#include #include #include #include #define LFRFID_READ_TIM htim1 #define LFRFID_READ_CHANNEL TIM_CHANNEL_1 #define LFRFID_EMULATE_TIM htim2 #define LFRFID_EMULATE_CHANNEL TIM_CHANNEL_3 void furi_hal_rfid_init() { furi_hal_rfid_pins_reset(); } void furi_hal_rfid_pins_reset() { // ibutton bus disable furi_hal_ibutton_stop(); // pulldown rfid antenna hal_gpio_init(&gpio_rfid_carrier_out, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow); hal_gpio_write(&gpio_rfid_carrier_out, false); // from both sides hal_gpio_init(&gpio_rfid_pull, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow); hal_gpio_write(&gpio_rfid_pull, true); hal_gpio_init_simple(&gpio_rfid_carrier, GpioModeAnalog); } void furi_hal_rfid_pins_emulate() { // ibutton low furi_hal_ibutton_start(); furi_hal_ibutton_pin_low(); // pull pin to timer out hal_gpio_init_ex( &gpio_rfid_pull, GpioModeAltFunctionPushPull, GpioPullNo, GpioSpeedLow, GpioAltFn1TIM2); // pull rfid antenna from carrier side hal_gpio_init(&gpio_rfid_carrier_out, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow); hal_gpio_write(&gpio_rfid_carrier_out, false); hal_gpio_init_ex( &gpio_rfid_carrier, GpioModeAltFunctionPushPull, GpioSpeedLow, GpioPullUp, GpioAltFn2TIM2); } void furi_hal_rfid_pins_read() { // ibutton low furi_hal_ibutton_start(); furi_hal_ibutton_pin_low(); // dont pull rfid antenna hal_gpio_init(&gpio_rfid_pull, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow); hal_gpio_write(&gpio_rfid_pull, false); // carrier pin to timer out hal_gpio_init_ex( &gpio_rfid_carrier_out, GpioModeAltFunctionPushPull, GpioPullNo, GpioSpeedLow, GpioAltFn1TIM1); // comparator in hal_gpio_init(&gpio_rfid_data_in, GpioModeAnalog, GpioPullNo, GpioSpeedLow); } void furi_hal_rfid_tim_read(float freq, float duty_cycle) { // TODO LL init uint32_t period = (uint32_t)((SystemCoreClock) / freq) - 1; TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; TIM_OC_InitTypeDef sConfigOC = {0}; TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0}; // basic PWM setup with needed freq and internal clock LFRFID_READ_TIM.Init.Prescaler = 0; LFRFID_READ_TIM.Init.CounterMode = TIM_COUNTERMODE_UP; LFRFID_READ_TIM.Init.Period = period; LFRFID_READ_TIM.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; LFRFID_READ_TIM.Init.RepetitionCounter = 0; LFRFID_READ_TIM.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if(HAL_TIM_Base_Init(&LFRFID_READ_TIM) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if(HAL_TIM_ConfigClockSource(&LFRFID_READ_TIM, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } if(HAL_TIM_PWM_Init(&LFRFID_READ_TIM) != HAL_OK) { Error_Handler(); } // no master-slave mode sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if(HAL_TIMEx_MasterConfigSynchronization(&LFRFID_READ_TIM, &sMasterConfig) != HAL_OK) { Error_Handler(); } // pwm config sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = (uint32_t)(LFRFID_READ_TIM.Init.Period * duty_cycle); sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET; sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET; if(HAL_TIM_OC_ConfigChannel(&LFRFID_READ_TIM, &sConfigOC, LFRFID_READ_CHANNEL) != HAL_OK) { Error_Handler(); } // no deadtime sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE; sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE; sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF; sBreakDeadTimeConfig.DeadTime = 0; sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE; sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH; sBreakDeadTimeConfig.BreakFilter = 0; sBreakDeadTimeConfig.BreakAFMode = TIM_BREAK_AFMODE_INPUT; sBreakDeadTimeConfig.Break2State = TIM_BREAK2_DISABLE; sBreakDeadTimeConfig.Break2Polarity = TIM_BREAK2POLARITY_HIGH; sBreakDeadTimeConfig.Break2Filter = 0; sBreakDeadTimeConfig.Break2AFMode = TIM_BREAK_AFMODE_INPUT; sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE; if(HAL_TIMEx_ConfigBreakDeadTime(&LFRFID_READ_TIM, &sBreakDeadTimeConfig) != HAL_OK) { Error_Handler(); } } void furi_hal_rfid_tim_read_start() { HAL_TIMEx_PWMN_Start(&LFRFID_READ_TIM, LFRFID_READ_CHANNEL); } void furi_hal_rfid_tim_read_stop() { HAL_TIMEx_PWMN_Stop(&LFRFID_READ_TIM, LFRFID_READ_CHANNEL); } void furi_hal_rfid_tim_emulate(float freq) { // TODO LL init // uint32_t prescaler = (uint32_t)((SystemCoreClock) / freq) - 1; TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; TIM_OC_InitTypeDef sConfigOC = {0}; TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0}; // basic PWM setup with needed freq and internal clock LFRFID_EMULATE_TIM.Init.Prescaler = 0; LFRFID_EMULATE_TIM.Init.CounterMode = TIM_COUNTERMODE_UP; LFRFID_EMULATE_TIM.Init.Period = 1; LFRFID_EMULATE_TIM.