_SIZE; line++) { for(uint8_t col = 0; col < ROW_SIZE; col++) { uint32_t bit = buf[line * (ROW_SIZE + 1) + col]; data |= bit << (31 - offset); printf("%ld ", bit); offset++; } } printf("\r\n"); *em_data = data; } int32_t lf_rfid_workaround(void* p) { osMessageQueueId_t event_queue = osMessageQueueNew(2, sizeof(AppEvent), NULL); // create pin GpioPin pull_pin = {.pin = RFID_PULL_Pin, .port = RFID_PULL_GPIO_Port}; // TODO open record GpioPin* pull_pin_record = &pull_pin; gpio_init(pull_pin_record, GpioModeOutputPushPull); gpio_init(&debug_0, GpioModeOutputPushPull); gpio_init(&debug_1, GpioModeOutputPushPull); // pulldown iBtn pin to prevent interference from ibutton gpio_init((GpioPin*)&ibutton_gpio, GpioModeOutputOpenDrain); gpio_write((GpioPin*)&ibutton_gpio, false); // init ctx ComparatorCtx comp_ctx; // internal buffer uint8_t int_bufer[64]; comp_ctx.stream_buffer = xStreamBufferCreate(64, 64); comp_ctx.int_buffer = int_bufer; comp_ctx.event_queue = event_queue; init_comp_ctx(&comp_ctx); if(comp_ctx.stream_buffer == NULL) { printf("cannot create stream buffer\r\n"); return 255; } // start comp HAL_COMP_Start(&hcomp1); uint8_t raw_data[64]; for(size_t i = 0; i < 64; i++) { raw_data[i] = 0; } State _state; _state.freq_khz = 125; _state.on = false; _state.customer_id = 00; _state.em_data = 4378151; _state.dirty = true; _state.dirty_freq = true; ValueMutex state_mutex; if(!init_mutex(&state_mutex, &_state, sizeof(State))) { printf("cannot create mutex\r\n"); return 255; } ViewPort* view_port = view_port_alloc(); view_port_draw_callback_set(view_port, render_callback, &state_mutex); view_port_input_callback_set(view_port, input_callback, event_queue); // Open GUI and register view_port Gui* gui = furi_record_open("gui"); gui_add_view_port(gui, view_port, GuiLayerFullscreen); AppEvent event; while(1) { osStatus_t event_status = osMessageQueueGet(event_queue, &event, NULL, 1024 / 8); if(event.type == EventTypeRx && event_status == osOK) { size_t received = xStreamBufferReceive(comp_ctx.stream_buffer, raw_data, 64, 0); printf("received: %d\r\n", received); if(received == 64) { if(even_check(&raw_data[9])) { State* state = (State*)acquire_mutex_block(&state_mutex); extract_data(&raw_data[9], &state->customer_id, &state->em_data); printf("customer: %02d, data: %010lu\n", state->customer_id, state->em_data); release_mutex(&state_mutex, state); view_port_update(view_port); api_hal_light_set(LightGreen, 0xFF); osDelay(50); api_hal_light_set(LightGreen, 0x00); } } } else { State* state = (State*)acquire_mutex_block(&state_mutex); if(event_status == osOK) { if(event.type == EventTypeKey) { // press events if(event.value.input.type == InputTypePress && event.value.input.key == InputKeyBack) { hal_pwmn_stop(&TIM_C, TIM_CHANNEL_1); // TODO: move to furiac_onexit api_interrupt_remove( comparator_trigger_callback, InterruptTypeComparatorTrigger); gpio_init(pull_pin_record, GpioModeInput); gpio_init((GpioPin*)&ibutton_gpio, GpioModeInput); // TODO remove all view_ports create by app view_port_enabled_set(view_port, false); return 255; } if(event.value.input.type == InputTypePress && event.value.input.key == InputKeyUp) { state->dirty_freq = true; state->freq_khz += 10; } if(event.value.input.type == InputTypePress && event.value.input.key == InputKeyDown) { state->dirty_freq = true; state->freq_khz -= 10; } if(event.value.input.type == InputTypePress && event.value.input.key == InputKeyLeft) { } if(event.value.input.type == InputTypePress && event.value.input.key == InputKeyRight) { } if(event.value.input.type == InputTypePress && event.value.input.key == InputKeyOk) { state->dirty = true; state->on = !state->on; } } } else { // event timeout } if(state->dirty) { if(state->on) { gpio_write(pull_pin_record, false); init_comp_ctx(&comp_ctx); api_interrupt_add( comparator_trigger_callback, InterruptTypeComparatorTrigger, &comp_ctx); } else { prepare_data(state->em_data, state->customer_id, raw_data); api_interrupt_remove( comparator_trigger_callback, InterruptTypeComparatorTrigger); } state->dirty_freq = true; // config new PWM next state->dirty = false; } if(state->dirty_freq) { hal_pwmn_set( state->on ? 0.5 : 0.0, (float)(state->freq_khz * 1000), &LFRFID_TIM, LFRFID_CH); state->dirty_freq = false; } if(!state->on) { em4100_emulation(raw_data, pull_pin_record); } release_mutex(&state_mutex, state); view_port_update(view_port); } } return 0; }