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; LFRFID_EMULATE_TIM.Init.RepetitionCounter = 0; LFRFID_EMULATE_TIM.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE; if(HAL_TIM_Base_Init(&LFRFID_EMULATE_TIM) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_ETRMODE2; sClockSourceConfig.ClockPolarity = TIM_ETRPOLARITY_INVERTED; sClockSourceConfig.ClockPrescaler = TIM_CLOCKPRESCALER_DIV1; sClockSourceConfig.ClockFilter = 0; if(HAL_TIM_ConfigClockSource(&LFRFID_EMULATE_TIM, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } if(HAL_TIM_PWM_Init(&LFRFID_EMULATE_TIM) != HAL_OK) { Error_Handler(); } // no master-slave mode sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if(HAL_TIMEx_MasterConfigSynchronization(&LFRFID_EMULATE_TIM, &sMasterConfig) != HAL_OK) { Error_Handler(); } // pwm config sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = 1; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET; sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET; if(HAL_TIM_PWM_ConfigChannel(&LFRFID_EMULATE_TIM, &sConfigOC, LFRFID_EMULATE_CHANNEL) != HAL_OK) { Error_Handler(); } // no deadtime sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE; sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE; sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF; sBreakDeadTimeConfig.DeadTime = 0; sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE; sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH; sBreakDeadTimeConfig.BreakFilter = 0; sBreakDeadTimeConfig.BreakAFMode = TIM_BREAK_AFMODE_INPUT; sBreakDeadTimeConfig.Break2State = TIM_BREAK2_DISABLE; sBreakDeadTimeConfig.Break2Polarity = TIM_BREAK2POLARITY_HIGH; sBreakDeadTimeConfig.Break2Filter = 0; sBreakDeadTimeConfig.Break2AFMode = TIM_BREAK_AFMODE_INPUT; sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE; if(HAL_TIMEx_ConfigBreakDeadTime(&LFRFID_EMULATE_TIM, &sBreakDeadTimeConfig) != HAL_OK) { Error_Handler(); } } void furi_hal_rfid_tim_emulate_start() { // TODO make api for interrupts priority for(size_t i = WWDG_IRQn; i <= DMAMUX1_OVR_IRQn; i++) { HAL_NVIC_SetPriority(i, 15, 0); } HAL_NVIC_SetPriority(TIM2_IRQn, 5, 0); HAL_NVIC_EnableIRQ(TIM2_IRQn); HAL_TIM_PWM_Start_IT(&LFRFID_EMULATE_TIM, LFRFID_EMULATE_CHANNEL); HAL_TIM_Base_Start_IT(&LFRFID_EMULATE_TIM); } void furi_hal_rfid_tim_emulate_stop() { HAL_TIM_Base_Stop(&LFRFID_EMULATE_TIM); HAL_TIM_PWM_Stop(&LFRFID_EMULATE_TIM, LFRFID_EMULATE_CHANNEL); } void furi_hal_rfid_tim_reset() { HAL_TIM_Base_DeInit(&LFRFID_READ_TIM); LL_TIM_DeInit(TIM1); LL_APB2_GRP1_DisableClock(LL_APB2_GRP1_PERIPH_TIM1); HAL_TIM_Base_DeInit(&LFRFID_EMULATE_TIM); LL_TIM_DeInit(TIM2); LL_APB1_GRP1_DisableClock(LL_APB1_GRP1_PERIPH_TIM2); } bool furi_hal_rfid_is_tim_emulate(TIM_HandleTypeDef* hw) { return (hw == &LFRFID_EMULATE_TIM); } void furi_hal_rfid_set_emulate_period(uint32_t period) { LFRFID_EMULATE_TIM.Instance->ARR = period; } void furi_hal_rfid_set_emulate_pulse(uint32_t pulse) { switch(LFRFID_EMULATE_CHANNEL) { case TIM_CHANNEL_1: LFRFID_EMULATE_TIM.Instance->CCR1 = pulse; break; case TIM_CHANNEL_2: LFRFID_EMULATE_TIM.Instance->CCR2 = pulse; break; case TIM_CHANNEL_3: LFRFID_EMULATE_TIM.Instance->CCR3 = pulse; break; case TIM_CHANNEL_4: LFRFID_EMULATE_TIM.Instance->CCR4 = pulse; break; default: furi_crash(NULL); break; } } void furi_hal_rfid_set_read_period(uint32_t period) { LFRFID_TIM.Instance->ARR = period; } void furi_hal_rfid_set_read_pulse(uint32_t pulse) { switch(LFRFID_READ_CHANNEL) { case TIM_CHANNEL_1: LFRFID_TIM.Instance->CCR1 = pulse; break; case TIM_CHANNEL_2: LFRFID_TIM.Instance->CCR2 = pulse; break; case TIM_CHANNEL_3: LFRFID_TIM.Instance->CCR3 = pulse; break; case TIM_CHANNEL_4: LFRFID_TIM.Instance->CCR4 = pulse; break; default: furi_crash(NULL); break; } } void furi_hal_rfid_change_read_config(float freq, float duty_cycle) { uint32_t period = (uint32_t)((SystemCoreClock) / freq) - 1; furi_hal_rfid_set_read_period(period); furi_hal_rfid_set_read_pulse(period * duty_cycle); }